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Abstract— We study the problem of dynamic learning by a
social network of agents. Each agent receives a signal about
an underlying state and communicates with a subset of agents
(his neighbors) in each period. The network is connected. In
contrast to the majority of existing learning models, we focus
on the case where the underlying state is time-varying. We
consider the following class of rule of thumb learning rules: at
each period, each agent constructs his posterior as a weighted
average of his prior, his signal and the information he receives
from neighbors. The weights given to signals can vary over time
and the weights given to neighbors can vary across agents. We
distinguish between two subclasses: (1) constant weight rules;
(2) diminishing weight rules. The latter reduces weights given
to signals asymptotically to 0. Our main results characterize
the asymptotic behavior of beliefs. We show that the general
class of rules leads to unbiased estimates of the underlying
state. When the underlying state has innovations with variance
tending to zero asymptotically, we show that the diminishing
weight rules ensure convergence in the mean-square sense. In
contrast, when the underlying state has persistent innovations,
constant weight rules enable us to characterize explicit bounds
on the mean square error between an agent’s belief and the
underlying state as a function of the type of learning rule and
signal structure.

I. INTRODUCTION

A central question of social sciences is how a large group
of agents form their beliefs about an underlying state of
the world, which may correspond to economic or social
opportunities or the appropriateness of different policies and
actions. A variety of evidence shows that individuals form
their beliefs in part on the basis of their social network,
consisting of friends, neighbors, coworkers and family mem-
bers who communicate relatively frequently. For example,
Granovetter [12] and Ioannides and Loury [13] document
how information obtained from an individual’s social net-
work influences employment opportunities, while Foster and
Rosenzweig [10] and Munshi [15] show the importance of
the information obtained from social networks for technology
adoption.

These observations have motivated a large literature in-
vestigating how the structure of a social network and the
pattern of communication influences the dynamics of beliefs
and whether individuals will form unbiased beliefs about the

This research was partially supported by the National Science Foundation
under CAREER grants CMMI 07-42538 and DMI-0545910.

underlying state. A natural approach is to formulate this
problem as a dynamic game and characterize its (perfect
Bayesian) equilibria. Though theoretically attractive, this
strategy runs into two problems. First, the characteriza-
tion of such equilibria in complex networks is generally a
non-tractable problem.1 Second, individuals in practice use
somewhat coarser ways of aggregating information forming
their beliefs than Bayesian updating. These considerations
have motivated a large literature to investigate how indi-
viduals form their beliefs when they use “reasonable rules
of thumb”.2 One difficulty is that what is “reasonable” is
generally difficult to decide without reference to the structure
of the network and the learning problem. Another challenge
for this entire literature is that it focuses on situations
in which there is a fixed underlying state, which remains
constant while individuals accumulate more signals. Most
real-world situations involve at least some change in the
underlying state. For example, which types of jobs offer
better careers, what brands of products have higher quality
and which parties are more reliable provide examples of
underlying states on which individuals form beliefs, but in
all of these cases these states are unlikely to remain fixed
for long periods of time.

In this paper, we contribute to this literature in three ways.
First, we consider thewould class of rule-of-thumb learning
rules that are flexible and nest various Bayesian rules (in the
case of normally distributed states and signals). In particular,
we look at learning rules that take time-varying averages
of an agent’s prior belief, new signal and observations of
neighbors. Second, we allow for a time-varying underlying
state. Finally, though as in the previous literature, we look at
asymptotic learning (in particular, whether individuals form
unbiased expectations of the underlying state and whether
they learn the true value of the underlying state asymptoti-
cally), we also provide explicit bounds on the mean square

1For this reason, existing literature focuses on relatively simple and
stylized environments. See, for example, Bikchandani, Hirshleifer and Welch
[4], Banerjee [3], and Smith and Sorensen [21] on models where each
individual takes a single action and observes all past actions. Acemoglu,
Dahleh, Lobel and Ozdaglar [1] generalize these results to an arbitrary
network structure (while keeping the assumption of a single decision for
each agent).

