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Abstract— We develop a systematic approach to synthesize
distributed control laws for motion coordination in a group of
constant-speed kinematic rigid bodies. Parallel and balanced
circular formations of mobile agents moving in a three dimen-
sional space are studied, and provably correct steering laws are
presented. The resulting steering laws have simple geometric
intuitions which are based on the structure of each particular
formation.

I. INTRODUCTION

Different approaches to formation control can be catego-

rized as leader-following [1], virtual structure [2], [3] and

consensus approach [4]–[8]. The leader-following is usually

implemented in a centralized fashion, whereas the consensus

approach is decentralized. With the recent interest in dis-

tribute coordination in multi-agent systems, the consensus

approach has received a lot of attention. We approach the

formation control problem as a consensus problem [5], in the

sense that robots communicate with their nearest neighbors

so that they eventually reach an agreement in their motion,

without the presence of a central commander.

Most of the research on distributed control of multi-

agent systems has been focused on planar systems [7]–

[10]. Extension of the flocking results to three dimensions is

nontrivial, because of higher degrees of freedom and a larger

number of inputs for each robot. Some of the early works on

controlling formation of rigid bodies in three-dimensions are

[1], [11]. In [1] formation control for a team of nonholonomic

aircraft was studied. By applying feedback linearization,

the authors designed control laws for reaching a desired

formation. In [11], Justh and Krishnaprasad represented the

body frame of each agent by a natural Frenet frame that

moved along the trajectory of each agent, and proposed a

control law that stabilized the relative equilibria of rectilinear

and circular formations. However, the they provided a proof

of convergence only for the two-agent system. More recently,

similar approach was undertaken in [12], [13] to develop

motion coordination algorithms for distributed control of a

group of nonholonomic rigid bodies in three dimensions.
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In our previous work [12] we presented preliminary results

on motion coordination in a group of agents in three dimen-

sions. We showed in [12] that the two seemingly different

formation control laws that are given by Tanner et al. [14] and

by Justh and Krishnaprasad [11] are actually the same laws,

however the former is expressed in the inertial frame whereas

the latter are expressed in the body coordinate system.

The main contribution of this paper is to present provably

correct control laws for different types of coordinated behav-

iors such as parallel and circular formations. By appropriately

defining the error terms we design control laws that minimize

the total energy of the system and result in the convergence

to a desired relative equilibria such a balanced circular

formation. The resulting control laws depended only on

the relative positions and orientations (i.e. the shape of the

formation).

In Section III, we study the parallel formation of kinematic

rigid bodies with constant speed. Each agent is controlled by

a steering law that keeps the speed of each agent constant.

The resulting cross-product steering law can be expressed

in the body frame or the inertial frame depending on what

coordinate system is used to express the parameters. Next,

in Section IV, we study the generation of balanced circular

formations on a sphere. Concluding remarks are given in

Section V.

II. BACKGROUND AND PROBLEM STATEMENT

A. Rigid Body Motion

Consider a group of n unit-speed kinematic rigid bodies.

Let the rotation matrix Ri = [xi yi zi] ∈ SO(3) represent

the orientation of agent i ∈ {1, . . . , n} with respect to a

fixed world frame, where xi, yi and zi are the columns of

the rotation matrix. The kinematic equation describing the

rotation of each agent is

Ṙi = ω̂iRi , (1)

where ωi is the body angular velocity expressed in the

(inertial) world frame, and ω̂i is the skew symmetric matrix

of vector ωi.

It is assumed that each kinematic agent moves with a

constant unit-speed, i.e. |vi| = 1, and its velocity vector is

along the zi-axis of the body frame, therefore, vi = Rie3

where e3 = [0 0 1]T . Given ri as the position vector of

agent i, the kinematic equations describing the translational
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and rotational motion of agent i are given by

ṙi = Rie3

Ṙi = ω̂iRi . (2)

Since in this paper we are only concerned with the heading

or the velocity vector of each agent, we can consider the

reduced kinematics of each agent:

ṙi = vi

v̇i = ωi × vi . (3)

The control input of each agent is its angular velocity vector

ωi. Note that in this model, the acceleration vector v̇i (hence

the force) is perpendicular to the velocity vector, thus, each

rigid body is under a gyroscopic force [15] that only steers

the agent without changing its speed.

