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Abstract— We develop a general framework for interpolation-
based model reduction that includes rational Krylov-based
methods as a special case. This new broader framework allows
retention of special structure in the reduced order models
such as symmetry, second order structure, internal delays, and
infinite dimensional subsystems.

I. INTRODUCTION

Dynamical systems are the basic framework for modeling
and control of complex systems of scientific interest or
industrial value. Direct numerical simulation of these models
may be the only possibility for accurate prediction or control
of complex physical phenomena. The need for accuracy leads
to ever greater detail in the model and hence to large-scale,
complex dynamical systems, whose simulation can make
unmanageably large demands on computational resources,
creating a crucial need for efficient model utilization. This
is the primary motivation for model reduction. The cost
of simulation is strongly tied to the the underlying state
space dimension. Then, the goal of model reduction can be
interpretted as replacement of the original system with a dy-
namical system evolving in a lower dimensional state space,
yet having (insofar as is possible) the same input/output
response characteristics as the original system. The resulting
reduced-order model can then be used reliably to replace the
original system model as a component in a larger simulation
or control context.

Rational Krylov-based projection methods have emerged
as effective strategies for the reduction of large-scale linear
dynamical systems that are presented in certain standard
settings [2], [18], [20]. Rational Krylov methods are nu-
merically stable, well suited to large scale computation, and
they share well understood approximation properties that
rational interpolants have to meromorphic functions. The
model reduction framework we present here includes rational
Krylov-based methods as a special case but has a far broader
range of applicability allowing for the retention of special
structure in the reduced order models such as internal delays,
and infinite dimensional subsystems in addition to symmetry
and second order structure.

We emphasize that the goal here is to show how structure
preserving interpolatory model reduction can be achieved in a
much more general setting than the regular first- or second-
order state-space systems. The question of how to choose
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good or optimal interpolation points in this broader setting
will be addressed in a separate work by the authors.

II. PROBLEM SETTING

Linear dynamical systems are typically described in the
standard state-space settings

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (1)

or

Mẍ(t) + Gẋ(t) + Kx(t) = Bu(t), y(t) = Cx(t), (2)

where E,A,M,G,K ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n;
x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector,
and y(t) ∈ Rp is the output vector of the system.

While these two frameworks are quite general, in many
cases dynamical systems will have a natural description that
takes a different form than either (1) or (2). For example,
consider a dynamical system modeling the forced vibration
of a viscoelastic structure observed through sensors that are
sensitive to a combination of displacement and velocity at
the attachment points. This system will have a state-space
description in the form of

Mẍ(t)+
∫ t

0

R(t− τ) ẋ(τ)dτ + Kx(t) = Bu(t)

y(t) = C0x(t) + C1ẋ(t) (3)

The matrices M, K are n × n real, symmetric, positive-
definite matrices and B is an n × m matrix, C0 and C1

are p × n matrices, and R(t) is a symmetric matrix-valued
function on [0,∞) that is absolutely integrable in the sense
that

∫∞
0
‖R(τ)‖ dτ < ∞. Model reduction methods that are

applied in the standard settings (1) or (2) (such as Krylov
subspace methods [2], [18] or balanced truncation [25],
[24]) are unable to handle functional and delay differential
equations of the form described in (3). Indeed, the model
in (3) is fundamentally infinite dimensional due to the
hereditary damping term; hence converting it into either of
the frameworks of (1) or (2) requires use of an infinite
dimensional state space and interpretation of (1) or (2) as
an operator evolution equation. Moreover, effective reduced-
order models for (3) should properly take into account the
structure of distributed system properties. That is, we should
seek reduced order models having similar structure:

Mr ẍ(t)+
∫ t

0

Rr(t− τ) ẋ(τ)dτ + Kr x(t) = Bru(t)

yr(t) = C0,rx(t) + C1,rẋ(t) (4)

where Mr and Kr are now r× r real, symmetric, positive-
definite matrices with r � n and Br is an r×m matrix, C0,r

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThTA13.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 4204



and C1,r are p× r matrices, and Rr(t) is an r × r matrix-
valued function with

∫∞
0
‖Rr(τ)‖ dτ < ∞. Recasting (3)

into the standard setting (1) strips out usable structure and
can lead to unnecessary and dramatic increases in state space
dimension.

