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Abstract— A continuous time long run growth optimal port-
folio with proportional cost consisting of the sum of a fixed
proportional cost and a cost proportional to the volume of
transactions is considered. An obligatory portfolio diversifica-
tion is introduced according to which it is required to invest at
least a fixed small portion of the wealth in each asset.

I. INTRODUCTION

Assume that on a given complete probability space
(Ω ,F ,P), consider three independent processes: a d-
dimensional standard Brownian motion (B(t)), a d-
dimensional compensated Poisson random measure Ñ(dt,du)
and a time homogeneous Markov process (z(t)) with values in
a finite space D and transition matrix Pt at time t. Consider
also d assets with the ith asset price Si(t) at time t. It is
assumed that the evolution of Si(t) is of the form

δi(t) = δi(0)eXθ0
i (t) (I.1)

where Xi(0) = 0 and Xθ 0
(t) = (X1(t), . . . ,Xd(t)) is a solution

to the following Lévy stochastic differential equation:

dX(t) = α(z(t),θ 0)dt +σ(z(t),θ 0)dB(t)

+
∫
Rn

γ(z(t),θ 0,u) Ñ(dt,du) . (I.2)

θ 0 is a parameter that belongs to a compact space Θ . In
[2], the continuity of the optimal ergodic cost with respect
to θ ∈ Θ is verified. It is assumed that α , σ , and γ are
continuous bounded functions of θ , and

sup
θ

∫
R

γ
2
ik(z,θ ,u)νk(du) < ∞

for i,k = 1,2, . . . ,d with νk being the Lévy measure corre-
sponding to Ñ(dt,du). In this paper, the dependence of X(t)
on θ 0 is neglected.

In what follows, denote by πi(t) the portion of the wealth
process invested in the ith asset. Let eX(t) =

(
eX1(t), . . . ,eXd(t)

)
and for π,ζ ∈ [0,∞)d ,

π �ζ = (π1ζ1,π2ζ2, . . . ,πdζd)
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and
g(ζ ) =

(
ζ1

∑ζi
,

ζ2

∑ζi
, . . . ,

ζd

∑ζi

)
.

If the portfolio strategy in the time interval [0,T ] is not
changed, the portions of the wealth invested in the assets at
time T are of the form

π(T ) = g
(

π(0)� eX(T )
)

. (I.3)

By the form of (I.2), it is clear that the pair (π(t),z(t)) is a
Markov process with transition operator Πt .

It is assumed that

(A1) The solution to (I.2) with the initial condition X(0) = x
has a continuous density for each fixed z(t) = z with
respect to the Lebesgue measure ld at time t > 0 – i.e.,
for a Borel set A⊂Rd ,

PXz {X z(t) ∈ A}=
∫

A
Pz(x,x′) ld(dx′) (I.4)

where X z(t) is a solution to (I.2) with z(t) ≡ z, and
Pz(x,x′) is a continuous function of x and x′.

Sufficient conditions for (A1) can be found in [1], [4], [6],
[10].

Since (z(t)) is a finite state continuous time, time homo-
geneous Markov process, its evolution can be described in
the following form:

τ1 = inf{s≥ 0: z(s) 6= z(0)}
τn+1 = inf{s≥ 0: z(s+ τn) 6= z(τn}

for z(0) = z

Pz{τ1 ≤ t}=
∫ t

0
n(z,s)ds

Pz{Pz(τn){t0
n+1 ≤ t}}= Ez

{∫ t

0
n(z(τn),s)ds

}
Pz{z(τ1) = z′}= P(z,z′) .

(I.5)

By direct calculation the following result is obtained:

Lemma 1: Given (A1) for a Borel set B ∈Rd and z′ ∈ D,

Px,z{X(t) ∈ B,z(t) = z′}=
∫

A
pt(x,x′,z,z′) ld(dx′) (I.6)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThC15.3

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 5582



where

pt(x,x′,z,z′) =
∞

∑
k=1

∑
z1∈D

∑
z2∈D

. . . ∑
zk−1∈D

∫ t

0
n(z,s1)∫

Rd
Pz

s1
(x,x1)P(z,z1)

∫ t−s1

0
n(z1,s2)∫

Rd
Pz1

s2
(x1,x2)P(z1,z2) . . .

. . .
∫ t−s1−...−sn−1

0
n(zk−1,sn)∫

Rd
Pzn−1

sn (xn−1,xn)P(zn−1,z′)Pz′
t−s1−...−sn(xn,y)∫

∞

t−s1−...−sn

n(z′,u)dul(dxn)dsn l(dxn−1)dsn−1 . . . l(dx1)ds1 .