B. The Proximity Graph

Each agent is capable of sensing information from its

neighbors. The neighborhood set of agent i, Ni, is a set of

agents that can communicate with agent i. The size of the

neighborhood depends on the characteristics of the sensors.

We therefore assume that there is a pre-specified radius which

determines the neighborhood relationship. The neighboring

relationship between agents can be conveniently described

by a proximity graph.

Definition 2.1: The proximity graph G = {V, E ,W} is a

weighted graph consisting of:

• a set of vertices V indexed by the set of mobile agents;

• a set of edges E = {(i, j) | i, i ∈ V , and i ∼ j};

• a set of weights W , over the set of edges E .

If i, j ∈ V , and (i, j) ∈ E , then i and j are said to be

adjacent, or neighbors and we denote this by writing j ∼ j.

If there is a path between any two vertices of a graph G,

then G is said to be connected. Given an orientation of the

edges of a graph, we can define the incidence matrix of the

graph to be a matrix B with rows indexed by vertices and

columns indexed by edges with entries of 1 representing the

source of a directed edge and −1 representing the sink.

The Laplacian matrix L(G) of graph G is represented in

terms of its incidence matrix as L = BBT independent of the

orientation of the edges. The Laplacian matrix captures many

topological properties of the graph. The algebraic multiplicity

of zero eigenvalue of the Laplacian L (i.e. the dimension of

its kernel) is equal to the number of connected components

in the graph. The n-dimensional eigenvector associated with

the zero eigenvalue is the vector of ones, 1n = [1, . . . , 1]T .

See [16] for more details on graph theory.

C. Problem Statement

Our goal in this paper is to design distributed control

laws for each agent to generate swarm-like patterns such

as parallel and circular motions. By distributed we mean

that the agents interact and influence each other through the

interaction among their controllers. Generally it is assumed

that agents don’t have access to global information, and only

have limited communication abilities. Thus, the distributed

control laws are based on local feedbacks.

Let us formally define the two types of coordinated motion

in a multi-agent system:

Definition 2.2 (Parallel Formation): A group of mobile

agents are in parallel formation when all the agents attain

the same velocity vectors and distances between the agents

are stabilized.

Definition 2.3 (Balanced Circular Formation): The set

of equilibrium states where the agents are evenly spaced on

circular trajectories, with a fixed geometric center, is called

the balanced circular formation.

Note that in the above definitions, we do not care about the

agreed upon direction of the velocity or center of the circle,

just the fact that agreement has been reached.

III. PARALLEL FORMATION

We start with a parallel formation and synthesis a control

law to achieve velocity alignment in a group of mobile agents

in three dimensions. We have the following theorem:

Theorem 3.1: Consider n agents with kinematics given

by (3). If the proximity graph of the agents is fixed and

connected, by applying input

ωi = κ
∑

j∈Ni

(vi × vj), κ > 0 (4)

the system converges to the set of relative equilibrium points

given by ω = [ωT
1

. . . ω
T
n ]T = 0. Furthermore, the velocity

consensus set is locally asymptotically attractive.

The control law (4) does not guarantee that the proximity

graph of the multi-agent system remains connected, rather

we claim that if graph G remains connected, then all the

velocity vectors converge to the consensus set. The results

are local, i.e. the region of convergence is not the entire

sphere but rather it is only a hemisphere. In other words, if

all the velocity vectors are initially in the same hemisphere,

they converge to a common vector. The reason for this is

that with the choice of input (4) the most we can claim is

the invariance of a hemisphere resulting in convergence to

a unique equilibrium. This point will be more clear in the

proof of Theorem 3.1.

