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Abstract— In this paper we propose a testing based method
for safety/ reachability analysis of stochastic hybrid systems.
Testing based methods are characterized by analysis based on
the execution traces of the system or the simulation thereof.
Testing based method is very appealing because of the simplicity
of its execution, the possibility of having a partial verification,
and its highly parallel structure.

The key idea in this paper is the construction of a robust
neighborhood consisting of states that have the same proba-
bilistic safety/reachability properties. We construct the robust
neighborhood using the level sets of a stochastic bisimulation
function. We also show how to construct stochastic bisimulation
functions for systems whose continuous dynamics is stable and
linear. As a case example, we consider the problem of conflict
detection of aircraft flight, and show that we can infer some
robust probabilistic safety property by using the algorithm that
we present in this paper.

I. INTRODUCTION

As safety verification and reachability analysis of hybrid

systems become more complicated, new formal verification

concepts are needed. Testing based verification has emerged

as an alternative way to perform such task [1]. By testing

based verification, we mean the analysis methods that are

based on the execution traces of the system or the simulation

thereof. Each test run is characterized by a test parameter.

The totality of test parameters in a testing problem is called

the test parameter space. For example, in a safety verification

problem, where it is desired to verify the safety of all

executions that start from a certain set of initial states, each

test run is characterized by its initial condition. The test

parameter space is thus the set of initial conditions.

Testing based verification is very appealing because of

several reasons. The first reason is its simplicity. Running

or simulating the execution traces of a system is generally

much simpler than performing symbolic analysis on it. This

is particularly true for systems with complex dynamics. The

second reason is that when coupled with an appropriate

notion of coverage, testing can lead to partial verification.

It is generally known that when a to-be-verified system does

not robustly satisfy the desired property, the complexity of

its full verification becomes prohibitively high [2]. Testing

based safety verification can, for example, provide a safety

guarantee for a subset of the initial conditions that is robustly

safe after only executing a few runs. Therefore, if we decide

to conclude the testing procedure after a finite time, we

can still obtain a partial verification of the system. Another

reason why testing based verification is attractive is that

its algorithm is highly parallelizable. Since simulations of

execution of the system do not depend one on another, they
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can be easily assigned to different processors, resulting in a

highly parallel system.

Since there are infinitely many possible execution traces

of a hybrid system, a necessary question that a testing based

verification method needs to answer is how to generalize

formally the results based on finitely many execution traces

to the whole system. We address this question by introducing

a concept of test run robustness [1]. A test run is robust if

it shares the same properties as other test runs that are close

to it. Distance between test runs is defined as the distance

between their test parameters. Obviously, if a test run is

robust, it can be used as a representative of a neighborhood

of (infinitely many) test runs around it. When a system

robustly satisfies a desired property, every test run also

robustly satisfies the property. As a result, if the space of

test parameters is compact, the system can be verified to

satisfy the property by using finitely many test runs.

Trajectory based verification methods have already been

previously used in verification of hybrid and dynamical

systems. For example, there is quite a big research effort

in trajectory sampling based methods [3], [4], [5], [6], [7],

[8], [9], [10]. The work presented in this paper differs

with most of the references above in that (1) we do not

discretize the execution trajectories, and (2) we work with a

probabilistic notion of safety for stochastic systems. Several

other methods have been developed for analysis of stochastic

hybrid systems, for example, based on statistical moments

computation [11], discretization into Markov chains [12],

[13], and construction of barrier functions [14]. The approach

that we propose in this paper is very different from the

previous approaches, in the sense that we are able to infer

some reachability/safety property of the system by using

the trajectory of the diffusionless version of the process

corresponding to the stochastic hybrid system. We also apply

the proposed method to an case example of conflict detection

in aircraft flight.

II. MATHEMATICAL PRELIMINARY

A. Modeling formalism

In this paper we model stochastic hybrid systems as a 5-

tuple, H = (X ,L, E, Inv,Dyn), where X is the continuous

state space of the system, L is the finite state of discrete states

(locations), E is the set of transitions, Inv : L → 2X is the

invariant set of a location, and Dyn(l) is a set of stochastic

differential equations (SDE) that describes the continuous

dynamics in location l ∈ L.