(I.7)

The following continuity property will be crucial in further
investigations:

Proposition 1: Under (A1), the operator Πt is continuous
in variation norm for (π,z) ∈ Sδ ×D – i.e., for (π(n),z)→
(π,z)∈ Sδ×D, and (π(n),n≥ 1) is a sequence in Sδ , it follows
that

sup
A∈B(S×D)

∣∣Πt(π(n),z,A)−Πt(π,z,A)
∣∣→ 0 (I.8)

as n→ ∞, with

S = {v = (v1, . . . ,vd),vi ≥ 0,∑vi = 1}
and
Sδ = {v ∈ S,vi ≥ δ , i = 1,2, . . . ,d}

for 0 < δ < 1/d.

Proof: Note that

Πt(π,z,A)

= Eπz

{
1A

(
π1(t), . . . ,πd−1(t),1−

n−1

∑
i=1

πi(t),z(t)

)}
so the density of (π1(t), . . . ,πd−1(t)) is used. Consider the
following transformations of Rd :

exp


x1
x2
...

xd

=


ex1

ex2

...
exd

 (I.9)

for π = (π1,π2, . . . ,πd) ∈ S,

Dπ


x1
x2
...

xd

=


π1x1
π2x2

...
πdxd

 (I.10)

and for [x1,x2, . . . ,xd ] ∈ [0,∞)d \{0},

G


x1
x2
...

xd−1
xd

=



x1
∑xix2
∑xi
...

xd−1
∑xi

∑xi

 . (I.11)

The transformation GDπ exp transforms X(t) =
(X1(t), . . . ,Xd(t)) into π1(t),π2(t), . . . ,πd−1(t),∑d

i=1 πieXi(t))
and the determinant of the Jacobian of its inverse is of the
form

1
y1y2 . . .yd

1(
1−∑

d−1
i=1 yi

) .

Consequently, the density f π(y1, . . . ,yd) of(
π1(t),π2(t), . . . ,πd−1(t),∑d

i=1 πieXi(t)
)

is of the form,
assuming that z(0) = z, z(t) = z′, i = 1 is fixed,

Pt

(
ln 1

π1
y1yd , . . . , ln 1

πd−1
yd−1yd , ln 1

πd

(
1−∑

d−1
i=1 yi

)
yd ,z,z′

)
y1y2 . . .yd

(
1−∑

d−1
i=1 yi

) .

(I.12)
By the Scheffé Theorem [11], the pointwise convergence of
transition densities implies convergence in L1. Consequently,
whenever π(n)→ π ∈ Sδ , it follows, by continuity of Pt , that

f π(n)(y1, . . . ,yd)→ f π(y1, . . . ,yd)

pointwise and the convergence is also in L1. Therefore∫
∞

0
f π(n)(y1, . . . ,yd) l(dyd)→

∫
∞

0
f π(y1, . . . ,yd) l(dyd)

(I.13)
in L1([0,∞]d−1). Finally, by (I.13), for z,z′ ∈ D,

sup
A∈B(S)

∣∣Πt(π(n),z,A×{z′})−Πt(π,z,A×{z′})
∣∣

≤
∫

[0,∞)d−1

∣∣∣∣∫ ∞

0
f π(n)(y1, . . . ,yd) l(dyd)

−
∫

∞

0
f π(y1, . . . ,yd) l(dyd)

∣∣∣∣ ld−1(dy1, . . . ,dyd−1)→ 0

from which (I.8) follows.

Using the same arguments as in the proof of Proposition
1, there is

Corollary 1: If the transition density pθ
t (x,x′,z,z′) for

(Xθ (t)),(z(t)) depends in a continuous way on θ , x, and
x′, then for (θn,π(n))→ (θ ,π) ∈Θ ×Sδ and z ∈ D,

sup
A∈B(S×D)

∣∣∣Π θn
t

(
π(n),z,A)−Π

θ
t (π,z,A)

)∣∣∣→ 0 . (I.14)

Having shown the properties of the uncontrolled process
π(t), now the control problem is introduced. Assume that
there are proportional transaction costs consisting of a fixed
proportional managing cost and a cost proportional to the
volume of the transactions. Let ζ

−
i , i = 1,2, . . . ,d denote the

amount of wealth process invested in the ith asset. Clearly,
W− = ∑

d
i=1 ζ

−
i is the wealth before a possible transaction.