2See, for example, Ellison and Fudenberg [8], [9], Bala and Goyal [2],
DeMarzo, Vayanos and Zwiebel [7] and Golub and Jackson [11].
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error between individual beliefs and the underlying state.
We distinguish two cases. In the first, the underlying state

changes with diminishing innovations, that is, the variance
of the innovations to the underlying state (when scaled
appropriately) tends to zero asymptotically. In the second,
the underlying state changes with persistent innovations,
in the sense that, the variance of the innovations to the
underlying state need not go to zero. We also consider two
subclasses of the general class of learning rules described
above. These are: (1) constant weight rules; (2) diminishing
weight rules. Diminishing weight rules reduce the weights
given to own signals to 0 asymptotically.3 In contrast, with
constant weight rules, these weights are uniformly bounded
away from zero. Throughout, we consider a general social
network, represented by a direct graph, which specifies how
information flows across individuals. We assume that the
graph is connected (that is, there exists a path connecting
each agent to every other).

Our first result shows that any learning rule within the
class we consider is unbiased. Therefore, this fairly general
class of reasonable learning rules all preclude systematic
biases in the formation of beliefs. Our second result charac-
terizes bounds on the mean square error of the gap between
an agent’s belief and the underlying state. When there are
diminishing innovations, diminishing weight rules ensure
convergence in the mean-square sense (so that the second
moment of the gap between beliefs and the true value of the
underlying state tend to zero asymptotically) and in proba-
bility. This reflects the intuitive notion that when there are
diminishing innovations, the underlying state will essentially
stabilize at some level in the future and there is enough
information acquired by individuals from their own signals
and from the communication of others that they will be
able to track this state fairly well. Diminishing weight rules
ensure that in the very far future, individuals will not respond
excessively to their own signal, thus enabling convergence
in the mean-square sense. This result is typically not true
with constant weight rules, since even when individuals have
accumulated a lot of information about the underlying state,
their beliefs are still highly responsive to their own signals. In
contrast, when there are persistent innovations, diminishing
weight rules do not perform well. In this case, each agent
needs to track a moving target and diminishing weight rules
cease to incorporate the new information about this target
(underlying state). However, constant weight rules perform
well in this case and provide us with explicit bounds on the
second moment of the gap between individual beliefs and the
underlying state. This bound is a function of the parameters
of the learning rule and the information structure.

These results are intuitive and suggest that relatively sim-
ple learning rules can ensure learning of the underlying state
or accurate tracking of the changes in this state by the agents
under a wide range of network topologies. The intuition can
best be understood by going back to the normal updating

3More generally, these rules can also reduce the weights given to
neighbors to zero. In this paper, we keep the weights given to neighbors
fixed to simplify notation.

case. The normal updating formula for the estimation of an
unknown, but fixed parameter is similar to our diminishing
weight rules, whereas the updating formula for the estimation
of a time varying parameter corresponds to constant weight
rules. This intuition also highlights that we may indeed
expect agents to use rule of thumb rules with diminishing
weights when the state is fixed and with constant weights
when the state is time varying. It further suggests that a
limited amount of rationality may be sufficient for learning
and for efficient exchange of information over the network.

In the learning literature, our paper is most closely related
to DeMarzo, Vayanos and Zwiebel [7] and Golub and Jack-
son [11], who also consider learning over a social network
represented by a connected graph. These papers focus on the
subset of our rules corresponding to constant weight rules
and assume that the underlying state is fixed. Our results
generalize their findings both by showing learning for a wider
variety of environments and also by characterizing learning
behavior when the underlying state is changing.

In addition to the papers on learning mentioned above,
our paper is related to work on consensus, which is moti-
vated by different problems, but typically leads to a similar
mathematical formulation ([22], [23], [14], [5], [17], [19],
[16]). In consensus problems, the focus is on whether the
beliefs or the values held by different units (which might
correspond to individuals, sensors or distributed processors)
converge to a common fixed value. Our work here focuses
on whether the consensus happens around the true value of
an underlying state and whether this consensus is able to
track changes in the state. In this regard, it is also related to
[18] and [6], which study the problem of estimating the state
of a dynamical system from distributed noisy measurements.
Our results differ from these papers since we provide explicit
bounds at each iteration on the mean square error between
individual beliefs and the underlying state.

The rest of this paper is organized as follows: In Section II,
we introduce our notation, formulate the learning problem,
and describe the assumptions imposed on the weights used
in forming the posterior beliefs. In Section III, we present
our main convergence and rate of convergence results. In
Section IV, we provide concluding remarks.

Regarding notation, for a matrix A, we write [A]ji to
denote the matrix entry in the i-th row and j-th column.
We write [A]i and [A]j to denote the i-th row and the j-th
column of the matrix A, respectively. A vector a is said to
be a stochastic vector when ai ≥ 0 for all i and

∑
i ai = 1.