A transition e ∈ E is a 4-tuple (l, l′, g, r), where l ∈ L
is the origin of the transition, l′ ∈ L is the target of the

transition and that each location, g ⊂ ∂Inv(l) is the guard

of the transition, which is a subset of the boundary of the

invariant set of location l, and r : g → Inv(l′) is the reset
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map that resets the continuous state at the new location. We

assume that the reset map r is deterministic and continuous.
In this paper, we adopt the following assumptions:

• the continuous state space is R
n,

• the invariant sets are open,

• the stochastic differential equations that describe the

continuous dynamics in every location is well posed

(more detailed assumptions are given in the following

section),

• the stochastic hybrid systems as stochastic processes are

cadlag (the realizations are right continuous with limit

from the left),

• the guards of all outgoing transitions from a location

are disjoint,

• there is a subset Unsafe ⊂ X ×L of unsafe states. A

trajectory of the hybrid system corresponds to an unsafe

execution if it intersects with the unsafe set.

B. Finite time stochastic bisimulation and stability

Define a system given by a family of independent stochas-

tic processes, which is indexed by the initial condition.

ξx,t : dξx,t = F (ξx,t)dt + G(ξx,t)dwt, ξx,0 = x ∈ X , (1)

where wt is an R
m−valued standard Brownian motion. To

guarantee the existence and uniqueness of the solution of (1),

we assume that [15]

• F and G are locally Lipschitz: For any R ∈ R+, there

exists a K(R) ∈ R+ such that

‖x1‖ , ‖x2‖ ≤ R ⇒

‖F (x1) − F (x2)‖ + ‖G(x1) − G(x2)‖ ≤ K(R).

• F and G satisfy linear growth condition: There exists

a K ′ such that for all x ∈ X ,

‖F (x)‖ + ‖G(x)‖ ≤ K ′(1 + ‖x‖).

We define the nominal system of (1), ξ∗x,t, as the diffu-

sionless version given by

ξ∗x,t : dξ∗x,t = F (ξ∗x,t)dt, ξ∗x,0 = x ∈ X . (2)

Notice that (2) defines an ordinary differential equation.

Moreover, due to Lipschitz assumption above, (2) admits a

unique solution for every initial condition x ∈ X . The trajec-

tories of the nominal system are called nominal trajectories.
The nominal system (2) can be thought of as a determinis-

tic approximation of the real system (1). To compute a bound

on the quality of the approximation, we establish a notion of

finite time stochastic bisimulation. This is a generalization

of our previous work in stochastic bisimulation [16], [17].
Definition 2.1: A twice differentiable function φ : X ×

X → R+ is a finite time stochastic bisimulation function

between (1) and its nominal system (2) if it satisfies

φ(x1, x2) ≥ ‖x1 − x2‖
2
,∀x1, x2 ∈ X , (3)

φ(x, x) = 0,∀x ∈ X , (4)

and there exist µ, α > 0 such that

∂φ

∂x1
F (x1) +

∂φ

∂x2
F (x2) +

1

2
Tr

(

GT (x1)
∂2φ

∂x2
1

G(x1)

)

≤ −µφ + α, (5)

for any x1, x2 ∈ X . The smallest α that satisfies (5) is called

the bias of φ.

The role of finite time stochastic bisimulation function in

establishing a bound on the quality of the approximation is

given in the following proposition.

Proposition 2.2: ([18] Chapter III) Given a finite time

stochastic bisimulation function φ(·, ·) between (1) and its

nominal system (2), the following relation holds.

P

{

sup
0≤t≤T

φ(ξx,t, ξ
∗
x,t) ≥ m

}

≤
αT

m
,∀T > 0. (6)

Recalling that φ(·, ·) is an upper bound for the square

of the distance between the states, we can conclude that

Proposition 2.2 provides a probabilistic upper bound for the

distance between the states in a finite time horizon.