Changing the portfolio to (ζ1,ζ2, . . . ,ζd) requires paying
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immediately transaction costs of the form

kW−+
d

∑
i=1

c1
i (ζi−ζ

−
i )+ + c2

i (ζi−ζ
−
i )− (I.15)

with k > 0 corresponding to a fixed managing cost. Short
selling or short borrowing are not allowed and it is assumed
that the portfolio is self-financing. Therefore, the wealth W
after a transaction is equal to

W−− ksW−−
d

∑
i=1

c1
i (ζi−ζ

−
i )+ + c2

i (ζi−ζ
−
i )− . (I.16)

Let π
−
i = ζ

−
i /W− and πi = ζi/W be respectively the portion

of wealth invested in the ith asset before and after a
transaction. From (I.16), it follows that

1− k−
d

∑
i=1

c1
i

(
πi

W
W−
−π

−
i

)+

+ c2
i

(
πi

W
W−
−π

−
i

)
=

W
W−

or
c
(

π
W

W−
−π

−
)

+
W

W−
= 1 ,

with

c(v) = k +
d

∑
i=1

(
c1

i v+
i + c2

i v−i
)

.

In what follows, it is assumed that 0 < c1
i ,c

2
i < 1− k.

It appears that starting from the portfolio (π−1 ,π−2 , . . . ,π−d )
the portfolio (π1,π2, . . . ,πd) is available. Naturally it follows
that (see Lemma 1 of [12], or [13])

Lemma 2: There is a unique continuous function e : S×
S→ (0,1− k] such that for π−,π ∈ S there is the equality

c(πe(π−,π)−π
−)+ e(π−,π) = 1 . (I.17)

The function e is bounded away from zero and

e(π,π ′)e(π ′,π ′′) < e(π,π ′′) ,

which means that it is not profitable to make two instantaneous
portfolio changes. The wealth process W− after the change
of portfolio from π− to π is diminished to e(π−,π)W− = W .

Denote by W−(t), W (t), π−(t), π(t), the wealth process
before and after transaction or the portfolio before and after
transaction at time t respectively. The purpose is to maximize
the following long run wealth growth rate:

yθ 0
((π(t)) = liminf

T→∞

1
T

Eπz{lnW (T )} . (I.18)

Since k > 0, the strategy is of impulsive form – i.e. it
is a sequence V = (τn,π

n) consisting of transaction times
(stopping times τn for n = 1,2, . . .) and portfolios πn which
are chosen at time τn. The following equalities are satisfied

W (t) = W (τn)
d

∑
i=1

πi(τn)eXi(t)−Xi(τn) (I.19)

π(t) = g
(

π(τn)� eX(t)−X(τn)
)

(I.20)

for τn < t < τn+1, and

W (τn) = e(π(τ−n ),πn)W−(τn) . (I.21)

Additionally, the portfolio π(t) is not allowed to be too
close to the boundary of the simplex S. An obligatory
diversification of the portfolio is introduced. Let 0 < δ <
δ ′ < 1/d, and

S0
δ

= {v ∈ S : vi > δ for i = 1,2, . . . ,d} .

As soon as the portfolio (π(t)) enters the set S \ S0
δ
, it is

changed by choosing a new portfolio from the set Sδ ′ . Both
parameters δ and δ ′ are assumed to be fixed in the paper.
The following remark justifies the use of obligatory portfolio
diversification:

Remark 1: Assume that there is a unique invariant measure
µθ 0

for Markov process (z(t)). Under the assumptions, the
law of large numbers for the martingale∫ t

0
σ(z(s),θ)dB(s)+

∫ t

0

∫
Rd

γ(z(s),θ ,u) Ñ(ds,du)

is applicable and therefore

lim
t→∞

1
t

Xi(t) = lim
t→∞

1
t

∫ t

0
αi(z(s),θ 0)ds

= ∑
z′∈D

αi(z′,θ 0)µ
θ 0

(z′) = rθ 0

i P a.e.

Consequently, Xi(t) is of order trθ 0

i . If rθ 0

i > rθ 0

j , for j 6= i,
then provided that πi(0) > 0 and the portfolio is not changed,
it follows that

πi(t) =
πi(0)eXi(t)

∑ j π j(0)eX j(t)
→ 1 P a.e.

as t→ ∞, while π j(t)→ 0 for j 6= i as t→ ∞ P a.e.
In other words, assuming that the rθ 0

i are not the same for
i = 1,2, . . . ,d, the process π(t) in the limit converges to the
boundary of S, provided that π(0) > 0. As a consequence,

liminf
T→∞

1
T

E [lnW (T )] = max
i=1,2,...,d

rθ 0

i .

This is the value of the wealth process that can be guaranteed
over the long run. It may happen however that it is more
profitable to change the portfolio regularly than just wait for
the guaranteed value.

The portfolios from the boundary of S are unacceptable
from a risk sensitivity point of view. To eliminate risk, usually
a portfolio is diversified. Therefore, in the paper an obligatory
diversification is required.