A square matrix A is said to be a (row) stochastic matrix
when each row of A is a stochastic vector. The transpose of
a matrix A is denoted by A′.

II. MODEL

We consider a set V = {1, . . . , m} of agents interact-
ing over a static social network. We use the weights ai

j ,
i, j ∈ {1, . . . ,m}, to capture the agent interactions, i.e., the
nonnegative scalar ai

j denotes the weight or trust that agent
i places on the information he receives from neighboring
agent j.
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We study a model of learning where the agents are trying
to learn some unknown parameter θ(k) ∈ R varying over
time k according to4

θ(k + 1) = θ(k) + ν(k),

where ν(k) is a zero mean innovation, which is independent
across time. The initial state θ(0) is assumed to be an
independently drawn random variable.

At each time k, every agent i receives a private signal
si(k) ∈ R which is a noisy version of the value of the
parameter at time k. More specifically, we assume that at
each time k ≥ 1, the private signal si(k) of agent i is
generated according to

si(k) = θ(k) + νi(k) i ∈ {1, . . . , m}, (1)

where νi(k) is a zero-mean observation noise, which is
independent across agents and time.

We use xi(k) ∈ R to denote the belief of agent i about the
value of parameter θ(k) at time k. Each agent i starts with
some initial belief xi(0). At each time, the agents exchange
their beliefs with their neighbors. At time k, agent i updates
his belief according to the following rule:

xi(k + 1) = xi(k) + α(k)(si(k)− xi(k))
+

∑

j 6=i

ai
j(xj(k)− xi(k)), (2)

where α(k) is a positive weight given to the information due
to the private signal, which we refer to as the signal weight.

This rule captures the idea that in updating his belief,
each agent uses the new information in his signal relative
to his current belief and the new information provided by its
neighbors relative to his own belief. While this update rule
does not correspond to Bayesian updating of the posterior
beliefs, it is flexible enough to nest a wide range of behavior.

III. CONVERGENCE OF BELIEFS

In this section, we study the convergence of beliefs un-
der different assumptions on the signal weight and on the
statistical properties of the innovation and the observation
noise.

We assume that in updating their beliefs at time k, agents
take a convex combination of the agent beliefs available
at that time. This amounts to assuming that the weights
ai
1, . . . , a

i
m sum to 1 for all i, hence implicitly defining the

weight ai
i as ai

i = 1 −∑
j 6=i ai

j . We use the m ×m matrix
A defined by [A]ij = ai

j for all i, j ∈ {1, . . . , m} to capture
the agent interactions in the social network.

Assumption 1: (Stochastic Weights) For each i, the
weights ai

j are nonnegative for all j and they sum to 1, i.e.,

ai
j ≥ 0 for all i, j,

m∑

j=1

ai
j = 1 for all i.

4Our model is applicable to a more general case where the parameter θ,
the agent beliefs xi, the innovation ν and the private signals νi are vectors,
in which case our analysis can be applied componentwise.

Under the Stochastic Weights assumption, the belief up-
date rule of agent i [cf. Eq. (2)] can be equivalently repre-
sented as

xi(k + 1) =
m∑

j=1

ai
jxj(k) + α(k)(si(k)− xi(k)). (3)

In addition, we use another assumption on the weights.
Assumption 2: (Weights)

(a) There exists a scalar η with 0 < η < 1 such that ai
i ≥ η

for all i ∈ {1, . . . ,m}, and if ai
j > 0, then ai

j ≥ η.
(b) The directed graph (V, E), where E denotes the set

of directed edges (j, i) such that ai
j > 0, is strongly

connected.
Assumption 2(a) guarantees that each agent gives signif-

icant weights to his belief and the beliefs of his neighbors.
Assumption 2(b) imposes a connectivity assumption on the
social network.

For the observation noise νi(k) we assume independence
across agents and time. Similarly, we assume that the in-
novation ν(k) is independent across time and independent
of the observation noise νi(k) at all times. We also assume
that the initial state θ(0) and the initial beliefs xi(0) are
independently drawn random variables with finite second
moments. We state these in the following.

Assumption 3: We have:
(a) The random variables νi(k), i = 1, . . . ,m, k ≥ 0, are

zero mean, and independent across agents and time, i.e.,

E[νi(k)] = 0 for all i, k,

E[νi(s)νi(k)] = 0 for all i and all k 6= s,

E[νi(s)νj(k)] = 0 for all i 6= j and all k, s.