In this paper, we present tools that allow for efficient,
high-fidelity model reduction for linear dynamical systems
that have a natural state space formulation distinct from (1)
and (2). We consider cases with n � m, p which often arises
when the system of interest has been derived from a (spatial)
semidiscretization of a partial differential equation describing
local instantaneous equilibrium throughout a region of space
with loads (sources and sinks) and observations that remain
localized (in space).

The framework we present will allow more generality than
is expressed in (3); e.g., we can accomodate multiple delays
or memory convolution occurring within the state equations
in higher derivatives, state variables can be coupled through
infinite dimensional subsystems. This general framework can
be accommodated by focussing on multiple-input/multiple-
output (MIMO) systems with a transfer function H(s) hav-
ing a (known) decomposition:

H(s) = C(s)K(s)−1B(s) + D. (5)

We assume that the factors C(s) ∈ Cp×n and B(s) ∈ Cn×m

are analytic in the right half plane; that K(s) ∈ Cn×n is
both analytic and full rank throughout the right half plane;
and the feed forward term D ∈ Rp×m is constant. Our goal
here is to generate, for some r � n, a reduced-order system
with state space dimension r having a decomposition of the
same form as (5):

Hr(s) = Cr(s)Kr(s)−1Br(s) + Dr (6)

with Cr(s) ∈ Cp×r, Br(s) ∈ Cr×m, Kr(s) ∈ Cr×r and
Dr ∈ Rp×m chosen so that Hr(s) will exactly interpolate
H(s) at selected points σ1, σ2, . . . , σl ∈ C: Hr(σi) =
H(σi) for i = 1, ..., l.

We will construct reduced-order models via projection.
That is, we will specify matrices Vr ∈ Cn×r and Wr ∈
Cn×r such that WT

r Vr is invertible; this choice can be
associated with a rank r (oblique) projector given by
Vr(WT

r Vr)−1WT
r . The reduced order model Hr(s) of (6)

is then obtained by defining

Kr(s) = WT
r K(s)Vr, Br(s) = WT

r B(s),
and Cr(s) = C(s)Vr. (7)

Since D and Dr are small matrices, no order reduction
is necessary for them and the choice Dr = D is both
common and convenient. In the case that Dr = D, the
interpolation conditions Hr(σi) = H(σi) produce identical
conditions to the case where Dr = D = 0, so we will
treat that simpler case first. Choosing Dr 6= D produces
no advantage in terms of order reduction but may allow
some advantage in achieving higher fidelity. We consider
interpolation conditions in the case Dr 6= D in the final
section.

III. INTERPOLATORY MODEL REDUCTION

Often reduced order models are constructed presupposing
Dr = D. We consider this case first. We write D`

σf to
denote the `th derivative of the univariate function f(s)
evaluated at s = σ with the usual convention for ` = 0,
D0

σf = f(σ). Also, we write Ran(Z) to denote the range of
the matrix Z.

Theorem 3.1: For H(s) and Hr(s) as defined, respec-
tively, in (5) and (6), assume that Dr = D. Suppose matrices
Vr ∈ Cn×r and Wr ∈ Cn×r are given such that WT

r Vr is
invertible, and Kr(s), Br(s) and Cr(s) are obtained as in
(7). Suppose further that B(s), C(s), and K(s) are analytic
at a point σ ∈ C and both K(σ) and Kr(σ) = WT

r K(σ)Vr

have full rank. Let nonnegative integers M and N be given
as well as nontrivial vectors, b ∈ Rm and c ∈ Rp.
• If Di

σ[K(s)−1B(s)]b ∈ Ran(Vr) for i = 0, . . . , N
then

H(`)(σ)b = H(`)
r (σ)b for ` = 0, . . . , N.