A model with fixed proportional transaction costs (k >
0,c≡ 0) was studied by Morton and Pliska in [9]. A simple
one asset Black Scholes model with fixed proportional plus
proportional transaction costs was considered in [5], and the
control was restricted to a diversification boundary and the
choice of a new portfolio when this boundary was reached.
In the paper [12], general discrete and continuous time
models with an obligatory diversification were studied. For
a continuous time model, a certain transaction delay was
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introduced, which played an important role in the proofs.
This paper generalizes [12] in various directions. A more
specific asset growth model based on Lévy noise is considered.
As in [12], the vanishing discount approach is used. To
obtain continuity results time discretization is used. The
main result, existence of the smooth solutions to the ergodic
Bellman equation is obtained by the continuity properties of
the transaction operator and finiteness of the space D.

II. DISCRETE TIME APPROXIMATIONS

The transition operator Πt of the Markov process
(π(t),z(t)) has a nice continuity property (see Proposition 1).
To use this property for a continuous time model, consider a
time discretization. Let

σ = inf{s≥ 0: π(s) ∈ S\S0
δ
}

and

σn = inf{2−ns,s = 0,1,2, . . . ,π(2−ns) ∈ S\S0
δ
} ,

i.e. σ and σn are the first exit times of S0
δ

for a continuous
time or discrete time 2−ns Markov processes (π(t)),(π(2−ns))
respectively. Clearly, σn ≥ σ . It is assumed furthermore that

(A2) supz∈D sup
π∈S0

δ

Eπ2{σ}< ∞

(A3) supz∈D sup
π∈S0

δ

Eπ2{σn−σ}→ 0 as n→ ∞.

Remark 2: It is clear in view of Remark 1 that if rθ 0

i
are not the same for all i, then σ < ∞ P a.e. The fact
that Eπz{σ} < ∞ follows mainly from nondegeneracy of
the diffusion term in the equation for (π(t)). The assumption
(A3) is typical in diffusion approximations (see the assump-
tion A22 in [7]) and as was justified in [7] it holds for
uniformly elliptic diffusion terms. Applying Ito’s formula to
the function fi(x1, . . . ,xd) = (πieXi)/(∑π jeX j), a stochastic
differential equation is obtained for πi(t). The Brownian
motion coefficient (row) is in the form

ri(t) = (ri(t)− (πi(t))2)σi(z(t),θ 0)

−
d

∑
j 6=i

πi(t)π j(t)σ j(z(t),θ 0)

= πi(t)
d

∑
j=1

π̃
i
j(t)σ j(z(t),θ 0)

(II.1)

with π̃ i
i (t) = 1− πi(t) and π̃ i

j(t) = −π j(t) for i 6= j. The
matrix r(t)rT (r) is not uniformly elliptic. It is, however,
uniformly elliptic on the subspace orthogonal to the vector
1= (1,1, . . . ,1).

Thus
Lemma 3: If σ(z,θ 0)σ(z,θ 0)T is uniformly elliptic, i.e.

there is ε > 0 such that for a ∈Rd , z ∈ D,

aT
σ(z,θ 0)σ(z,θ 0)T a≥ εaT a

then under (A2) r(t)r(t)T is uniformly elliptic for a ∈ Rd

such that ∑
d
r=1 ai = 0 and π(t)∈ Sδ – i.e. there is ε ′ > 0 such

that for a ∈Rd , ∑
d
i=1 ai = 0, π(t) ∈ Sδ ,

aT r(t)r(t)T a≥ ε
′aT a (II.2)

with ε ′ uniform for t > 0, π(t) ∈ Sδ , z(t) ∈ D.

Proof: Assume that for a sequence of nonzero vectors
an ∈Rd , tn, (an)T r(tn)r(tn)T an→ 0 as n→∞ with ∑

d
i=1 an

i =
0. Since an/

√
(an)T an is in the unit sphere, one can choose

subsequences, for simplicity again denoted by n such that
an/
√

(an)T an→ b, tn→ t, where b is on the unit sphere and
t is finite. If t = ∞, the process π(t) is leaving Sδ so that
requirement that π(t) ∈ Sδ is not satisfied. Letting n→ ∞,

(an)T√
(an)T an

r(tn)r(tn)T an√
(an)T an

→ 0

it follows that bT (r(t̄)r(t̄)b = 0 with t̄ = t or t− depending
on the form of tn. Since

bT r(t̄) =
d

∑
i=1

biπi(t̄)
d

∑
j=1

π̃
i
j(t̄)σ j(z(t),θ 0)

=
d

∑
j=1

(
d

∑
i=1

biπi(t̄)π̃ i
j(t̄)

)
σ j(z(t̄),θ 0)

by uniform ellipticity of σσ∗, it follows that
d

∑
i=1

biπi(t̄)π̃ i
j(t̄) = 0 for j = 1,2, . . . ,d. (II.3)

The vectors (πi(t̄)π̃ i
j(t̄))i=1,2,...,d are orthogonal to 1 =

(1,1, . . . ,1) and since the matrix πi(t̄)π̃ i
j(t̄) is of rank d−

1, vector 1 is the unique (up to multiplicative constant)
orthogonal vector. Consequently, b = c1, with c = 1/

√
d,

and that
an

i√
(an)T an

− 1√
d
→ 0

for i = 1,2, . . . ,d.