Furthermore, there exists a scalar σ2
a such that

E[ν2
i (k)] ≤ σ2

a for all i, k.

(b) The random variables ν(k), k ≥ 0, are zero mean,
independent across time, and independent of νi(k) for
all i and k, i.e., E[ν(k)] = 0 for all k and

E[ν(s)ν(k)] = 0 when s 6= k,

E[ν(s)νi(k)] = 0 for all i and all k, s.

(c) The random variables θ(0) and xi(0) are zero mean
and independent, i.e.,

E[θ(0)xi(0)] = 0 for all i,

and there exist scalars σ2
θ and σ2

x such that

E[θ2(0)] ≤ σ2
θ , E[x2

i (0)] ≤ σ2
x for all i.

The next lemma provides a key relation in the tracking
error xi(k) − θ(k), which will be key in our subsequent
analysis.

Lemma 1: Let Assumptions 1 and 2 hold. Let the se-
quences {xi(k)}, i = 1, . . . , m, be generated by Eq. (3).
Assume that the signal weight α(k) satisfies

0 < α(k) ≤ ai
i for all i, k.
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Then, we have for all i and k ≥ 0,
xi(k + 1)− θ(k + 1)

= (1− α(k))
m∑

j=1

[B(k)]ij (xj(k)− θ(k))

+α(k)νi(k)− ν(k), (4)

where the matrix B(k)′ is a stochastic matrix for all k ≥ 0.
Proof: By the definition of the update rule [cf. Eq. (3)]

and the evolution of θ(k), we have
xi(k + 1)− θ(k + 1)

=
m∑

j=1

ai
j xj(k) + α(k)(si(k)− xi(k))− θ(k)− ν(k).

Since the vector ai = (ai
1, . . . , a

i
m) is stochastic (cf. As-

sumption 1), the preceding relation can be written as

xi(k + 1)− θ(k + 1) =
m∑

j=1

ai
j (xj(k)− θ(k))

+α(k)(si(k)− xi(k))− ν(k).

By the definition of the private signal si(k) in Eq. (1), we
have

si(k)− xi(k) = θ(k) + νi(k)− xi(k).

Combining the preceding two relations, we obtain
xi(k + 1)− θ(k + 1)

=
m∑

j=1

ai
j (xj(k)− θ(k))

−α(k) (xi(k)− θ(k)) + α(k)νi(k)− ν(k).

By letting I denote the identity matrix, the first two terms
on the right hand side can be compactly written, yielding
xi(k + 1)− θ(k + 1)

=
m∑

j=1

[A−α(k)I]ij (xj(k)− θ(k))+α(k)νi(k)− ν(k). (5)

We introduce the matrix B(k) as

B(k) =
1

1− α(k)
(A− α(k)I).

Since by assumption the signal weight is such that α(k) ≤
ai

i for all k, the matrix A − α(k)I has nonnegative entries.
Moreover by the assumption that the agents are connected
[cf. Assumption 2(b)], for each i, there exists some j∗ 6= i
such that ai

j∗ > 0. This and the assumption that all positive
weights are at least η [cf. Assumption 2(a)] imply that for
each i, there exists some j∗ 6= i with ai

j∗ ≥ η. Therefore,
∑

j 6=i

ai
j ≥ ai

j∗ ≥ η for all i.

Since the vector ai is stochastic, it follows that

ai
i = 1−

∑

j 6=i

ai
j ≤ 1− η < 1.

Combined with the assumption that α(k) ≤ ai
i, we have

α(k) ≤ ai
i < 1 for all k,

implying that the matrix B(k) has nonnegative entries.
We finally show that B(k)′ is a stochastic matrix, i.e., the

columns of B(k) are stochastic. We have for every i and k,
m∑

j=1

[B(k)]ij =
1

1− α(k)

m∑

j=1

[A− α(k)I]ij

=
1

1− α(k)




m∑

j=1

[A]ij − α(k)


 .

Since A has stochastic columns, it follows that
m∑

j=1

[B(k)]ij =
1

1− α(k)
(1− α(k)) = 1.

Using the matrix B(k), we can re-write Eq. (5) as
xi(k + 1)− θ(k + 1)

= (1− α(k))
m∑

j=1

[B(k)]ij (xj(k)− θ(k))

+α(k)νi(k)− ν(k),

showing the desired relation.
Our convergence analysis relies on the following lemma.