Proof: To show convergence to the equilibria we

consider the following nonnegative function as a measure

of the velocity misalignment:

W (v) =
1

2

∑

i∼j

|vi − vj |
2 =

1

2
vT L̄v (5)

where v = [vT
1
, . . . ,vT

n ]T ∈ R
3n is the stack vector of all

the velocities and L̄ = L⊗I ∈ R
3n×3n, with I being the 3x3

identity matrix, and ⊗ representing the Kronecher product.

The time derivative of W (v) along the trajectories of our
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system (3) is given by:

Ẇ (v) = v̇T L̄v =
n∑

i=1

v̇T
i (L̄v)i

=
n∑

i=1

(ωi × vi)
T (L̄v)i

= −
n∑

i=1

ω
T
i v̂T

i (L̄v)i ≤ 0

where v̂i is the skew-symmetric matrix of vector vi, and

(L̄v)i ∈ R
3 is a component of vector L̄v that corresponds

to the i-th agent. Noting that v̂i is skew-symmetric, we have

v̂T
i (L̄v)i = −v̂i(L̄v)i = −vi ×

∑

j∈Ni

(vi − vj)

=
∑

j∈Ni

(vi × vj) = (
1

κ
) ωi . (6)

Thus, setting v̂T
i (L̄v)i = (1/κ)ωi for a constant gain

κ > 0 guarantees that W (v) decreases monotonically along

trajectories of system (3):

Ẇ (v) = −
1

k

n∑

i=1

ω
T
i ωi ≤ 0, κ > 0 . (7)

Consider the positively invariant set Ωc = {v | W (v) ≤
c ∈ R} characterized by the level-sets of W(v) over which

Ẇ ≤ 0. Ωc is compact, because all the velocity vectors

are unit-length, and thus, W (v) is bounded. By LaSalle’s

invariance principle, every trajectory of the system starting

in Ωc converges to the largest invariant set contained in

Γ = {v | Ẇ = 0} = {v | ω = 0}. The solution set of

ω = 0 is given by the equilibria of
∑

j∈Ni

(vi × vj) = 0, ∀ i ∈ {1, . . . , n}. (8)

Note that Γ is a very rich set and contains many equilibria

other than the consensus set.

In order to show the local attractivity of the consensus set

we first show that if all the velocity vectors start in the same

hemisphere at time t = 0, they will not leave that hemisphere,

i.e. under control input (4) the initial hemisphere is positively

invariant. We need to introduce the notion of geodesic versor

gi. Let vector gi be

gi =
(I − viv

T
i )v′

i

|(I − viv
T
i )v′

i|
(9)

where v′
i =

∑
j∈Ni

vj (See Figure 1). Thus, gi is the unit

vector along the projection of v′
i perpendicular to vi. The

control input (4), which is now equivalent to

ωi = κ (vi × v′
i) ,

can be interpreted as a geodesic control input [6] that rotates

vi along the geodesic versor gi so that it is aligned with v′
i.

Let αi be the angle between vi and v′
i. When αi ∈ [0, π), i.e.

xw
yw

zw

vk

v
′

k

gk

αk
TkS

2

Fig. 1. The geodesic versor between vk and v′

k
is defined as a unit vector

perpendicular to vk and pointing towards v′

k
. TkS2 represents the tangent

to the sphere S2 at point corresponding to vk .

when all the initial velocity vectors start within a hemisphere,

the geodesic versor will be unique.

Now, it is easy to see why the initial hemisphere is

positively invariant under control law (4). Suppose vk is the

velocity vector that is about to leave the initial hemisphere.

Since by the assumption all of its neighboring agents have

velocity vectors inside the hemisphere, v′
k is inside the

hemisphere, hence the geodesic versor gk points towards the

inside of the hemisphere (see Figure 1). As a result vk is

pushed back towards the interior of the hemisphere. Thus,

the initial hemisphere is positively invariant.

