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Abstract— We consider the problem of efficient network for-
mation in a distributed fashion. Network formation is modeled
as an evolutionary process, where agents can form and sever
unidirectional links and derive direct and indirect benefits from
these links. We formulate and analyze an evolutionary model
in which each agent’s choices depend on its own previous
links and benefits, and link selections are subject to random
perturbations. Agents reinforce the establishment of a link if
it was beneficial in the past, and suppress it otherwise. We
illustrate the flexibility of the model to incorporate various
design criteria, including dynamic cost functions that reflect
link establishment and maintenance, and distance-dependent
benefit functions. We show that the evolutionary process assigns
positive probability to the emergence of multiple stable config-
urations (i.e., strict Nash networks), which need not emerge
under alternative processes such as best-reply dynamics. We
analyze the specific case of so-called frictionless benefit flow,
and show that a single agent can reinforce the emergence of
an efficient network through an enhanced evolutionary process
known as dynamic reinforcement.

I. INTRODUCTION

Several studies in social networks concern how the emer-

gence of specific network formations is associated with the

strategic framework of local interactions [2]. Likewise, a

challenge in sensor networks is to design protocols that

guarantee energy efficient network formation, where the

energy of transmitting signals is the major part of the energy

consumption [3], [4]. In this paper, we wish to provide

a dynamic framework that will serve both as a design

procedure for distributed convergence to a desirable network

and as a justification for the emergence of certain networks.

Several models for social network formation have been

proposed that are based on game theory. These include static

models, [5], [6], [7], [8], [9], [10], where agents play a one-

stage game, with actions corresponding to network links.

These studies characterize networks in terms of the Nash

equilibria of the associated game. The processes under which

such equilibria can emerge are proposed via dynamic or

evolutionary models [11], [12], [13], [14], [15], [16], [17].

In these models, players adaptively form and sever links in

reaction to an evolving network, and in some models, their

decisions are subject to random perturbations.

For the sake of brevity, all proofs have been omitted and can be found
in [1].
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This paper is also concerned with dynamic or evolutionary

models, and is mostly related to the papers of [9], [13],

[16], [17]. In particular, we consider self-interested players

that have the discretion of establishing or severing unidi-

rectional links with neighboring agents based on myopic

considerations. However, we drop the typical assumption that

players are aware of the current network structure, usually

employed by processes such as best-reply. Rather, our model

is payoff based. Agents can only measure derived benefits

from past decisions of forming or severing links. Players will

reinforce a link if it was beneficial in the past and suppress

it otherwise. These dynamics belong to the general class of

learning automata [18], [19] and are motivated by related

models of human-like decision making [20].

The main difference with both [16] and [17] is in the

reward function. In [16], [17] the reward function is based on

the principle of reciprocity which models social relationships

such as friendship. Here instead we use the connections

model of [7]. According to this model, the benefits received

from each agent can be viewed as the information available

from its direct and indirect links. In other words, agents are

rewarded for being connected to other agents, either directly

or indirectly. Additional features of our model are a state-

dependent cost function for the establishment and mainte-

nance of links and a distance-dependent reward function

for information benefits. This framework can model various

economic and social contexts, such as the production and

transmission of information, consumer products, etc. Models

of this form (that also assume the consent of both parties)

include the static model of [7] and the dynamic models of

[11], [12].

We will show that our model (i.e., the combined evolu-

tionary process, reward functions, and cost functions) assigns

positive probability to the emergence of multiple stable

configurations (Nash networks). When the aforementioned

state-dependent cost function is considered, we show that

the set of strict Nash networks emerging may be larger than

the one arising from best-reply dynamics considered in [13].

A specific case of our reward functions is “frictionless

information flow”, i.e., where benefits are derived from being

connected to other agents and are not distance dependent. For

this special case, we demonstrate the utility of an enhanced

evolutionary process known as dynamic reinforcement. In

particular, we will show how a single individual can reinforce

the emergence of an efficient network through a simple

“dynamic” processing of its own available information that

uses the rate of observed reward changes [21]. This has the

effect of reinforcing efficient networks while destabilizing

the non-efficient networks.
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The remainder of the paper is organized as follows.

Section II presents the model for network formation. Section

III analyzes its asymptotic stability properties. Section IV

specifies the possible steady-state configurations, distinguish-

ing between the cases of frictionless and decaying flow

of benefits. Section V analyzes the effect of the enhanced

dynamic reinforcement scheme on the emergence of efficient

network configurations. Finally, Section VI presents conclud-

ing remarks.