It is based on Lemma 2 of Chapter 2 in Polyak [20], and
therefore the proof is omitted.

Lemma 2: Let {uk} be a scalar sequence such that uk ≥
0 for all k and

uk+1 ≤ (1− αk)uk + βk for all k ≥ 0.

(a) If αk = α and βk = β for all k and some scalars α
and β such that 0 < α ≤ 1 and β ≥ 0, then for all k,

uk ≤ β

α
+ (1− α)k

(
u0 − β

α

)
.

(b) If αk and βk satisfy 0 < αk ≤ 1 and βk ≥ 0 for all
k ≥ 0, and

lim
k→∞

βk

αk
= 0,

∞∑

k=0

αk = ∞,

then
lim

k→∞
uk = 0.

In the following proposition, we show that under our
assumptions on the weights ai and the assumption that the
signal weights α(k) satisfy

∑∞
k=0 α(k) = ∞, agent beliefs

asymptotically provide unbiased estimates of the underlying
state θ(k).

Proposition 1: Let Assumptions 1, 2, and 3 hold. Let the
sequences {xi(k)}, i = 1, . . . , m, be generated by Eq. (3).
Assume that the signal weight α(k) satisfies

0 < α(k) ≤ ai
i for all i, k,

∞∑

k=0

α(k) = ∞.
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Then, we have

lim
k→∞

E[xi(k)− θ(k)] = 0 for all i.

Proof: For all k ≥ 0, we define M(k) ∈ R and µ(k) ∈
R as follows:

M(k) = max
1≤i≤m

E[xi(k)− θ(k)],

µ(k) = min
1≤j≤m

E[xj(k)− θ(k)].

By taking the expectation in Eq. (4) and using the assumption
that the innovation ν(k) and the observation noise νi(k) are
zero mean for all i and k (cf. Assumption 3), we obtain
E[xi(k + 1)− θ(k + 1)]

= (1− α(k))
m∑

j=1

[B(k)]ij E[xj(k)− θ(k)]

≤ (1− α(k))M(k),

where the inequality holds since the columns of the matrix
B(k) are stochastic (cf. Lemma 1). Similarly, we have for
all k ≥ 0 and all i,

(1− α(k))µ(k) ≤ E[xi(k + 1)− θ(k + 1)].

From the preceding two relations it follows

M(k + 1) ≤ (1− α(k))M(k), (6)

(1− α(k))µ(k) ≤ µ(k + 1),

implying that

M(k + 1)− µ(k + 1) ≤ (1− α(k))(M(k)− µ(k)).

In view of the assumptions on the signal weight α(k), we
can use Lemma 2(b) with the identifications βk = 0 and
uk = M(k) − µ(k) (and therefore uk ≥ 0 for all k). This
shows that the difference sequence {M(k)−µ(k)} converges
to 0 as k → ∞. By Eq. (6), we can use Lemma 2(b) once
again with the identification uk = |M(k)|, implying that the
sequence {M(k)} converges to 0. Thus, the sequence {µ(k)}
also converges to 0. Since for all i and k ≥ 0, we have

µ(k) ≤ E[xi(k)− θ(k)] ≤ M(k),

it follows

lim
k→∞

E[xi(k)− θ(k)] = 0 for all i.

In the following proposition, we study the mean-square
gap between the agent beliefs and the underlying state. In
particular, for persistent innovations and a constant signal
weight (or a constant weight rule), we provide an upper
bound on the mean-square gap for each k as a function of
the innovation and noise variances, and signal weight used
in the learning rule. For diminishing innovations, we show
that for all i, the gap between agent beliefs and the state
xi(k)− θ(k) converges to 0 as k → ∞ in the mean-square
sense and in probability with diminishing signal weights.

Proposition 2: Let Assumptions 1, 2, and 3 hold. Let the
sequences {xi(k)}, i = 1, . . . ,m, be generated by Eq. (3).
(a) (Persistent Innovation) Assume that the signal weight

α(k) satisfies

αk = α for all k and some α such that 0 < α ≤ ai
i.

Assume also that E[ν2(k)] ≤ σ2
n for all k, i.e., the

innovation variance is uniformly bounded for all k.
Then for all k and all i,
E[(xi(k)− θ(k))2]

≤ α2σ2
a + σ2

n

α
+(1−α)k

(
(σ2

x + σ2
θ)− α2σ2

a + σ2
n

α

)
,

where σ2
θ , σ2

x, and σ2
a are given in Assumption 3.

