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Abstract— The paper studies the visibility maintenance
problem (VMP) for a leader-follower pair of robots modelled as
first-order dynamic systems and proposes an original solution
based on the notion of controlled invariance. The nonlinear
model describing the relative dynamics of the vehicles is
interpreted as linear uncertain system, with the leader robot
acting as an external disturbance. The VMP can then be refor-
mulated as a linear constrained regulation problem with additive
disturbances (DLCRP). New positive D-invariance conditions
for linear uncertain systems with parametric disturbance
matrix are introduced and used to solve the VMP when
box bounds on the state, control input and disturbance are
considered. The proposed design procedure can be easily
adapted to provide the control with UBB disturbances rejection
capabilities. As an extension, the paper addresses the VMP on
a circle. Simulation experiments show the effectiveness of the
proposed designs.

I. INTRODUCTION

A. Motivation and related works

The last few years have seen a growing interest in

coordination and control of multi-agent systems [1]–[4].

The research in this area has been stimulated by the recent

technological advances in wireless communications and pro-

cessing units and by the observation that multiple agents

can perform tasks more efficiently and reliably than a single

robot. However, multiple robots must respect suitable con-

straints in order to accomplish a common task. Two moving

agents, for instance, can communicate only if the first one

keeps always inside a disk region (representing the extent of

the electromagnetic field used for data exchange), centered

on the second robot. When extended to n robots, this prob-

lem is usually referred to as the connectivity maintenance

problem. It received a special attention in the literature,

where agents modelled as first or second-order dynamic

systems have been considered [5]–[7].

If the robots are equipped with sensors (e.g., panoramic

cameras, laser range finders, high resolution radars, etc.)

having limited sensing capabilities, then a visibility main-

tenance problem (VMP), instead of connectivity mainte-

nance problem, naturally arises between the robots. Visibility

constraints have been introduced in several works dealing

with pursuit-evasion [8], deployment [9] and rendezvous [10]
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problems. However the VMP is not the primary concern of

these works and general conditions for its solution are not

provided. In addition these papers do not consider any bound

on the control inputs of the robots.

B. Contributions

The setup considered in this paper consists of two agents

with first-order dynamics: a leader (or evader) L and a

follower (or pursuer) F. The robots can rotate, but similarly

to Dubins’ vehicles can only move forward. The follower is

equipped with a sensing device characterized by a visibility

set S, a compact and convex polyhedral region embedding

both position and angle information. The leader moves along

an arbitrary trajectory: the aim of the follower is to keep L

always inside its visibility set S, while respecting suitable

bounds on the control inputs.

Inspired by [11], where the concept of cone invariance is

employed to solve the multi-agent rendezvous problem and

by the results in [12], [13], this paper addresses the VMP

using the notion of controlled invariance. The key idea of

the work is to interpret the nonlinear model describing the

relative dynamics of the leader and the follower, as a linear

system with model parameter uncertainty, with the leader

acting as an external disturbance. The VMP can then be

easily reformulated as linear constrained regulation problem

with additive disturbances (DLCRP) [13]. New positive

D-invariance conditions for general linear uncertain systems

with parametric disturbance matrix are introduced and used

to solve the VMP when box bounds on the visibility set,

control inputs and disturbances are considered. Analytical

conditions for the solution of the VMP are obtained by

symbolically solving the set of linear inequalities defining the

polytope of all the feasible state feedback matrices, using the

Fourier-Motzkin elimination method. The proposed design

procedure can be readily adapted to provide the control

with UBB disturbances rejection capabilities. As a final

contribution, the paper presents conditions for the solution

of the VMP on a circle.

C. Organization

In Sect. II the linear constrained regulation problem is

reviewed and new positive D-invariance conditions for linear

systems with parameter uncertainty are presented. In Sect. III

we introduce the VMP and prove the main results of the

paper. In Sect. IV simulation experiments illustrate the

theory and show the effectiveness of the proposed designs.