Notation. We denote the level sets of φ as

Bφ(x, r) := {x′ ∈ X | φ(x, x′) = φ(x′, x) ≤ r},∀r ≥ 0.
(7)

C. Review on bisimulation of deterministic systems

Define a deterministic system by an ordinary differential

equation as:
dx

dt
= F (x), x ∈ X , (8)

where F satisfies the locally Lipschitz and linear growth

condition as mentioned in the previous subsection. A dif-

ferentiable function γ : X × X → R+ is a bisimulation

function of the deterministic system if ∀(x1, x2) ∈ X × X ,

∂γ(x1, x2)

∂x1
F (x1) +

∂γ(x1, x2)

∂x2
F (x2) ≤ 0. (9)

The idea of bisimulation function stems from the seminal

work of Girard and Pappas [19], [20]. We have used this idea

for developing a robust testing framework for deterministic

hybrid systems [1].

From (9), it follows that γ(x1(t), x2(t)) is monotonically

nonincreasing, for any trajectories x1(t) and x2(t) of the

system. This leads to the following corollary.

Corollary 2.3: Given a system (8) and a bisimulation

function γ(·, ·), for any two initial conditions x0, x
′
0 ∈ X ,

the trajectories originating from these states, x(t) and x′(t)
satisfy γ(x(t), x′(t)) ≤ γ(x0, x

′
0).

D. Bisimulation functions as pseudometrics

In this paper, we combine the upper bounds provided

by the finite time stochastic bisimulation function and the

deterministic bisimulation function to form a notion of

robustness for the nominal trajectories of a stochastic hybrid

system. The idea is to define both bisimulation functions

as pseudometrics. From there, it follows that Proposition

2.2 and Corollary 2.3 provide some bounds on how far the

trajectories of the original system and the nominal system

(Proposition 2.2), or two trajectories of the nominal system

(Corollary 2.3) can diverge.

Assumption: In this paper, we assume that finite time

stochastic bisimulation functions and deterministic bisimu-

lation functions are pseudometrics. That is, they are nonneg-

ative, symmetric, and satisfy the triangular inequality

f(x, z) ≤ f(x, y) + f(y, z),∀x, y, z ∈ X . (10)
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Fig. 1. An illustration for Theorem 3.1. We construct a (probabilistic)
bound for the distance between ξ∗

x′,t
and ξx,t (shown as r3) through the

bounds on r1 (provided by Proposition 2.2) and r2 (provided by Corollary
2.3).

Naturally, we can also define balls with respect to the

pseudometrics, which are denoted as

Bφ(x, r) := {x′ ∈ X | φ(x, x′) ≤ r},∀x ∈ X , r ≥ 0. (11)

III. PROBABILISTIC TESTING OF STOCHASTIC HYBRID

SYSTEMS

A. Probabilistic robustness of nominal trajectories

Consider the system ξx,t as given by (1), and its nominal

system ξ∗x,t as given by (2). We are going to use the results

in Proposition 2.2 and Corollary 2.3 to establish a notion

of probabilistic robustness for the trajectories of the nominal

system with respect to the trajectories of the original system.

Theorem 3.1: Given a finite time stochastic bisimulation

function φ(·, ·) between ξx,t and its nominal system ξ∗x,t, and

a bisimulation function γ(·, ·) of ξ∗x,t, the following relation

holds for any x, x′ ∈ X and T > 0

P

{

sup
0≤t≤T

φ
(

ξx,t, ξ
∗
x′,t

)

≥ m + λ

}

≤
αT

m
, (12)

where

λ := sup
z∈X

sup
z′∈Bγ(z,γ(x,x′))

φ(z, z′). (13)

Safety verification typically amounts to verifying the a

system’s trajectories do not enter a set of states that are

declared unsafe [21]. Theorem 3.1 is one of the key ideas

in this paper. Basically, it allows us to (1) establish a

probabilistic safety guarantee for an initial condition for

a finite time horizon and (2) extend the guarantee to a

neighborhood around the initial condition.

The extension of this result to stochastic hybrid systems

is quite straightforward and analogous to its deterministic

counterpart in [1].