(b) (Diminishing Innovation) Assume that the signal weight
α(k) satisfies

0 < α(k) ≤ ai
i, α(k) → 0,

∞∑

k=0

α(k) = ∞.

Assume also that

lim
k→∞

E[ν2(k)]
α(k)

= 0,

i.e., as k →∞, the innovation variance converges to 0
faster than the signal weight α(k). Then,

lim
k→∞

E[(xi(k)− θ(k))2] = 0 for all i.

Moreover, the sequence {xi(k)− θ(k)} converges to 0
in probability for all i, i.e., for any ε > 0, we have

lim
k→∞

P{ |xi(k)− θ(k)| ≥ ε } = 0 for all i.

Proof: By taking the square of Eq. (4) (cf. Lemma 1),
we obtain
(xi(k + 1)− θ(k + 1))2

= (1− α(k))2



m∑

j=1

[B(k)]ij (xj(k)− θ(k))




2

+α2(k)
(

νi(k)− ν(k)
α(k)

)2

+ 2α(k)(1− α(k))

×
(

νi(k)− ν(k)
α(k)

) m∑

j=1

[B(k)]ij (xj(k)− θ(k)).

Since the vector [B(k)]i is stochastic and the function (·)2
is convex, it follows that



m∑

j=1

[B(k)]ij (xj(k)− θ(k))




2

≤
m∑

j=1

[B(k)]ij(xj(k)−θ(k))2.

Thus, we have
(xi(k + 1)− θ(k + 1))2

≤ (1− α(k))2
m∑

j=1

[B(k)]ij(xj(k)− θ(k))2

+α2(k)
(

νi(k)− ν(k)
α(k)

)2

+ 2α(k)(1− α(k))
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×
(

νi(k)− ν(k)
α(k)

) m∑

j=1

[B(k)]ij (xj(k)− θ(k)).

By taking the expectations of both sides in the preceding
relation, we obtain
E[(xi(k + 1)− θ(k + 1))2]

≤ (1− α(k))2
m∑

j=1

[B(k)]ijE[(xj(k)− θ(k))2]

+α2(k)E

[(
νi(k)− ν(k)

α(k)

)2
]

+2α(k)(1− α(k))

×E




(
νi(k)− ν(k)

α(k)

) m∑

j=1

[B(k)]ij (xj(k)− θ(k))


 .

We now compute each of the expectations. Let us introduce
the notation

E[ν2(k)] = σ2(k), E[ν2
i (k)] = σ2

i (k) for all k.

Using the independence of ν(k) and νi(k), we have

E

[(
νi(k)− ν(k)

α(k)

)2
]

= σ2
i (k) +

σ2(k)
α2(k)

.

The random variables νi(k) and xj(k)−θ(k) are independent
for all j. Similarly, the random variables ν(k) and xj(k)−
θ(k) are independent for all j. Hence,

E




(
νi(k)− ν(k)

α(k)

) m∑

j=1

[B(k)]ij (xj(k)− θ(k))


 = 0.

Combining the preceding four relations, we obtain
E[(xi(k + 1)− θ(k + 1))2]

≤ (1− α(k))2
m∑

j=1

[B(k)]ijE[(xj(k)− θ(k))2]

+α2(k)σ2
i (k) + σ2(k).

By using the assumption that E[ν2
i (k)] = σ2

i (k) ≤ σ2
a [cf.

Assumption 3(a)], this implies
E[(xi(k + 1)− θ(k + 1))2]

≤ (1− α(k))2
m∑

j=1

[B(k)]ijE[(xj(k)− θ(k))2]

+α2(k)σ2
a + σ2(k)

≤ (1− α(k)) max
1≤j≤m

E[(xj(k)− θ(k))2]

+α2(k)σ2
a + σ2(k),

where the second inequality follows since α(k) ≤ 1 for both
parts of the proposition. Taking the maximum over all i =
1, . . . ,m in the preceding relation yields

max
1≤i≤m

E[(xi(k + 1)− θ(k + 1))2

≤ (1− α(k)) max
1≤j≤m

E[(xj(k)− θ(k))2]

+α2(k)σ2
a + σ2(k).