II. THE MODEL

A. One-way benefit flow

Let I = {1, ..., n} denote a finite set of agents. The

network relations among agents are represented by a graph,

whose nodes are identified with the agents and whose edges

capture the pairwise relations.

We will consider a one-way flow model, where a network

G is defined as a collection of pairwise directed links, (i, s),
i, s ∈ I, where benefits flow from s to i. More precisely,

G ⊆ {(i, s) : i, s ∈ I}. For example, the network G =
{(1, 2), (1, 3), (3, 1)} is illustrated in Fig. 1.

Fig. 1. A network of three players and one-way flow of benefits.

Define a path from s to i in G, as (i ← s) =
⋃m−1

k=0 (sk+1, sk) for some positive integer, m, where

{sk}
m
k=0 is a sequence in I that satisfies s0 = s, sm = i,

sk 6= sk+1 and (sk+1, sk) ∈ G for any k = 0, 1, ..., m− 1.

Definition 2.1 (Connectivity): A node i ∈ I is connected

to a node s ∈ I\i if there is a path from s to i. A network

is connected if any i ∈ I is connected to any s ∈ I\i.
We further assume that each agent is able to establish links

only with “neighboring agents.” The set of neighbors of agent

i is denoted as Ni with cardinality |Ni|. In the unconstrained

neighbors case, Ni = I\i.

B. The network formation model

We will model network formation as an evolutionary pro-

cess, where at each stage agents decide which links to form.

Based on agents’ decisions, a graph is being formed, and a

reward is assigned to each agent based on the information it

receives through its links and its neighbors’ links. In detail,

the network formation model is described as follows.

1) Action space: The set of actions of agent i, denoted

Ai, contains all the possible combinations of neighbors with

which a link can be established including the case of not

establishing any link, i.e., Ai = 2Ni .

By enumerating the elements in Ai, we can associate

the jth element of Ai with a vertex, ej , of the probability

simplex of dimension |Ai|, i.e., ∆(|Ai|). Accordingly, we

will use the same notation, ai ∈ Ai, to refer to an element of

Ai either in terms of an index over Ai, a vertex of ∆(|Ai|),

or an clement of 2Ni . Finally, let |ai| denote the cardinality

of ai viewed as an element of 2Ni .

2) Learning Algorithm: At each stage k ∈ N, each agent

i selects an action ai(k) ∈ Ai according to the probability

distribution over Ai

(1− λ)xi(k) +
λ

|Ai|
1,

where i) xi(k) ∈ ∆(|Ai|) is the strategy of agent i at stage k;

ii) 1 is a vector of appropriate dimension with each element

equal to 1; and iii) λ ≥ 0 is a parameter used to model

possible perturbations in the decision making process, also

called mutations [22], [23].

The strategy of agent i is updated according to:

xi(k + 1) = xi(k)+
ǫ(k) · (Ri(a(k))− Ci(ai(k), xi(k))) · (ai(k)− xi(k)),(1)

which is a stochastic recursion with step size sequence

ǫ(k) , 1/(k + 1).
In the above recursion, Ri : A → R+ denotes the reward

of agent i, which generally depends on the choices of all

agents a = (a1, ..., an) (i.e., the current network) defined in

the product set A , ×i∈IAi.

We will assume that the rewards are bounded and nonneg-

ative, i.e., 0 ≤ Ri(·) < Rmax <∞, for some Rmax > 0.

We also assume that the establishment and maintenance of

a link is costly. In recursion (1), Ci : Ai ×∆(|Ai|) → R+

denotes the cost of establishing and maintaining a link. This

cost is assumed to depend on both the current and previously

established links. Dependence of previously established links

is implicit through the strategy xi(k).
The recursion (1) is a modified version of the linear

reward-inaction scheme that was first considered in mathe-

matical psychology by [24] and introduced in engineering

by [25]. The main difference here is the introduction of

the mutation parameter, λ, which will be essential for the

equilibrium selection analysis under dynamic reinforcement

models defined in Section V.

3) Learning algorithm with dynamic reinforcement: Fur-

ther insights into the possible emergence of efficient net-

work structures can be derived by considering a dynamic

processing of the local information available to each agent.

In particular, agents might be more satisfied with links

that increased their benefits in the recent history than with

links that have provided large benefits throughout the whole

history.