Notation. For any location l ∈ L we define the set of outgo-

ing transitions from l as Out(l). The continuous dynamics

in a location l ∈ L is described by the stochastic differential

equation

dξx,t = Fl(ξx,t)dt + Gl(ξx,t)dwt. (14)

Unsafe
2g 1g

)~,( 0 γγ rxB

),( 0 γφ rxB

*

,0 λτξ +x

*

,0 τξ x outd

unsafed

2d

*

ˆ,0 λτ
ξ

−x

Fig. 2. An illustration for Proposition 3.2. The trajectory shown here is
ξ∗x0,t, the nominal trajectory starting at x0. The circle that touches the guard

g1 is the ball Bφ(ξ∗
x0,τ−λ̂

, dmin). Proposition 3.2 provides a probabilistic

guarantee that any initial condition in Bφ(x0, r̃γ) will result in a stochastic
realization with the same qualitative property as the nominal trajectory.

Proposition 3.2: Let x0 ∈ Inv(l) for some location l ∈ L,

and ξ∗x0,t be the trajectory of the nominal system of (14) with

initial condition x0. Suppose that:

• ξ∗x0,t lies entirely in Inv(l)\Unsafe for t ≤ τ,
• φ(·, ·) is a finite time stochastic bisimulation function

for the stochastic dynamics in location l,
• γ(·, ·) is a deterministic bisimulation function for the

nominal system in location l with bias α,

• Out(l) = {e1, e2, · · · , en} and gi is the guard of ei,
i = 1, . . . , n,

• τ is the time when ξ∗x0,t hits g1, which is the guard of

a transition e1, and

• there is a positive time lag λ > 0 such that ξ∗x0,τ+λ /∈
Inv(l).

We define

dout := inf
y∈g1

φ(ξ∗x0,τ+λ, y),

di := inf
0≤t≤τ+λ

inf
y∈gi

φ(ξ∗x0,t, y), i = 2, 3, . . . , n,

dunsafe := inf
0≤t≤τ+λ

inf
y∈Inv(l)∩Unsafe

φ(ξ∗x0,t, y),

dmin := min{dout, dunsafe, d2, d3, · · · dn},

λ̂ := inf
{

δ > 0 | Bφ(ξ∗x0,τ−δ, dmin) ⊂ Inv(l)
}

.

For any ρ, ε > 0, such that

ρ + ε = dmin, (15)

define

ρ̃ := sup
z∈X

sup
z′∈Bφ(z,ρ)

γ(z, z′). (16)

The following statement holds. For any x′
0 ∈ Bγ(x0, ρ̃), the

stochastic process ξx′

0,t exits Inv(l) through transition e1 at

time t ∈ [τ − λ̂, τ + λ] and is safe at least until it exits

location l with probability greater than
(

1 − α(τ+λ)
ε

)

.

Proposition 3.2 enables us to compute a neighborhood

around the initial state x0, consisting of initial states that

lead to realizations have the same qualitative behavior as

ξ∗x0,t with some probability bound. By the same qualitative
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property we mean the realizations that exits the location

l by performing the same transition, and is safe at least

until it performs the transition. In addition to that, we also

obtain a timing guarantee, in the form of a time interval

[τ − λ̂, τ + λ] where the transition is guaranteed to occur,

with some probability bound, if the initial state is varied

within the computed neighborhood.

Remark 3.3: Notice that in (15), we split dmin into ε and

ρ. The bigger ρ is, the larger the robust neighborhood that

we compute. On the other hand, the bigger ε is, the higher

is the confidence provided by the guarantee. Thus, we have

a trade-off between the size of the robust neighborhood and

the confidence level that is provided by the guarantee.