Once the invariance of the initial hemisphere is established,

one can show that the synchronized state is the only stable

equilibrium within the initial hemisphere. It was shown

earlier that the equilibrium points are the set of solutions

of ωi = 0, i ∈ {1, . . . , n}. Given that

v′
i = (v′T

i vi)vi + (v′T
i gi)gi

= |v′
i|(cos αi vi + sin αi gi) (10)

control input ωi can be written in terms of the angle αi:

ωi = κ (vi × v′
i) = κ|v′

i| sin αi(vi × gi) . (11)

Therefore, ωi = 0 corresponds to |v′
i| = 0 or sin αi = 0.

Knowing the invariance of the interior of the initial hemi-

sphere, and the assumption αi ∈ [0, π), we conclude that the

only solution corresponds to αi = 0 for all i ∈ {1, . . . , n}.

Therefore, the velocity consensus set is locally attractive.

Figure 2 (a) shows the trajectories of five kinematic agents

under the control law (4). Figure 2 (b) shows the initial and

final orientations of the body frames of the same rigid bodies.

The velocity vector of each agent is along its body z-axis,

and as one can see at the final configuration, all the velocities

are aligned, while the other axes are not.

Remark 3.2: Restricting the initial velocities to the inte-

rior of a hemisphere in three dimensions is the generalization

of the local results given in [6] and [17] where all the head-

ings were constrained to be within a half-circle characterized

by θ ∈ (−π/2, π/2).
The advantage of the cross-product steering law (4) is that

it can be easily computed in any desired coordinate system.

When one is computing the control input for agent i, the
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(a) Trajectories
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Initial Orientations

−1
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1 2 3 4 5 6 7 8 9 10

0

1

2

Final Orientations

(b) Orientations

Fig. 2. (a) Trajectories of five rigid bodies applying the steering law
(4) for velocity alignment. The underlying connectivity graph is fixed and
connected. (b) The initial (top) and final (bottom) orientations of the same
five rigid bodies with respect to a fixed inertial frame. The velocity of each
agent is shown by a thicker arrow. At the equilibrium all the velocity vectors
are aligned.

inputs become roll, ωiz , pitch, ωix and yaw, ωiy , which

are the components of the body angular velocity expressed

in the body frame. With all the velocity vectors expressed

in the body frame i(vi) = [0 0 1]T , and i(vj) = RT
i vj =

[(xT
i vj) (yT

i vj) (zT
i vj)]

T we get

ωix = −κ
∑

j∈Ni

yT
i vj ,

ωiy = κ
∑

j∈Ni

xT
i vj ,

ωiz = 0 . (12)

As it can be seen from (12) that roll, or rotation about the

velocity axis, is zero. Note that (12) imposes a nonholonomic

constraint on the motion of each rigid body in three dimen-

sions.

IV. CIRCULAR FORMATIONS ON SPHERE

Another important type of coordinated motion is a circular

motion that is observed in nature [18], e.g. in the form of

schooling of fish. The circular formation is a circular relative

equilibrium in which all the particles travel around the same

circle. The balanced formation is an interesting family of

equilibrium states where the agents are evenly spaced on

a circular trajectory, and their geometric center is fixed.

Consider n rigid bodies with kinematics

ṙi = zi

ẋi = ωizyi − ωiyzi

ẏi = −ωizxi + ωixzi

żi = ωiyxi − ωixyi , i = 1, . . . , N (13)

which is equivalent to (2) but in terms of the body angular

velocity ωi = [ωix ωiy ωiz]
T expressed in the body frame.

The goal is to synthesis a control law for generating balanced

circular formations about a circle with radius ρ = 1/ωo

where ωo is a constant angular velocity term. The control

law is designed by an appropriate choice of an error that is

minimized at the desired relative equilibrium.

Let ci represent the vector pointing towards the center of

a circular trajectory of agent i. Given the assumption that the

velocity vector is along the body z-axis, we have ci = ri+di

where

di =
1

ωo

(αxi + βyi) , α, β ≥ 0, α2 + β2 = 1 .

Figure 3 demonstrates the geometry of the circular trajectory

under consideration.