Based on similar reasoning, we will utilize a modified

action selection probability distribution of the form

Π∆{(1− λ)[xi(k) + γi · (xi(k)− yi(k))] +
λ

|Ai|
1}, (2)

for some γi ≥ 0, where Π∆{·} is the projection to the

probability simplex, ∆(|Ai|), and the new state variable, yi,

is updated according to the recursion

yi(k + 1) = yi(k) + ǫ(k) · (xi(k)− yi(k)).

A standard controls interpretation of this dynamic rein-

forcement scheme is that agents use it to “predict” more
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rewarding outcomes [21]. A similar approach was investi-

gated by [26] as an approach to enable stabilization of mixed

equilibria in learning in games. The intention here instead is

to use dynamic reinforcement to enforce convergence to an

efficient pure equilibrium.

C. Reward and cost function

The reward function will be defined as in the network

formation models of [7], [11], [13]. More specifically, we

assume that a link with another agent allows access to the

benefits available to the latter via its own links. Define:

Ri(a) ,
∑

s∈I,s6=i

δdis(a) (3)

where i) δ ∈ (0, 1] measures the level of information decay

and ii) dij : A → N is defined as the minimum distance

from j to i given the current action profile a ∈ A. We adopt

the convention that dij(·) =∞, when (i, j) /∈ G.

For each agent i ∈ I, we define the cost function Ci :
Ai ×∆(|Ai|)→ R+ to be:

Ci(ai, xi) , κ0 |ai|+ κ1ϕi(ai)
T(1− ϕi(xi)), (4)

for some κ0, κ1 ≥ 0. The parameter κ0 corresponds to the

cost of maintaining an existing link, while κ1 corresponds

to the cost of establishing a new link. The function ϕi :
∆(|Ai|)→ R

|Ni| is defined by

[ϕi(xi)]j =
∑

{α∈Ai:j∈α}

xiα.

By abuse of notation, we are using α as both an index,

as in xiα, and a set, as in j ∈ α ∈ 2Ni . In words,

the [ϕi(xi)]j denotes the probability that agent i will form

a link to neighbor j based on the distribution xi. The

term ϕi(ai)
T(1 − ϕi(xi)) penalizes misalignment of the

action ai with the distribution xi. In the perfectly aligned

case, for any ai ∈ Ai (viewed as a vertex of ∆(|Ai|)),
ϕi(ai)

T(1− ϕi(ai)) = 0 whereas in the worst case,

max
xi

ϕi(ai)
T(1− ϕi(xi)) = |ai| .

We make the following assumptions for the remainder of

the paper:

Assumption 2.1: 0 ≤ κ0 + κ1 < δ.

This assumption assures that agents always have an incentive

to form at least one link.

Assumption 2.2: The neighbor sets {N1,N2, ...,Nn} are

such that a connected network is feasible.

D. Efficiency

We also need to characterize the efficiency of a network

structure. To this end, we borrow the definition of the value

of a network from [7].

First, define the agent utility function vi : A ×∆(Ai)→
R+ as

vi(a, xi) = Ri(a)− Ci(ai, xi), (5)

i.e., the combined reward minus cost in the update equation

(1). Note that unlike typical utility functions in network

formation games, this utility function depends explicitly on

both collective actions, a, and an agent’s strategy, xi. In

the special case where xi = ai, the cost term only reflects

maintenance costs (i.e., the κ0 term), whereas establishment

costs (the κ1 term) are zero.

Definition 2.2 (Network value): The value of the network

V : A → R+, is the sum of agent rewards minus mainte-

nance costs at an action profile, a ∈ A, i.e.,

V (a) =
∑

i∈I

vi(a, ai). (6)

Definition 2.3 (Efficient network): An efficient network is

a joint action profile a ∈ A with the maximum value.

Claim 2.1: An efficient network is connected. In the spe-

cial case of δ = 1, an efficient network is a connected

network with a minimal number of links.

III. STABILITY ANALYSIS

A. Asymptotic stability analysis

We formulate the stochastic recursion (1) so that the ODE

method for stochastic approximations [27] can be applied. In

order to characterize the stability properties of the stochastic

iteration (1), we rewrite it as

xi(k + 1) = xi(k) + ǫ(k) · (ḡi(x(k)) + ξi(k)), (7)

where the original observation sequence has been decom-

posed into a deterministic sequence ḡi : ×i∈I∆(|Ai|) →
∆(|Ai|) such that

ḡi(x) = E{(Ri(a)− Ci(a, xi))(ai − xi)
∣

∣x},

and a zero-mean noise sequence

ξi = (Ri(a)− Ci(ai, xi))(ai − xi)− ḡi(x).