In Sect. V the main contributions of the paper are summa-

rized and future research lines are highlighted.
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II. THE LINEAR CONSTRAINED REGULATION PROBLEM

This section presents a set of results that are instrumental

to address the VMP in Sect. III. Theorem 10, Corollary 11,

Theorem 12 and Corollary 13 extend the results in [12], [13]

to linear uncertain systems with parametric disturbance

matrix and are original contributions of this paper. Consider

the following system,

ṡ(t) = A(q(t)) s(t) + B(q(t))u(t) , (1)

where s(t) ∈ X ⊂ R
n and u(t) ∈ U ⊂ R

m are respectively

the state and input vectors, q(t) ∈ Q ⊂ R
p is the model

parameter uncertainty vector, while U , X , Q are assigned sets

containing the origin, with U and Q compact. We assume that

A(q) and B(q) are matrices of suitable dimensions whose

entries are continuous functions of q. We shall assume q(t)
to be a piecewise continuous function of time.

Definition 1 (Positive invariance): The set S ⊂ R
n is

positively invariant for system (1), if and only if, for every

initial condition s(0) ∈ S and every admissible q(t) ∈ Q,

the solution obtained for u(t) ≡ 0, satisfies the condition

s(t) ∈ S for t > 0.

Definition 2 (Admissible region): A region S ⊂ R
n is

said to be admissible for the feedback control law u = Ks,

if and only if, for every s ∈ S, the condition u ∈ U holds.

If U and S are convex polyhedral sets containing the

origin, the admissibility of S is simply equivalent to,

K vi ∈ U , vi ∈ vert(S), i ∈ {1, . . . , µ}, (2)

where vert(S) denotes the set of vertices of S.

We can now introduce the linear constrained regulation

problem (LCRP) [13].

Problem 3 (LCRP): Given a system in the form (1), find a

linear feedback control law u(t) = Ks(t) and a set S ⊂ X
such that, for every initial condition s(0) ∈ S and every

admissible function q(t) ∈ Q, the conditions s(t) ∈ X and

u(t) ∈ U are fulfilled for t > 0.

Theorem 4: The LCRP has a solution if and only if there

exists a feedback matrix K and a set S ⊂ X that is positive

invariant and admissible for the closed loop system,

ṡ(t) = F (q(t)) s(t) , (3)

where F (q(t)) = A(q(t)) + B(q(t))K.

Theorem 5 (Sub-tangentiality condition): Let S ⊂ R
n be

a compact and convex set with nonempty interior. The

positive invariance of S for (1) is equivalent to the following

condition: for every s0 ∈ ∂S and q ∈ Q,

A(q) s0 ∈ TS(s0) , (4)

where TS(s0) is the tangent cone to S at s0 [14].

The main difficulty in exploiting condition (4) to study

the positive invariance of an assigned region S is that it has

to be checked on the boundary of S. However, if convex

polyhedral sets are considered, only their vertices must be

taken into account and easy algebraic conditions can be

derived. In this respect, let us consider a system of the

form (1), with A(q(t)) = A0 +
∑p

l=1 Al ql(t) and B(q(t)) =

B0 +
∑p

l=1 Bl ql(t) where Al and Bl, l ∈ {1, . . . , p }, are

constant matrices of appropriate dimension and q(t) takes

values in a compact and convex polyhedron Q ⊂ R
p.

Let the set U be compact, convex and polyhedral as well.

We consider a candidate convex and compact polyhedral set

S containing the origin in its interior and we search for a

feedback matrix K that assures the positive invariance of S
for the closed loop system (3). Since S is polyhedral, then

condition (4) is fulfilled on ∂S if and only if is fulfilled on

every vertex of S.

Theorem 6: The set S is positive invariant for system (3)

with feedback u = Ks, if and only if, for all vi ∈ vert(S)
and wj ∈ vert(Q) :

F (wj) vi ∈ TS(vi), i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}.