B. Probabilistic testing algorithm

In this subsection we design an algorithm that uses Propo-

sition 3.2 repetitively to deal with nominal trajectories with

multiple transitions. The purpose of the algorithm can be

explained as follows. Given a stochastic hybrid system H =
(X ,L, E, Inv,Dyn), an initial state (x0, l0) ∈ Inv(l0)×L,

and the hybrid nominal trajectory starting from (x0, l0),
we want to compute a robust neighborhood around that

initial state. A hybrid nominal trajectory is a trajectory of

the deterministic hybrid system constructed by changing the

stochastic continuous dynamics in H with their nominal

systems. A nominal trajectory can be obtained through nu-

merical simulation of the nominal system, and it constitutes

a test. The overall goal is to generate and analyze many tests

so as to cover a set of initial states X0 ⊂ X × L.

Denote the nominal trajectory starting from (x0, l0) as the

sequence (ζi, li, ei, τi)i=0,··· ,N , where ζ0(0) = x0 and for

every i ∈ {0, 1, . . . N},

• li ∈ L and ei ∈ Out(li), τi > 0,
• ζi(t) is a nominal trajectory of the dynamics in location

li,
• ζi(t) ∈ Inv(li), for t ∈ [0, τi),
• For every i ∈ {0, 1, . . . N − 1}, if we define ei =

(li, li+1, gi, ri), then ζi(τi) ∈ gi, ζi+1(0) = ri(ζi(τi)).

We define T :=
∑N−1

i=0 τi, which is the time where the

trajectory enter the final state. The length of the test is

T + τN . We assume that for each location li ∈ L, we

have a finite time stochastic bisimulation function φi(·, ·)
with bias αi, and a deterministic bisimulation function

γi(·, ·) for the nominal system. Given a realization sequence

(ζi, li, ei, τi)i=0,··· ,N , and a sequence (εi)i=0,··· ,N
> 0, the

algorithm for constructing a robust neighborhood around the

initial state is given in Algorithm 11.

The result of this iteration have the following property.

Theorem 3.4: Given a realization sequence

(ζi, li, ei, τi)i=0,··· ,N , let (εi)i=0,··· ,N
> 0, (ρi)i=0,··· ,N

> 0,

(ρ̃i)i=0,··· ,N
> 0, dmin,i, λi, λ̂i, i = 0, 1, . . . , N − 1 be

obtained from the iteration in Algorithm 1. Define

λ :=

N−1
∑

i=0

λi, λ̂ :=

N−1
∑

i=0

λ̂i.

1Notice that for simplicity, we abuse the notation and associate the
transition with its guard.

Algorithm 1 Computation of probabilistic robust neighbor-

hood for hybrid nominal trajectories

Require: A nominal trajectory starting from (x0, l0) as the

sequence (ζi, li, ei, τi)i=0,··· ,N

1: Define the avoided set as the union of the unsafe set and

all outgoing guards from lN , i.e.

DN := Unsafe ∪g∈Out(lN)
g. (17)

2: Compute (or obtain a lower bound on)

dmin,N := inf
t≤τN

inf
y∈DN

φ
N

(ζN (t), y). (18)

3: Define λN = 0, and εi,ρi, ρ̃i > 0 such that

εN + ρN = dmin,N , (19)

ρ̃N := sup
z∈X

sup
z′∈BφN

(z,ρN )

γN (z, z′) (20)

4: for i=N to 1 do

5: Define εi,ρi, ρ̃i > 0 such that

εi + ρi = dmin,i, (21)

ρ̃i := sup
z∈X

sup
z′∈Bφi

(z,ρi)

γi(z, z′) (22)

6: Define the allowed guard

Wi−1 := r−1
i−1(ri−1(gi−1) ∩ Bγi

(ζN (0), ρ̃i)). (23)

This is the set of states on the guard of the transition

between li−1 and li that is reset into Bφi
(ζN (0), ρ̃i).

7: Define the avoided set

Di−1 := (Unsafe ∪g∈Out(li−1)
g)\Wi−1. (24)

8: Continue the trajectory ζi−1(t) beyond t = τi−1. Pick

a time lag λi−1 > 0 such that

ζi−1(τi−1 + λi−1) /∈ Inv(li−1).

9: Compute (or obtain a lower bound on)

dmin,i−1 := min

(

inf
y∈gi−1

φ
i−1

(ζi−1(τi−1 + λi−1), y),

inf
t≤τi−1+λi−1

inf
y∈Di−1

φ
i−1(ζi−1(t), y)

)

.