Summing over i in the last convergence, and taking into
account that ∑

d
i=1 an

i = 0, it follows that −1/
√

d = 0, a
contradiction. Consequently, (II.2) is satisfied.

Consider now the following optimal stopping problem

wβθ

T (π,z) = sup
τ

Eπz

{
e−βτ∧σ∧T

[
ln
(

πeX(τ∧σ∧T )
)

+ F(π(τ ∧σ ∧T ),z(τ ∧σ ∧T ))]} (II.4)

with β ≥ 0, positive integer T , and function F , which is
continuous and bounded. Let Jn be the family of discretized
stopping times taking values in the set {2−ns,s = 0,1,2, . . .}.
The following discretized version of (II.4) is obtained

wβθ

T,n(π,z) = sup
τ∈Jn

Eπz

{
e−βτ∧σn∧T

[
ln
(

πeX(τ∧σn∧T )
)

+ F(π(τ ∧σn∧T ),z(τ ∧σn∧T ))]} . (II.5)
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Note that since

−
d

∑
i=1
|Xi(τ ∧σn∧T )| ≤

d

∑
i=1

πiXi(τ ∧σ ∧T )

≤ ln
(

πeX(τ∧σ∧T )
)

≤max
i

Xi(τ ∧σ ∧T )≤
d

∑
i=1
|Xi(τ ∧σ ∧T )| (II.6)

the values wpθ

T and wβθ

T,n are bounded. Moreover, there is

Proposition 2: Under (A1)–(A3), wβθ

T,n(π,z) is a contin-
uous function of π ∈ S0

δ
, π ∈ S \ S0

δ
, and (wT ,nβθ ,n ≥ 1)

converges as n→ ∞ to wβθ

T uniformly on compact subsets
of S0 so that wβθ

T is continuous on S0
δ

and on S\S0
δ

.

Proof: Consider the following sequence of functions:

hT 2n(π,z) = F(π,z)

hT 2n−1(π,z) = max
{

F(π,z),Eπz

{
e−2−n

[
ln
(

πeX(2−n)
)

+ F(π(2−n),z(2−n)
)]}

1S0
δ

(π)

+F(π,z)1S\S0
δ

(π)

hm(π,z) = max
{

F(π,z),Eπz

{
e−2−N

[
ln
(

πeX(2−N)
)

+ hm+1(π(2−n),z(2−n)
)]}

1S0
δ

(π)

+F(π,z)1S\S0
δ

(π)
(II.7)

Clearly, wβθ

T,n(π,z) = h0(π,z). By Proposition 1 each function
hm is continuous separately on S0

δ
and S\S0

δ
. Consequently,

the same is true for the function wβθ

T,n. Now, for any stopping
time τ , define a stopping time τn ∈ Jn in the following way

τn = (k +1)2n

whenever τ ∈ (k2n,(k +1)2n], and
τn = k2n

for τ = k2n with k = 0,1,2, . . .. Then∣∣∣Eπz

{
e−βτ∧σ∧T

[
ln
(

πeX(τ∧σ∧T )

+ F(π(τ ∧σ ∧T ),z(τ ∧σ ∧T )))]}

− Eπz

{
e−βτn∧σn∧T

[
ln
(

πeX(τn∧σn∧T )

+ F(π(τn∧σn∧T ),z(τn∧σn∧T )))]}|

≤ Eπz

{
e−βτ∧σ∧T

χτ<σ
τ≤T[

sup
s∈[0,2−n]

∣∣∣Eπ(t),z(t)

{
1− e−β s ln(π(t)eX(s)

}∣∣∣
+ sup

s∈[0,2−n]

∣∣∣Eπ(t),z(t)

{
F(π(0),z(0))− e−β sF(π(s),z(s))

}∣∣∣]}
+Eπz

{
e−βτ∧σ∧T

χσ≤τ χσ≤T χσ≤σn{[
ln(π(0)eX(σ)− eβ (σn−σ) ln(π(σ))eX(σn)

]
+
(

F(π(σ),z(σ))− e−β (σn−σ)F(π(σn),z(σn)
)}}

= In + IIn . (II.8)

The convergence In→ 0 follows from the following two
properties of the process π(t):

Lemma 4: For any compact set K ⊂ S0, ε > 0, T > 0, there
is a compact set K′ ⊂ S0 such that

sup
z∈D

sup
π∈K

Pπz
{

π(t) /∈ K′ for some [0,T ]
}

< ε . (II.9)