A more compact form of (7) is

x(k + 1) = x(k) + ǫ(k) · (ḡ(x(k)) + ξ(k)), (8)

where ḡ(·) , col{ḡi(·)}i∈I , ξ(·) , col{ξi(·)}i∈I , and col{·}
denotes the column vector.

Proposition 3.1 (Convergence): For λ > 0, the stochastic

iteration (8) is such that the sequence {x(k)} converges to

an invariant set of the ODE

ẋ = ḡ(x). (9)

Furthermore, let A ⊂ ×i∈I∆(|Ai|) be a locally asymp-

totically stable set in the sense of Lyapunov for (9). Then

Prob{limk→∞ x(k) ∈ A} > 0.

Thus, according to Proposition 3.1, the sequence will

converge to A with some positive probability.

The characterization of nonconvergence properties of the

stochastic iteration (8) about a stationary point is also of

interest.

Proposition 3.2 (Nonconvergence): For λ > 0, the

stochastic iteration (8) is such that, if x∗ is a lin-

early unstable stationary point of the ODE (9), then

Prob{limk→∞ x(k) = x∗} = 0.
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B. Stationary points

It has been shown by Proposition 3.4 in [21] that for λ =
0, any pure strategy profile a∗ = (a∗

1, ..., a
∗
n) is a stationary

point of the stochastic iteration (8).

Moreover, by Proposition 3.5 of [21], for sufficiently small

λ > 0, there exists a unique continuously differentiable

function w∗ : R+ → ×iR
|Ai|, such that limλ→0 λw∗(λ) =

0, and

x∗ = a∗ + λw∗(λ) (10)

is a stationary point of the ODE (9).

C. Local asymptotic stability (LAS)

In order to characterize locally the stability properties of

the stationary points of ODE (9), we define the conditional

expected utility vi(ai, x) of agent i as1

vi(ai, x) = E{vi(a, xi)
∣

∣ai, x−i},

where vi(·, ·) is defined in (5).

Proposition 3.3 (LAS of Standard Reinforcement): For

sufficiently small λ > 0, let x∗ be a stationary point of the

ODE (9) corresponding to some a∗ ∈ A according to (10).

The stationary point x∗ is a locally asymptotically stable

point of the ODE (9) for sufficiently small λ > 0 if and only

if, for each i ∈ I,

vi(a
∗
i , x

∗) > vi(a
′
i, x

∗) (11)

for all a′
i ∈ Ai\a∗

i .

In the case of the dynamic reinforcement scheme of (2),

the relevant ODE is now
(

ẋ
ẏ

)

=

(

ḡ(x, y)
x− y

)

, (12)

and the condition for stability takes the following form:

Proposition 3.4 (LAS of Dynamic Reinforcement):

Assume the hypotheses of Proposition 3.3 under stability

condition (11). Assume that each agent i applies dynamic

reinforcement (2) for some γi ≥ 0. The strategy profile x∗ is

a locally asymptotically stable stationary point of the ODE

(12) for sufficiently small λ > 0 if and only if, for each

agent i ∈ I, the derivative feedback coefficient satisfies

0 ≤ γi <
vi(a

∗
i , x

∗)− vi(a
′
i, x

∗) + 1

vi(a′
i, x

∗)
(13)

for all a′
i ∈ Ai\a∗

i .

IV. NASH NETWORKS

In the literature of network formation, Nash equilibria

are usually called Nash networks, [13]. In the framework

of our network formation model, where decisions are state-

dependent, we define:

Definition 4.1 (Nash network): An action profile a∗ ∈ A
is a Nash network if and only if

vi((a
∗
i , a

∗
−i), a

∗
i ) ≥ vi((a

′
i, a

∗
−i), a

∗
i ), (14)

1The notation −i denotes the complementary set I\i. We will often split
a strategy profile x as x = (xi, x−i).

for all a′
i ∈ Ai\a

∗
i and i ∈ I. Likewise, a strict Nash network

satisfies the strict inequality in (14).

Claim 4.1: Nash networks are connected.

The Nash networks for n = 3 agents and no decay are

shown in Fig. 2. Assuming that κ0 > 0 and κ1 = 0, Fig. 2(a)

Fig. 2. Nash networks in case of n = 3 agents and κ0 > 0, κ1 ≥ 0 and
κ0 + κ1 < 1.

corresponds to a strict Nash network, since each agent can

only be worse off by unilaterally changing its links. Fig. 2(b),

instead, corresponds to a non-strict Nash network since no

player can increase its payoff by unilaterally deviating.