10: Define

λ̂i−1 := sup {δ > 0 |

Bφi−1
(ζi−1(τi−1 − δ), dmin,i−1) 6⊂ Inv(li−1)

}

.

11: end for
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For any x′
0 ∈ Bγ0

(x0, ρ̃0), the stochastic hybrid trajectories

with initial state (x′
0, l0) satisfy the following properties with

probability larger than
∏

i=0...N

(

1 − αi(τi+λi)
εi

)

.

(a) They follow the same sequence of locations, (li)i=0,...,N

and enter the final location lN at t ∈ [T − λ̂, T + λ].
(b) The trajectories are safe at least until τN time unit after

it enters lN .

C. Construction of stochastic bisimulation functions for sta-

ble linear affine dynamics

In this subsection we present a construction of the fi-

nite time stochastic bisimulation function and deterministic

bisimulation function for a special class of stochastic pro-

cesses, namely, those with stable linear affine dynamics. The

method of construction is similar to that presented in our

earlier work [16], [1], where they are used in constructing

an approximate abstraction for stochastic and deterministic

hybrid systems. We shall use this construction in testing the

example in the following section.
We consider the construction of stochastic bisimulation

functions for the family of stochastic processes ξx,t given

by the stochastic differential equation

ξx,t : dξx,t = (Aξx,t + B)dt + Σdwt, ξx,0 = x ∈ X , (25)

with A ∈ R
n×n, B ∈ R

n×1, and Σ ∈ R
n×m. Furthermore,

we assume that A is Hurwitz. This means that the eigenvalues

of A have negative real parts and the dynamics described by

the drift term is stable.
Consider a function of the form

φ(x1, x2) = (x1 − x2)
T M(x1 − x2), (26)

where M is a symmetric positive definite matrix. In order for

this function to qualify as a finite time stochastic bisimulation

function, we need to have (see (3) - (5)) M > I , and

∂φ

∂x1
(Ax1 + B) +

∂φ

∂x2
(Ax2 + B)+

+
1

2
Tr

(

ΣT

(

∂2φ(x1, x2)

∂x2
1

)

Σ

)

= 2(x1 − x2)
T MA(x1 − x2) + Tr(ΣT MΣ),

≤ −µ(x1 − x2)
T M(x1 − x2) + α, (27)

for some µ, α > 0. If we pick α = Tr(ΣT MΣ), the

inequality (27) becomes a linear matrix inequality (LMI)

AT M + MA + µM ≤ 0. (28)

Inequality (28) is a Lyapunov inequality, and we can con-

struct such an M for any µ small enough such that
(

A + µ
2 I

)

is Hurwitz [22].
Based on (9), we can also verify that φ(x1, x2) = (x1 −

x2)
T M(x1−x2) constructed as above, is also a deterministic

bisimulation function for the nominal system

ξ∗x,t :
d

dt
ξ∗x,t = (Aξx,t + B). (29)

Thus constructing a stochastic bisimulation function here

involves solving a Lyapunov LMI (28). This type of problems

is standard in systems and control theory, and there are a

number of software packages that can be used to solve them,

such as YALMIP [23] and cvx [24].

IV. EXAMPLE: CONFLICT DETECTION IN AIRCRAFT

FLIGHT

In this section, we apply our framework in conflict de-

tection in aircraft flight. The problem of conflict detection

can be described as assessing the conflict probability of two

or more aircraft, given their flight plan. Conflict means an

aircraft entering a forbidden zone, which typically means that

the aircraft is dangerously close to another aircraft [25], [12].

We adopt a simple model for aircraft flight, inspired by the

model presented in [12].

We model each aircraft as point mass moving on a plane

of constant altitude2. Each aircraft follows a sequence of

waypoints in such a way that the dynamics of its motion is

switched every time a waypoint is reach so that the aircraft

then proceed to the next waypoint. This switching behavior

makes the dynamics hybrid. Moreover, because of uncertain

environmental factors such as wind, the dynamics is also

stochastic.