• If
(
cTDj

σ[C(s)K(s)−1]
)T ∈ Ran(Wr) for j =

0, . . . , M , then

cT H(`)(σ) = cT H(`)
r (σ) for ` = 0, . . . , M.

• If Di
σ[K(s)−1B(s)]b ∈ Ran(Vr) for i = 0, . . . , N

and
(
cTDj

σ[C(s)K(s)−1]
)T ∈ Ran(Wr) for j =

0, . . . , M then

cT H(`)(σ)b = cT H(`)
r (σ)b for ` = 0, . . . , M+N+1.

Proof: Due to the page limitations, the proof is omitted. The
proof will be included in the full paper.

Remark 3.1: The interpolation conditions that underlie
rational Krylov methods for model reduction are contained
as a special case of Theorem 3.1 after defining

K(s) = sE−A, B(s) = B, and C(s) = C.

Remark 3.2: Theorem 3.1 tells precisely what vectors to
include in the reducing subspaces Vr and Wr in order to
solve the interpolation problem via projection for the general
dynamical systems of the form as described in (5).

IV. RECURSIVE GENERATION OF INTERPOLATING BASES

Using Theorem 3.1, recurrences may be derived to gener-
ate projecting subspaces that force interpolation as described
above. This is illustrated in the following result:

Theorem 4.1: Suppose we know expansions for K(s),
B(s), and C(s) about s = σ:

K(σ + ε) =
∞∑

`=0

ε` K`, B(σ + ε) =
∞∑

`=0

ε` B`,

and C(σ + ε) =
∞∑

`=0

ε` C`,

and let nontrivial vectors b ∈ Rm and c ∈ Rp be given.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA13.2

4205



Define {f0, f1, f2, . . . , fN} and {g0, g1, g2, . . . , gM}
by solving recursively:

K0 f0 = B0b
K0 f1 = B1b−K1 f0
K0 f2 = B2b−K1 f1 −K2 f0

...
K0 fN = BNb−

∑N
i=1 Ki fN−i

and
gT

0 K0 = cT C0

gT
1 K0 = cT C1 − gT

0 K1

gT
2 K0 = cT C2 − gT

1 K1 − gT
0 K2

...
gT

M K0 = cT CM −
∑M

j=1 gT
M−j Kj

Then
• if span{f0, f1, f2, . . . , fN} ⊂ Ran(Vr)

then H(`)(σ)b = H(`)
r (σ)b for ` = 0, . . . , N ;

• if span{g0, g1, g2, . . . , gM} ⊂ Ran(Wr)
then cT H(`)(σ) = cT H(`)

r (σ) for ` = 0, . . . , M ;
and

• if both span{f0, f1, f2, . . . , fN} ⊂ Ran(Vr)
and span{g0, g1, g2, . . . , gM} ⊂ Ran(Wr)

then cT H(`)(σ)b = cT H(`)
r (σ)b for ` =

0, . . . , M + N + 1.

Remark 4.1: Theorem 4.1 illustrates how to construct the
reducing subspaces numerically in a recursive way.

A. Second- and higher-order Dynamical Systems

Consider the second-order dynamical system of the form

Mẍ(t) + Gẋ(t) + Kx(t) = Bu(t), y(t) = Cx(t) (8)

where M,G,K ∈ Rn×n are symmetric positive definite
matrices, B ∈ Rn×m and C ∈ Rp×n.

Second order systems of the form (8) arise naturally
in analyzing many physical phenomena, such as structural
vibration, electrical circuits, and micro-electro-mechanical
systems; see, for example, [14], [26], [4], [13], [32], [12],
[14], [22], [6], and references therein. M, G, and K are
called, respectively, the mass, damping and stiffness matri-
ces. The transfer function H(s) from inputs u(t) to outputs
y(t) is given by

H(s) = C(s2M + sG + K)−1B.

In many cases, the original system dimension n is too large
for efficient simulation and control purposes. Therefore, the
goal is to generate, for some r � n, an rth order reduced
second-order system of the form

Mrẍr(t) + Grẋr(t) + Krxr(t) = Bru(t),
yr(t) = Crxr(t) (9)

where Mr,Gr,Kr ∈ Rr×r, Br ∈ Rr×m and Cr ∈ Rp×r

so that yr(t) approximates y(t) for a wide range of inputs
u(t).