However, in case κ1 > 0, both Nash networks in Fig. 2

are strict, since each deviation from the equilibrium play is

charged by an extra cost of order κ1.

According to the definition of a Nash network and local

stability analysis of Proposition 3.3, we conclude that:

Proposition 4.1: Under the hypotheses of Proposition 3.3,

a stationary point x∗ = a∗+λw∗(λ), such that a∗ is a strict

Nash network, is a locally asymptotically stable point of the

ODE (9) for sufficiently small λ > 0.

Therefore, finding the set of strict Nash networks a∗ reveals

the set of stationary points x∗ that are locally stable.

Note that according to Propositions 3.1–3.2, convergence

to non-strict Nash network need not be excluded. Figs. 3–

4, simulate two characteristic responses of the stochastic

recursion (1) where we consider the following action spaces

A1 = {∅, {2}, {3}, {2, 3}}, A2 = {∅, {1}, {3}, {1, 3}},
A3 = {∅, {1}, {2}, {1, 2}}, denoted by Ai = {A, B, C, D},
i = 1, 2, 3. In Fig. 3, the recursion converges to the efficient

formation of Fig. 2(a), while in Fig. 4 the recursion converges

to the non-efficient formation of Fig. 2(b).

A. Frictionless benefit flow (δ = 1)

In order to characterize the Nash networks in the general

case of n > 3 agents, we need to define a general class of

networks called critically linked networks.

Definition 4.2 (Critically linked network): A network, G,

is critically linked if i) it is connected and ii) for all (i, j) ∈
G, the unique path (i← j) is (i, j).
In words, a critically linked network is such that if agent

i drops a direct link to (neighboring) agent j, then i loses

connectivity to j by any means.

Proposition 4.2 (Nash networks): For δ = 1, n > 2, and

κ0, κ1 > 0, a network is a strict Nash network if and only

if it is a critically linked network.

A special class of critically linked networks are so-called

flower networks, defined in [13]. Contrary to best-reply

dynamics, where not all flower networks are Nash networks

[13], here we see that, due to the dynamic establishment cost

function, all flower networks are Nash networks.
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Fig. 3. A typical response of the stochastic recursion (1), for δ = 1,
κ = 1/2, κ1 = 0, λ = 0.01. Convergence to the efficient formation of
Fig. 2(a) is observed.
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Fig. 4. A typical response of the stochastic recursion (1), for δ = 1,
κ = 1/2, κ1 = 0, λ = 0.01. Convergence to the non-efficient formation
of Fig. 2(b) is observed.

In the special case of both i) no establishment cost (κ1 =
0) and ii) unconstrained neighbors (Ni = I\i), we can have

a more explicit characterization of strict Nash networks. We

first define the following.

Definition 4.3 (Wheel network): A wheel network is a

connected network uniquely defined by a path (i ← i) for

some i ∈ I where every agent in I is visited only once.

Proposition 4.3: For δ = 1, n > 2, and 1 > κ0 > κ1 = 0,

the wheel network is the unique strict Nash network.

B. Decaying benefit flow (δ < 1)

When the information flow is also subject to decay, the

Nash equilibrium condition imposes a structural constraint

on the distances between nodes.

Proposition 4.4 (Nash networks with decay): Let 0 <
δ < 1, n > 2, κ0 > 0, and κ1 ≥ 0. Let G be a Nash

network corresponding to the joint action a ∈ A. For any

agent i, if |ai| < |Ni|, then δ − δdij(a) ≤ κ0 + κ1 for all

j ∈ Ni.

The condition |ai| < |Ni| means that agent i is not using all

of its available links. This could be of interest, for example,

in the unconstrained neighbors case with a large number

of agents. This theorem can be used to bound distances to

neighbors since

dij(a) ≤

⌊

log(δ − (κ0 + κ1))

log(δ)

⌋

, dmax.

V. DYNAMIC REINFORCEMENT

In [21] it was shown that a dynamic reinforcement scheme

of the form of (2) can destabilize all non-efficient Nash

equilibria in pure coordination games. We wish to answer

the question of whether such a reinforcement scheme can be

used for distributed reinforcement to desirable networks.