The continuous states of an aircraft are given by its planar

coordinates and their respective velocities. The discrete state

is defined by the waypoint that it is headed to. For simplicity,

we adopt a linear affine model

dξt = (Aiξt + Bi)dt + Widwt (30)

for the continuous stochastic dynamics for the aircraft headed

to waypoint i. Here we have

Ai =

[

0 0 1 0

0 0 0 1

−10 0 −10 0

0 −10 0 10

]

, Bi =

[ vx,i
vy,i

10·px,i

10·py,i

]

,Wi =

[

0

0

ωx,i
ωy,i

]

.

(31)

The vector [vx vy] is an offset velocity vector pointing from

waypoint i − 1 to waypoint i, the vector [px py] is the

coordinate of waypoint i, and [ωx ωy] indicates the direction

of wind perturbation. We also assume that the aircraft will

switch to the next waypoint (i+1) if it has crossed a vertical

plane that passes through its current waypoint. Thus the

transition guard can be given by a half space

gi = {x ∈ R
4|a1x1 + a2x2 ≤ b}, (32)

for some a1, a2 and b such that a1px,i + a2py,i = b. When

we have more than one aircraft, the unsafe set is define as

the set where the distance between two aircraft is less than

1 unit distance.

We apply the framework in conflict detection in the follow-

ing scenario illustrated by Figure 3. In this scenario we have

two aircraft, whose flight paths contain a common waypoint.

We want to assess the conflict probability of this scenario

in the time interval [0, 1]. Notice that each realization has

two transitions, corresponding to the event when Aircraft-1

switches to Waypoint B and Aircraft-2 switches to Waypoint

C.

With Algorithm 1, we can compute that the stochastic

hybrid system with the initial condition as shown in Figure

3 is safe in the time interval [0, 1] with probability at least

80%. Moreover, the same probabilistic safety guarantee still

2The paper [25] extended the model in [12] into a 3D model. While
our framework can adopt the 3D model without significant increase in
computation complexity, we choose to adopt the 2D model for simplicity.
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Waypoint A

Waypoint B

Waypoint C

Aircraft-1

Aircraft-2

(10,-10)

(5,5)

(-20,-20)

(-20,20)

Fig. 3. Flight scenario with two aircraft. Aircraft-1 flies toward Waypoint
A and then proceeds to Waypoint B. Aircraft-2 flies toward Waypoint A
and proceeds to Waypoint C. The numbers indicate the coordinates of the
waypoints and the initial positions of the aircraft.

−20

−15

−10

−5

0

5

10−20 −15 −10 −5 0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

T
im

e

Fig. 4. Several trajectories of Aircraft-1 (right) and Aircraft-2 (left). The
vertical axis represents time, the two horizontal axises represent the positions
of the aircraft. Each trajectory has two transitions, namely when Aircraft-1
switches to Waypoint B and when Aircraft-2 switches to Waypoint C. We
simulate several realization of the trajectory of Aircraft-1 by varying the
initial condition.

holds, even if the initial position of Aircraft-1 (or Aircraft-2)

is changed from (x0, y0) to (x0 + ∆x, y0 + ∆y) provided

that

1.44 · ∆x2 + ∆y2 ≤ 1.7821. (33)

Several trajectories with the initial position of Aircraft-1

perturbed according to (33) are shown in Figure 4.

V. CONCLUDING REMARKS

In this paper we propose a testing based method for

safety/reachability analysis of stochastic hybrid systems. The

method that we proposed is based on our earlier work

on robust testing of deterministic hybrid systems [1]. The

main feature of the framework is that safety/reachability

is analyzed by evaluating deterministic trajectories of the

hybrid nominal system, which is obtained by removing the

diffusion part of the original system. We also show that there

is a natural trade-off between coverage of the testing and the

confidence level of the guarantee provided by the framework.

Acknowledgements. The authors would like to thank Insup

Lee, Georgios Fainekos, and Madhukar Anand for valuable

discussions in testing and verification.