Proposition 4.1: Consider a system of n rigid bodies

with kinematics (13). When the connectivity graph is a fixed

and connected graph, by applying the control inputs:

ωix = −βωo

(
1+ < zi,

(L̄c)i

n
>

)
(14)

ωiy = αωo

(
1+ < zi,

(L̄c)i

n
>

)
(15)

ωiz = −αωo < yi,
(L̄c)i

n
> +βωo < xi,

(L̄c)i

n
>(16)

where α2 + β2 = 1, the n-agent system asymptotically

converges to circular trajectories on a sphere with radius

ρo = 1/ωo.

Proof: Consider the following function as a measure of

the disagreement of the centers:

S(c) =
1

2n
< c, L̄c >=

1

2n

∑

i∼j

|ci − cj |
2 . (17)

xi

yi

zi

ci

ri

xw
yw

zw

di

Fig. 3. The geometry of the circular trajectory. The velocity is along the
body z-axis, and the center vector is defined by ci = ri + di.
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Using the system kinematics (13), one can derive the dynam-

ics of the center vector ci:

ċi = −

(
β

ωiz

ωo

)
xi +

(
α

ωiz

ωo

)
yi +

(
β

ωix

ωo

−α
ωiy

ωo

+ 1

)
zi .

Now it is easy to show that using control inputs (14), (15)

and (16) we have:

Ṡ(c) =
1

n
< ċ, L̄c >=

n∑

i=1

< ċi,
(L̄c)i

n
>

=
n∑

i=1

[
−

(
1 − β2 − α2

)
< zi,

(L̄c)i

n
>

−
(
β2 + α2

)
< zi,

(L̄c)i

n
>2

−

(
α < yi,

(L̄c)i

n
> −β < xi,

(L̄c)i

n
>

)2 ]
.

If condition α2 + β2 = 1 holds, we get Ṡ(c) ≤ 0 . By an

application of LaSalle’s invariance principle, one can show

that the trajectories of the system converge to largest invariant

set defined by Ṡ(c) = 0. The corresponding equilibria are

given by

α < yi,
(L̄c)i

n
> −β < xi,

(L̄c)i

n
> = 0 ,

< zi,
(L̄c)i

n
> = 0 .

Hence, at the equilibrium we have ωix = −βωo, ωiy = αωo

and ωiz = 0, which correspond to a rotation about axis

ω
∗
i = ωo(−βxi + αyi) .

Note that ω
∗
i is a vector perpendicular to di and |ω∗

i | = ωo,

i.e. the norm of the angular velocity vector at the equilibrium

is ωo. Thus, agents will traverse circular trajectories around

a sphere with radius ρo = 1/ωo and centered around ci =
co ∈ R

3, a fix point in space that depends on the initial

positions of the rigid bodies.

Figure 4 (a) shows the trajectories of two agents under the

above inputs. In order to make the agents to traverse the same

great circles on a sphere, and also have balanced headings,

we need to control the headings of the agents as well as

the spacing of the circles. Let us consider the misalignment

potential

W (z) =
1

2n
< z, L̄z >=

n

2
−

n

2
|p|2 , (18)

where p = (1/n)
∑n

i=1
zi is the average of the velocity

vectors. W (z) attains its minimum (W (z) = 0) at the syn-

chronized state (all zi’s are equal), and attains its maximum

at the balanced state (all zi’s are evenly spaced around a

unit circle). Maximizing W (z) corresponds to minimizing

U(z) = (n/2)|p|2.

Proposition 4.2: Consider a system of n kinematics rigid

bodies described by (13). When the connectivity graph is a

complete graph, by applying the angular velocity inputs

ωix = −βωo − ωo

(
β < zi,

(L̄c)i

n
> − ωo < yi,p >

)

ωiy = αωo + ωo

(
α < zi,

(L̄c)i

n
> − ωo < xi,p >

)

ωiz = −αωo < yi,
(L̄c)i

n
> +βωo < xi,

(L̄c)i

n
>

subject to the condition α2 + β2 = 1, the system converges

to a balanced circular formation characterized by p =
(1/n)

∑n

i=1
zi = 0. All agents traverse great circles of

radius ρo = 1/ωo.