Intuitively, the dynamic reinforcement scheme of (2) re-

inforces changes in strategy. Following the language of

Propositions 3.3–3.4, let x∗ be a joint equilibrium strategy as-

sociated with some joint action a∗ ∈ A for sufficiently small

λ. Dynamic reinforcement effectively skews the perceived

payoff benefits of unilateral action deviations. For example,

suppose a′
i is an alternative action for agent i. Under dynamic

reinforcement, the perceived benefit of a deviation is

(1 + γi)vi(a
′
i, x

∗)− (vi(a
∗
i , x

∗) + 1),

as opposed to the actual benefit in the absence of dy-

namic reinforcement, which is vi(a
′
i, x

∗) − vi(a
∗
i , x

∗). If

a∗ corresponds to a Nash equilibrium strategy, the actual

deviation benefit will be negative for all alternatives, a′
i.

Under dynamic reinforcement, the perceived benefit can be

positive and induce a departure for that agent from the

action a∗
i . This departure can, in turn, induce other agents to

abandon their Nash equilibrium actions.

On a cautionary note, excessive dynamic reinforcement

can induce deviations from all Nash equilibria. The key to

evoking efficient outcomes lies in finding the correct level

of dynamic reinforcement, as measure by the coefficients

γi, to induce deviations from inefficient equilibria while

maintaining stability of efficient equilibria. The following

claims explicitly carry out this procedure for a special case

of network formation.

Claim 5.1: Assume that for each i ∈ I, Ni = I\i. Let

δ = 1, n > 2, and κ0, κ1 ≥ 0. Let xnon be a stationary point

corresponding to a non-efficient Nash network configuration,

anon, according to (10) for sufficiently small λ > 0. There

exists an agent i and constant γnon = (1 + κ1)/((n− 1)−
(κ0 + κ1)) > 0 such that if agent i applies the dynamic

reinforcement scheme of (2) with coefficient γi > γnon

then the non-efficient equilibrium formation, xnon, is linearly

unstable point for (12).

Claim 5.1 shows that there exists an agent who is able

to destabilize a non-efficient network. The process could

get attracted to another steady-state configuration that is not

efficient. However, if each agent i ∈ I applies derivative

action with γi > γnon, then all non-efficient networks will

be linearly unstable.

The following claim computes an upper bound on the γi so

that stability of the efficient (wheel) network is maintained.

Claim 5.2: Assume that for each i ∈ I, Ni = I\i. Let

δ = 1, n > 2, and κ0, κ1 ≥ 0. Let xeff be a stationary
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Fig. 5. A typical response of the stochastic iteration (1), for δ = 1,
κ0 = 1/2, κ1 = 0, λ = 0.01 when all agents apply dynamic reinforcement
with γ = 1 and for an initial condition that is close to the non-efficient
formation of Fig. 2(b).

point corresponding to the efficient Nash network wheel

configuration, aeff , according to (10) for sufficiently small

λ > 0. There exists a γeff > γnon such that if any agent

i applies the dynamic reinforcement scheme of (2) with

coefficient

0 < γi <
1 + κ0 + κ1

((n− 1)− 2κ0 − κ1)
+ O(λ) , γeff ,

then xeff is a locally stable equilibrium for (12).

Based on the previous claims, we are ready to describe

convergence and non-convergence properties of the dynamic

reinforcement scheme in the case of frictionless benefit flow.

Proposition 5.1: In the framework of Claims 5.1–5.2, if

γi ∈ [γnon, γeff) for all i ∈ I, then Prob{limk→∞ x(k) =
xeff} > 0, and Prob{limk→∞ x(k) = xnon} = 0.

For example, let us consider the case of n = 3 agents

and κ0 = 1/2, κ1 = 0, λ = 0.01 and δ = 1. According

to Claims 5.1–5.2, γnon = 2/3 and γeff = 3/2 + O(λ). In

Fig. 5 we have simulated the stochastic recursion (1) with

initial conditions that are close to the non-efficient network

of Fig. 2(b) when all agents apply the dynamic reinforcement

scheme of (2) with γ = 1. Since γ ∈ [γnon, γeff), according

to Proposition 5.1 the non-efficient network Fig. 2(b) will be

linearly unstable. We observe that deviation from the non-

efficient network is achieved and the process converges to

the efficient configuration.

VI. CONCLUDING REMARKS

We presented a method for distributed network formation

and reinforcement of efficient networks by dynamic rein-

forcement. Some key distinguishing features of this work

include: i) payoff based dynamics, in which each agent

adapts according to realized link rewards and costs; ii)

incorporation of state dependent link establishment costs in

addition to link maintenance costs; and iii) reinforcement

of efficient networks through dynamic reinforcement. We

presented various characterizations and properties of Nash

network configurations, in terms of the structure of their

connectivity or the distances between nodes. Finally, we

provided accompanying convergence results that show how

these network configurations can be the outcome of a learn-

ing process.
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