REFERENCES

[1] A. A. Julius, G. Fainekos, M. Anand, I. Lee, and G. J. Pappas, “Robust
test generation and coverage for hybrid systems,” in Hybrid Systems:
Computation and Control, vol. 4416 of LNCS, pp. 329–342, Springer
Verlag, 2007.

[2] A. Girard and G. J. Pappas, “Verification using simulation,” in Hybrid
Systems: Computation and Control, vol. 3927 of LNCS, pp. 272–286,
Springer Verlag, 2006.

[3] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan, “RRTs for
nonlinear, discrete, and hybrid planning and control,” in Proc. IEEE
Conf. Decision and Control, (Hawaii, USA), 2003.

[4] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg, “On systematic
simulation of open continuous systems.,” in Hybrid Systems: Compu-
tation and Control, vol. 2623 of LNCS, pp. 283–297, Springer, 2003.

[5] A. Bhatia and E. Frazzoli, “Incremental search methods for reacha-
bility analysis of continuous and hybrid systems,” in Hybrid Systems:
Computation and Control, vol. 2993 of LNCS, pp. 142–156, Springer
Verlag, 2004.

[6] J. Kim, J. M. Esposito, and V. Kumar, “An rrt-based algorithm for
testing and validating multi-robot controllers,” in Robotics: Science
and Systems, (Boston, USA), pp. 249–256, 2005.

[7] S. M. LaValle, Planning algorithms. Cambridge University Press,
2006.

[8] P. Cheng and V. Kumar, “Sampling-based falsification and verification
of controllers for continuous dynamic systems,” in Workshop on Algo-
rithmic Foundations of Robotics VII (S. Akella, N. Amato, W. Huang,
and B. Misha, eds.), 2006.

[9] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Hybrid systems: From
verification to falsification,” in International Conference on Computer
Aided Verification, vol. 4590 of LNCS, pp. 468–481, Springer, 2007.

[10] T. Nahhal and T. Dang, “Guided randomized simulation,” in Hybrid
Systems: Computation and Control, vol. 4416 of LNCS, pp. 731–735,
Springer Verlag, 2007.

[11] J. P. Hespanha, “Polynomial stochastic hybrid systems,” in HSCC
(M. Morari and L. Thiele, eds.), vol. 3414 of Lecture Notes in
Computer Science, pp. 322–338, Springer Verlag, 2005.

[12] M. Prandini, J. Hu, J. Lygeros, and S. Sastry, “A probabilistic
approach to aircraft conflict detection,” IEEE Trans. on Intelligent
Transportation Systems, vol. 1(4), pp. 199–220, 2000.

[13] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, “Com-
putational approaches to reachability analysis of stochastic hybrid
systems,” in Hybrid Systems: Computation and Control, vol. 4416 of
LNCS, pp. 4–17, Springer Verlag, 2007.

[14] S. Prajna, A. Jadbabaie, and G. J. Pappas, “Stochastic safety verifi-
cation using barrier certificates,” in Proc. 43rd IEEE Conference on
Decision and Control, (Bahamas), IEEE, 2004.

[15] F. C. Klebaner, Introduction to stochastic calculus with applications.
London, UK: Imperial College Press, 2005.

[16] A. A. Julius, A. Girard, and G. J. Pappas, “Approximate bisimulation
for a class of stochastic hybrid systems,” in Proc. American Control
Conference, (Minneapolis, USA), 2006.

[17] A. A. Julius and G. J. Pappas, “Approximate abstraction of stochastic
hybrid systems.” provisionally accepted to the IEEE Trans. Automatic
Control, 2006.

[18] H. J. Kushner, Stochastic stability and control. Mathematics in Science
and Engineering: Academic Press, 1967.

[19] A. Girard and G. J. Pappas, “Approximate bisimulations for nonlinear
dynamical systems,” in Proc. of the IEEE Conf. Decision and Control,
(Seville, Spain), 2005.

[20] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,” IEEE Trans. Automatic Control, vol. 52, no. 5,
pp. 782–798, 2007.

[21] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
pp. 3–34, 1995.

[22] W. L. Brogan, Modern control theory. New Jersey: Prentice Hall
International, 1991.
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