Lemma 5: Let Bδ (π) = {π ′ ∈ S, ‖π ′−π‖< δ}. For any
ε > 0, δ > 0, compact set K′ ⊂ S0 there is h0 > 0 such that
for h≤ h0

sup
z∈D

sup
π∈K′

Pπz{π(h) /∈ Bδ (π)}< ε . (II.10)

the proofs of these two lemmas can be shown based on
Lemma 2 of [8] and Lemma 2.5 of [3]. The convergence IIn→
0 follows from (A3). Consequently, by (II.8), wβθ

T,n(π,z)→
wβθ

T (π,z) uniformly in π from compact subsets of S0.

III. DISCOUNTED GROWTH OPTIMAL PORTFOLIO

Assume in what follows that an impulsive strategy V =
(τn,π

n) contains obligatory and nonobligatory transactions
– i.e., whenever π(t) enters S \ S0

δ
, it is required to make

an obligatory transaction to π ′ ∈ Sδ and when π(t) ∈ S0
δ

a
transaction can be made but it is not required. Consider now
the so-called discounted cost functional

Jβθ 0

π2 (V ) = Eπ2

{
∞

∑
i=1

e−βτi
[
ln
(

π(τi−1)eX(τi)−X(τi−1)
)

+ lne(π−(τi),π(τi))
]}

. (III.1)

Let
wβθ 0

(π,z) = sup
V

Jβθ 0

πz (V ) . (III.2)

Theorem 1: Under (A1)–(A3), wβθ 0
is a bounded function

continuous on S0
δ

and S\S0
δ

and is the unique solution to the
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following Bellman equation:

wβθ 0
(π,z) = sup

τ

Eπz

{
e−βτ∧σ

[
ln(πeX(τ∧σ))

+ Mwβθ 0
(π(τ ∧σ),z(τ ∧σ))

]}
, (III.3)

with

Mw(π,z) = sup
π1∈S

δ ′

[
lne(π,π ′)+w(π1,z)

]
. (III.4)

Proof: Let, for a continuous bounded function w on
Sδ ′ ,

Gβθ 0
w(π,z) = sup

τ

Eπ2

{
e−βτ∧σ

[
ln
(

πeX(τ∧σ)
)

+ Mw(π(τ ∧σ),z(τ ∧σ))]} . (III.5)

By Proposition 2, the mapping

π → sup
τ

Eπz

{
e−βτ∧σ∧T

[
ln
(

πeX(τ∧σ∧T )
)

+ Mw(π(τ ∧σ ∧T ),z(τ ∧σ ∧T ))]}

is continuous for π ∈ S0
δ

and π ∈ S \ S0
δ

and any positive
integer T . By (A2), it follows that Gβθ 0

w(π,z) is continuous
for π ∈ S0

δ
and π ∈ S\S0

δ
. Let

qβθ 0
(π,z) = Eπz

{
∞

∑
i=1

e−βτi
[
ln
(

π(τi−1)eX(τi)−X(τi−1)
)

+ lne(π−(τi), π̃)
]}

, (III.6)

where

τ1 = σ

τn+1 = τn +σΘτn

πn = π̃

where π̃ ∈ Sδ ′ is fixed and Θt denotes the Markov shift
operator. Consider now the following sequence of functions

qβθ 0

0 (π,z) = qβθ 0
(π,z)

qβθ 0

1 (π,z) = Gβθ 0
qβθ 0

0 (π,z)

qβθ 0

n (π,z) = Gβθ 0
qβθ 0

n−1(π,z) .

(III.7)

Note that qβθ 0
(π,z) is the value of the cost functional

Jβθ 0

πz corresponding to obligatory transactions to a fixed
portfolio π̃ ∈ Sδ ′ . The value qβθ

n (π,z) is the value of the cost
functional with the strategy which consists of optimal first n
transactions and then afterwards only obligatory transactions
to π̃ . Therefore, it is clear that the sequence qβθ 0

n (π,z) is
increasing. Consequently there is a limit q̂βθ 0

(π,z) and letting
n→ ∞ in (III.7) it follows that

q̂βθ 0
(π,z) = Gβθ 0

q̂βθ (π,z) . (III.8)

Since for any bounded function f , the function π →
M f (π,z) is continuous (by the continuity of e(π,π ′)), using
Proposition 2 as in the beginning of the proof the continuity
of q̂βθ 0

(π,z) for π ∈ S0
δ

and π ∈ S\S0
δ

is used. The function

q̂βθ 0
is therefore a solution to (III.3) with suitable continuity

properties. Iterating (III.3) it follows that q̂βθ 0
coincides with

wβθ 0
, which completes the proof.