We can now use Lemma 2 with the identifications

uk = max
1≤j≤m

E[(xj(k)− θ(k))2], αk = α(k),

βk = α2(k)σ2
a + σ2(k).

Under the assumption that α(k) = α and σ2(k) ≤ σ2
n, we

can take βk = α2σ2
a + σ2

n for all k. It follows from Lemma
2(a) that
max1≤j≤m E[(xj(k)− θ(k))2]

≤ α2σ2
a + σ2

n

α

+(1− α)k

(
max

1≤j≤m
E[(xj(0)− θ(0))2]− α2σ2

a + σ2
n

α

)
.

Using the assumption that θ(0) and xj(0) are independent,
and E[θ2(0)] ≤ σ2

θ and E[x2
j (0)] ≤ σ2

x for all j [cf.
Assumption 3(c)], we have

max
1≤j≤m

E[(xj(0)− θ(0))2] ≤ σ2
x + σ2

θ .

Combining the preceding two relations, we obtain

E[(xi(k)− θ(k))2] ≤ α2σ2
a + σ2

n

α

+ (1− α)k

(
(σ2

x + σ2
θ)− α2σ2

a + σ2
n

α

)
,

for all i, establishing part (a).
Under the assumptions of part (b) on the signal weight

and the innovation variance E[ν2(k)] = σ2(k), we have

lim
k→∞

βk

αk
=

α2(k)σ2
a + σ2(k)

α(k)
= 0.

Therefore, part (b) of Lemma 2 applies and shows that

lim
k→∞

max
1≤j≤m

E[(xj(k)− θ(k))2] = 0,

establishing the first result of part (b).
We finally show that xi(k) − θ(k) converges to 0 in

probability for all i. Since
√

t is a concave function for t ≥ 0,
we have for all i and k,

E[ |xi(k)− θ(k)| ] = E[
√

(xi(k)− θ(k))2]

≤
√

E[(xi(k)− θ(k))2],

where the inequality follows by Jensen’s inequality. By
Proposition 2(b), it follows that

lim
k→∞

E[ |xi(k)− θ(k)| ] = 0 for all i. (7)

The Markov Inequality states that for any nonnegative
random variable Y with a finite mean E[Y ], the probability
that the random variable Y exceeds any given scalar ε > 0
satisfies

P{Y ≥ ε} ≤ E[Y ]
ε

,

where P{A} denotes the probability of a random eventA. By
applying the Markov inequality to the nonnegative random
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variable |xi(k)−θ(k)|, which has a finite expectation by Eq.
(7), we obtain

P{|xi(k)−θ(k)| ≥ ε} ≤ E[ |xi(k)− θ(k)| ]
ε

for all i and k,

which in view of the relation (7) yields

lim
k→∞

P{|xi(k)− θ(k)| ≥ ε} = 0 for all i.

The preceding relation holds for any ε > 0, thus showing
that |xi(k)− θ(k)| converges to 0 in probability for each i.

IV. CONCLUSIONS

In this paper, we studied the dynamics of rule-of-thumb
learning over a social network. The social network de-
termines the communication structure among agents with
heterogeneous information and beliefs. Agents update their
beliefs from signals and communication with their neighbors.
Motivated by a range of real-world social learning problems,
we study an environment in which the underlying state
changes over time. We assume that agents update their
beliefs as a time-varying weighted average of their prior
beliefs, the signal they receive and the communication of
their neighbors. We show that beliefs generated according to
this general class of learning rules are unbiased and we study
the convergence of these beliefs to the true underlying state.
When the underlying state changes with diminishing innova-
tions (asymptotically to zero), update rules with diminishing
weights, which reduce the weight given to signals ensure
mean square convergence and convergence in probability.
In contrast, update rules with constant weights typically
fail to do so. However, when agents are trying to learn an
underlying state with persistent innovations, the asymptotic
behavior of constant weight rules is superior. For these rules,
we provide explicit bounds on the mean square (variance) on
the gap between individual beliefs and the true underlying
state.

Our analysis opens the way for a more systematic study
of simple learning rules in social network settings. In par-
ticular, our results can be extended to provide convergence
rates and can be used to develop estimates over learning
in non-asymptotic environments. Other important areas for
investigation, which are part of our ongoing work, include
developing an explicit characterization of how learning be-
havior depends on network topology and the connection
structure and also investigating the conditions under which
beliefs converge to the underlying state (with diminishing
innovations) almost surely.
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