Proof: Consider the composite potential function

V (c, z) = S(c) + U(z) =
1

2n
< c, L̄c > +

n

2
|p|2 .

Given (18) and the control inputs, the time derivative of

V (c, z) along the trajectories of (13) is given by:

V̇ =
n∑

i=1

[
−

(ωiz

ωo

)2

+ (1 − α2 − β2) < zi,
(L̄c)i

n
>

+ ωo < (αxi + βyi),p >

−

(
β < zi,

(L̄c)i

n
> − ωo < yi,p >

)2

−

(
α < zi,

(L̄c)i

n
> − ωo < xi,p >

)2]
.

Let si = (αxi + βyi). Given that (1 − α2 − β2) = 0, and

using the fact that near the balanced equilibrium
∑n

i=1
si

equals to p⊥, we can show that V̇ (c, z) ≤ 0. By an

application of LaSalle’s invariance principle, one shows that

any trajectory of the system starting in the compact region

Ωc = {(c, z) | V̇ ≤ c}, converges to the largest invariant set

within {(c, z) | V̇ (c, z) = 0}. This set is characterized by:

α < yi,
(L̄c)i

n
> −β < xi,

(L̄c)i

n
> = 0 , (19)

β < zi,
(L̄c)i

n
> − ωo < yi,p > = 0 . (20)

α < zi,
(L̄c)i

n
> − ωo < xi,p > = 0 . (21)

Hence, at the equilibrium we have ωix = −βωo, ωiy = αωo

and ωiz = 0, which correspond to a rotation about axis

ω
∗
i = ωo[−β α 0]T , perpendicular to di = [α β 0]T .

From (19) we have that

< ω
∗
i , (L̄c)i >= 0, i = 1, . . . , n .

Since ω
∗
i 6= 0, we conclude that L̄c = 0. Because G is

a connected graph, we have c ∈ null{L̄} = span{1},

i.e. ci = co, where co ∈ R
3 is a fix point in space that

depends on the initial positions of the rigid bodies. Also,

since |ω∗
i | = ωo, we conclude that at the relative equilibrium

all agents traverse circular trajectories around a sphere with

radius ρo = 1/ωo and centered around co.
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(a)

(b)

Fig. 4. Circular formations are achieved by minimizing the appropriate
energy functions. (a) A circular motion on a sphere is generated by
minimizing S = (1/2n) < c, L̄c >, (b) A balanced circular motion is
generated by minimizing V = S + U = (1/2n) < c, L̄c > +(n/2)|p|2.

From (20) and (21) we get < xi,p >= 0 and <
yi,p >= 0, ∀i ∈ {1, . . . , n}. There are two possibilities:

either p = 0, which corresponds to a balanced formation,

or p ⊥ span{xi,yi} which corresponds to a configuration

that m agents are at antipodal position from the other n−m
agents (1 ≤ m < n/2). The latter configurations are unstable.

The only stable configurations are given by p = 0. In three

dimensions, only for n = 2, 3 one can guarantee that all

agents travel the same circle. For n > 3 the equilibria are

great circles over which two or three agents are moving in a

balanced formation.

See Figure 4 (b) for trajectories of three agents on a

balanced circular trajectory.

V. CONCLUSIONS

In this work we presented a set of distributed control laws

for motion coordination in a group of kinematic rigid bodies.

We undertook a consensus approach to generate swarms-

like behaviors such as parallel and circular formations. As a

result, our approach is can be classified as a behavior-based

method to formation control. The stability of the relative

equilibria in each type of formation was studied in details.

The results on parallel motion of agents can be extended

to scenarios where the underlying connectivity graph is state-

dependent (i.e. switch topologies). However, to achieve a

balanced circular formation, the results hold only for an all-

to-all topology (complete graph) and a ring topology. We did

not present the stability analysis of the ring-topology here,

but the approach is similar to the one found in [19].

In future, we would like to extend our result to the control

of the position and orientation of the circular trajectory that

the agents traverse.
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