Since converting (8) into the first-order framework and
applying reduction in that first-order setting destroys the
structure, the goal is to apply reduction directly in the
second-order framework. To achieve this, one constructs a
matrix Vr ∈ Rn×r such that the associated reduced-order
model in (9) is given by

Mr = VT
r MVr, Gr = VT

r GVr, Kr = VT
r KVr,

Br = VT
r B, and Cr = CVr .

In [30], Su and Craig has shown that one can directly
reduce the second-order matrices in a structure preserving
setting, meanwhile matching the moments around σ = ∞.
Recently, Bai and Su [5] further improved this work by
introducing the so-called second-order Krylov subspaces
and second-order Arnoldi procedure. These methods use in
effect, a two-stage recurrence in Rn to generate the effect
of the usual one-stage Krylov recurrence in R2n. In addition
to being numerically effective and robust due to a Arnoldi-
like structure, the method of [5] has also extended the
structure-preserving moment matching property of [30] to
interpolation around arbitrary points σ ∈ C. For more work
on the structure-preserving second-order model reduction,
[6], [28], [12], [8], [9], [17], [23], [11].

Clearly, systems of the form (8) fit in our generalized
transfer function framework after defining

C(s) = C, K(s) = s2M + sG + K and B(s) = B.

Hence we can apply Theorems 3.1 and 4.1. To preserve the
symmetry and positive definiteness of M, G and K, we
apply one sided reduction, i.e. we choose Wr = Vr in
Theorem. 3.1. Hence for this special case of H(s) in (8) and
one-sided reduction, the recurrence in Theorem 3.1 simplifies
to a three-term recurrence:

Algorithm 4.1: A recurrence for reduction of second-
order systems:

1) Choose σ and the tangential direction b
2) Define K0 = σ2M + σG + K, K1 = 2σM + G, and

K2 = M
3) Set f−1 = 0. Solve K0f0 = Bb.
4) for j = 1 : N

• Solve K0fj = −K1fj−1 −K2fj−2,
5) Vr = [f0, f1, . . . , fN ].

The transfer function of the resulting reduced second-order
model will interpolate that of the original model together
with its derivatives at the selected frequency σ and will
preserve the original structure.

Remark 4.2: We note that Algorithm 4.1 can handle
multi-input and multi-output case. The algorithm contains the
second-order recursion of [5] as a special case; namely for
the single-input/single-output second-order model H(s) in
(8), i.e. B and C are, respectively, column and row vectors,
Algorithm 4.1 yields the method of [5].

Remark 4.3: Combining Theorems 3.1 and 4.1, Algorithm
4.1 can be extended to provide interpolation at multiple inter-
polation points σ1, σ2, . . . , σr. This is analogous to applying
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rational Krylov projection as opposed (rational) Arnoldi in
the generic setting of first-order dynamical systems.

Remark 4.4: We can easily extend this discussion to
higher-order systems:

A0
d`x
dt`

+ A1
d`−1x
dt`−1

+ · · ·+ A`x(t) = Bu(t)

and

y(t) = C1
d`−1x
dt`−1

+ · · ·+ C`x(t)

This will yield a ` + 1-term recursion similar to Algorithm
4.1.

B. Delay Systems

Another important application for our generalized interpo-
latory model reduction setting is linear dynamical systems
with an internal delay presented in state space form as:

Eẋ(t) = A0 x(t) + A1 x(t− τ) + Bu(t), y(t) = Cx(t)
(10)

with τ > 0, E, A0, A1 ∈ Rn×n, B ∈ Rn×m and C ∈
Rp×n. We wish to produce a reduced order model having
the same internal delay structure:

WT
r EVr ẋr(t) = WT

r A0Vr xr(t)+

WT
r A1Vr xr(t− τ) + WT

r Bu(t)
(11)

yr(t) = (CVr)xr(t)