Remark 3: In the proof of Theorem 1, a smoothing
property of the operator M is used. Alternatively, one could
use the fact that due to a fixed proportional transaction cost
it is not optimal to have too many transactions in a finite
time interval. This method allows one to prove a version of
Theorem 1 for processes (z(t)) taking values in a general (not
necessarily finite) state space whose transition probability is
continuous in variation.

The following property of wβθ 0
will be important later:

Corollary 2: For π,π ′ ∈ S0
δ ′ and z ∈ D, the following

inequalities are satisfied∣∣∣wβθ 0
(π,z)−wβθ 0

(π ′,z)
∣∣∣≤ ∣∣lne(π,π ′)

∣∣+ ∣∣lne(π ′,π)
∣∣

(III.9)
and for π ∈ S, π ′ ∈ S0

δ ′ ,

lne(π,π ′)+wβθ 0
(π ′,z)≤ wβθ 0

(π,z) = Mwβθ 0
(π,z) .

(III.10)

Proof: For π,π ′ ∈ S0
δ

,

wβθ 0
(π,z)≥Mwβθ 0

(π,z)≥ lne(π,π ′)+wβθ 0
(π ′,z) ,

and
wβθ 0

(π ′,z)≥ lne(π ′,π)+wβθ 0
(π,z) ,

and (III.10) is immediate from the definition of M.

To study a long time growth optimal function J(V ) of the
form (I.18), a uniform ergodicity of the Markov process (zt)
is imposed, namely:

(A4) there is T > 0 and ∆ < 1 such that

sup
z,z′∈D

sup
A⊂D

∣∣PT (z,A)−PT (z′,A)
∣∣= ∆ < 1 .

Let

hβθ 0
(π,z) = wβθ 0

(π,z)− inf
π ′∈S
z′∈D

wβθ 0
(π ′,z′) . (III.11)

Proposition 3: Under (A1)–(A4),

sup
π∈S
z∈D

hβθ 0
(π,z)≤ M

1−∆
, (III.12)

with constant M independent on β and θ 0.

Proof: The Bellman equation (III.3) can be also written
in the following equivalent form for every T ≥ 0

wβθ 0
(π,z) = sup

τ

Eπz

{
e−βτ∧σ∧T

[
lnπeX(τ∧σ∧T )

+ χτ∧σ>T Mwβθ 0
(π(τ ∧σ),z(τ ∧σ))

+ χτ∧σ≥T wβθ 0
(π(T ),z(T ))

]}
. (III.13)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC15.3

5587



Iterating (III.13), it follows that

wβθ 0
(π,z) = sup

V
Eπz

{
∞

∑
i=1

e−βτi
(

lnπ(τi−1)e(X(τi)−X(τi−1))

+ lne(π−(τi),π(τi))χτi≤T

+ e−βT wβθ 0
(π(T ),z(T ))

}
. (III.14)

Fix π̄ ∈ S0
δ

. It is claimed that there is a constant C such that
for any π ∈ S, z ∈ D, θ 0 ∈Θ ,

wβθ 0
(π,z)≤C +wβθ 0

(π̄,z) . (III.15)

Assume that starting from (π,z), an optimal time τ̂ ∧σ(π)
for the first transaction is determined to choose portfolio π̄ .
Starting from (π̄,z) make only obligatory transactions until
τ̂ ∧σ(π), each time choosing portfolio π̄ and at τ̂ ∧σ(π)
choose again portfolio π̄ . By σ(π) above, it denotes the first
exit time from S0

δ
by (π(t)) starting from π . Then, from

(III.9),

wβθ 0
(π,z)−wβθ 0

(p̄i,z)≤ Eπz

{
e−β τ̂∧σ(π)

[
lnπeX(τ̂∧σ(π))

+2K +wβθ 0
(π̄,z(τ̂ ∧σ(π)))

]}
− (Jπ̄,z(τ̂ ∧σ(π))

− K +Eπ̄,z

[
wβθ 0

(π̄,z(τ̂ ∧σ(π))e−β τ̂∧σ(π)
])

≤C1 +3K +C2 = C

where Jπ̄,z(τ̂ ∧ σ(π)) is a cost functional of the strategy
consisting of obligatory transactions to π̄ and stopped at
τ̂ ∧σ(π) which by (A1)–(A2) is bounded uniformly by C2.
Furthermore,

K = sup
π∈S

π ′∈Sδ

∣∣lne(π,π ′)
∣∣ , (III.16)

and
sup
π∈S
z∈D

Eπz

{
e−βτ∧σ

(
lnπeX(τ∧σ)

)}
≤C1 ,

which verifies (III.15).

By (III.14), (III.15), (III.10), and (III.16),

wβθ 0 −wβθ 0 ≤ sup
V

JβT
πz (V )+C +Eπz

[
wβθ 0

(π̄,z(t))
]

e−βT

−
(

sup
V

JβT
π ′,z′(V )−K +Eπ ′,z′

[
wβθ 0

(π̄,z(T ))
]

e−βT
)

≤M +
(

Eπz

[
wβθ 0

(π̄,z(T ))
]
−Eπz′

[
wβθ 0

(π̄,z(T ))
])

e−βT

= M +

[
∑

z′′∈D1

wβθ 0
(π̄,z′)(PT (z,z′′)−PT (z′,z′′))

+ ∑
z′′ /∈D1

wβθ 0
(π̄,z′)(PT (z,z′′)−PT (z′,z′′))

]
e−β t

≤M +∆

(
sup

z′
wβθ 0

(π̄,z′)− inf
z′

wβθ 0
(π̄,z′)

)
,

where D1 = {z′′ ∈ D : PT (z,z′′)≥ PT (z′,z′′)}, from which
(III.12) is obtained.

IV. LONG VIEW GROWTH OPTIMAL PORTFOLIO

Now rewrite the Bellman equation (III.3) in terms of a
bounded (by Proposition 3) function hβθ 0

. Thus

hβθ 0
(π,z) = sup

τ

Eπz

{
e−βτ∧σ

[
ln
(

πeX(τ∧σ)
)

+Mhβθ 0
(π(τ ∧σ),z(τ ∧σ))

]
− inf

π ′∈S
z′∈D

wβθ 0
(π ′,z′)(1− e−βτ∧σ )

 . (IV.1)

The main result of the paper can be formulated as follows:
Theorem 2: Under (A1)–(A4) there exist a constant λ θ 0

and a continuous bounded function wθ 0
such that

wθ0(π,z) = sup
τ

Eπz

{
ln
(

πeX(τ∧σ)
)
−λ

θ 0
(τ ∧σ)

+Mwθ0(π(τ ∧σ),z(τ ∧σ))
}

. (IV.2)

Moreover,
λ

θ0 = sup
V

Jθ 0
(V ) , (IV.3)

i.e., λ θ0 is the optimal value of the cost functional (I.18) and
the strategy V̂ = (τ̂n, π̂

n) such that

τ̂ = inf
{

s≥ 0: wθ0(π(s),z(s))≤Mwθ0(π(s),z(s))
}

.

(IV.4)
τ̂1 = τ̂

τ̂n+1 = τ̂n + τ̂ ◦θτn

(IV.5)

and
π̂

n = π̂(π−(τ̂n,z(τ̂n))

where π̂ : S×D→ Sδ ′ is a Borel function such that

Mwθ0(π,z) = lne(π, π̂(π,z))+wθ0(π̂(π,z),z)

is optimal.
Proof: Note that

inf
K′∈S
z′∈D

βwβθ 0
(π ′,z′)

is bounded so that there is a constant λ θ 0
and a sequence

βn ↓ 0 such that

inf
π ′∈S
z′∈D

βnwβθ 0
(π ′,z′)→ λ

θ 0

as n→ ∞. Furthermore, by (A2),

Eπz

{
1
βn

(
1− e−βnτ∧σ

)}
→ Eπz {τ ∧σ}

as n → ∞, and the limit is uniform in τ , π , and z. By
Proposition 3, the functions hβθ 0

are bounded. Therefore,
Mhβθ 0

(π,z) is uniformly continuous in π ∈ D (use the
continuity of e). One can therefore choose a subsequence of
βn, for simplicity again denoted by βn, such that

Mhβnθ 0
(π,z)→ hθ 0

(π,z) (IV.6)
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uniformly, where hθ 0
(π,z) is a continuous function of π .

Therefore, by (IV.1), there is a continuous function wθ 0
such

that
sup
π∈S

sup
z∈D

∣∣∣hβnθ 0
(π,z)−wθ 0

(π,z)
∣∣∣→ 0

as n→ ∞. From (IV.6), it follows that

Mhβnθ 0
(π,z)→Mwθ 0

(π,z)

uniformly in π ∈ S, z ∈ D.
Finally, wθ0 is a solution to (IV.2). Equality (IV.3) and the

form of optimal strategy V̂ follows from standard arguments.
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[11] Henry Scheffé. A useful convergence theorem for probability distribu-
tions. Ann. Math. Statistics, 18:434–438, 1947.

[12] Łukasz Stettner. Long time growth optimal portfolio with transaction
costs. preprint.

[13] Łukasz Stettner. Discrete time risk sensitive portfolio optimization with
consumption and proportional transaction costs. Appl. Math. (Warsaw),
32(4):395–404, 2005.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC15.3

5589