Taking a Laplace transform, the transfer function of (10)
is found to be

H(s) = C
(
sE−A0 + e−τs A1

)−1
B (12)

= C(s)K(s)−1B(s) (13)

with

C(s) = C, K(s) = sE−A0 +e−τs A1, and B(s) = B
(14)

Hence, the delay system in (10) perfectly fits in our gen-
eralized framework. One can use Theorem 3.1 with C(s)
K(s) and B(s) as defined in (14) to obtain a reduced-order
model as in (11) having the same internal delay structure
as the original model (10). We note that this reduced model
not only has the same structure as the original model but
also exactly interpolates the original system at the selected
interpolation points.

In order to apply interpolatory model reduction to the
full-order model (10) without our generalized interpolation
framework, one would need to approximate the exponential
e−τs with a rational approximation. Commonly a rational
approximation for the delay term, e−τs, is used which then
allows the use of a variety of standard (finite dimensional)
system theoretic tools. For example, e−τs ≈ p`(−τs)

p`(τs) with
a common choice for `-th order polynomials coming from
Laguerre-Fourier series or Padé approximation.

Assume that the first order Padé approximation is used. In
this case, e−τs is replaced by 1−τs/2

1+τs/2 , leading to the transfer
function

Hp,1(s) = (C + s
τ

2
C)(Ms2 + Gs + K)−1B (15)

where M = τ
2E, G = E + τ

2 (−A0 + A1), and K =
−(A0 +A1). Note that, due to the frequency dependency in
the observation matrix, existing second-order model reduc-
tion approaches will not work for the two-sided projection;
one will have to transform (15) into an equivalent first-
order framework and perform the reduction there. Hence,
using a Padé approximant has not only destroyed the delay
structure but also caused to work with the matrices of double
the size. In most cases, In order to obtain good full-order
Padé approximation, one will need to go to higher order
approximations. However, similar to the first-order Padé case,
for an `th order Padé approximation, one will need to work
with matrices of dimension [500(`+1)]×[500(`+1)], causing
a big overhead in the model reduction process.

V. THE CASE Dr 6= D

We consider now a full order model (5)

H(s) = C(s)K(s)−1B(s) + D

and reduced order models having the form (6)

Hr(s) = Cr(s)Kr(s)−1Br(s) + Dr.

Theorem 5.1: Suppose 2r distinct points are given in
the right halfplane, {µ1, µ2, ...µr} ∪ {σ1, σ2, ...σr}, to-
gether with 2r nontrivial vectors, {c1, c2, ...cr} ⊂ Cp and
{b1, b2, ...br} ⊂ Cm. Define matrices Vr ∈ Cn×r and
Wr ∈ Cn×r such that

Vr = [K(σ1)−1B(σ1)b1, ..., K(σr)−1B(σr)br ]

and

WT
r =

 c∗1C(µ1)K(µ1)−1

...
c∗rC(µr)K(µr)−1


Assume that WT

r Vr is nonsingular and let F and G be
solutions to

FT Vr = [b1, ..., br ] = B and WT
r G =

 c∗1
...
c∗r

 = C∗

For any Dr ∈ Cp×m, define

Kr(s) = WT
r (K(s)−G(Dr −D)FT )Vr,

Br(s) = WT
r (B(s)−G(Dr −D)), (16)

and Cr(s) = (C(s)− (Dr −D)FT )Vr.

Then with Hr(s) = Cr(s)Kr(s)−1Br(s) + Dr we have

H(σi)bi = Hr(σi)bi and c∗i H(µi) = c∗i Hr(µi)

for i = 1, ..., r.
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VI. CONCLUSIONS AND FUTURE WORK

We have presented a general interpolatory framework
model reduction of structured dynamical systems. The pro-
posed framework is much broader than rational Krylov-based
methods and allows retention of special structure in the
reduced order models such as internal delays, infinite dimen-
sional subsystems, symmetry, and second order structure. In
addition to the proofs of theorems presented here, application
of this new setting to model reduction of partitioned systems
and descriptor system will be presented in a separate work.
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