The LCRP as formulated in Problem 3 does not require the

stability. However, a desirable property is the global uniform

stability of the closed loop system. The relationship between

the stability property and the existence of positively invariant

regions is established by Theorem 5.2 in [13]. Let us now

turn our attention to systems in the form,

ṡ(t) = A(q(t)) s(t) + B(q(t))u(t) + E(q(t)) δ(t) , (5)

where the unknown external disturbance δ(t) is constrained

in a compact and convex polyhedral set D ⊂ R
l containing

the origin. Note that with respect to the systems considered

in [13], the structure of (5) is more general since matrix E
also depends on the uncertain parameter q. As an immediate

extension of the positive invariance property introduced in

Definition 1, we may require that the state s remains in S
despite the presence of the disturbance δ(t).

Definition 7 (Positive D-invariance): The set S ⊂ R
n is

positively D-invariant (PDI) for system (5), if for every

initial condition s(0) ∈ S and all admissible q(t) ∈ Q and

δ(t) ∈ D, the solution obtained for u(t) ≡ 0, satisfies the

condition s(t) ∈ S for t > 0.

We can now introduce the linear constrained regulation

problem with additive disturbances (DLCRP).

Problem 8 (DLCRP): Given a system in the form (5), find

a linear feedback control law u(t) = Ks(t) and a set S ⊂ X
such that, for every initial condition s(0) ∈ S and every

admissible q(t) ∈ Q and δ(t) ∈ D, the conditions s(t) ∈ X
and u(t) ∈ U are fulfilled for t > 0.

Theorem 9: The DLCRP has a solution if and only if

there exists a feedback matrix K and a set S ⊂ X
that is PDI and admissible for the closed loop system

ṡ(t) = F (q(t)) s(t) + E(q(t)) δ(t).
Similarly to A(q(t)) and B(q(t)), hereafter we will sup-

pose that E(q(t)) = E0 +
∑p

l=1 El ql(t). For the sake of

brevity, we do not report the proof of the next theorem: it is

based on the same ideas as those of Theorem 4.1 in [13] and

Theorem 2.1 in [12].

Theorem 10: The set S is positively D-invariant for sys-

tem (5) with feedback u = Ks, if and only if, for all

vi ∈ vert(S), ωj ∈ vert(Q) and rk ∈ vert(D),

F (wj) vi + E(wj) rk ∈ TS(vi) ,

i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, k ∈ {1, . . . , η}.
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The application of Theorem 10 requires the knowledge of

all cones TS(vi), i ∈ {1, . . . , µ}. An alternative solution is

given by the following corollary in which the Euler approx-

imating discrete-time system of (5) is involved. The proof is

analogous to that of Corollary 4.1 in [13].

Corollary 11: The set S is positive D-invariant for sys-

tem (5), if and only if there exists τ > 0 such that, for all

vi ∈ vert(S), ωj ∈ vert(Q) and rk ∈ vert(D),

vi + τ(F (wj) vi + E(wj) rk) ∈ S,

i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, k ∈ {1, . . . , η}.
(6)

To overcome the problem of the choice of τ , we introduce

Theorem 12 that provides a condition equivalent to (6).

The proof is analogous to that of Theorem 2.3 in [12]. Let Ci

be the convex cone defined by the delimiting planes of S that

contain vi : Ci = {gT
h s ≤ ξh, ξh > 0, for every gT

h and ξh :
gT

h vi = ξh, vi ∈ vert(S)}.

Theorem 12: The set S is positively D-invariant for sys-

tem (5), if and only if, for all τ > 0, vi ∈ vert(S), ωj ∈
vert(Q) and rk ∈ vert(D): vi+τ(F (wj) vi+E(wj) rk) ∈ Ci,

i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, k ∈ {1, . . . , η}.

If the plane description of S is available, the next corollary

whose proof directly follows from that of Theorem 10, holds.

Corollary 13: The set S is positively D-invariant for

system (5), if and only if, for every τ > 0 and every

vi ∈ vert(S), ωj ∈ vert(Q),

(In + τ F (wj)) vi ∈ C⋆
i , i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν},

(7)

where C⋆
i is the cone obtained by shifting the planes of Ci as

follows : C⋆
i = {gT

h s ≤ ξh − maxjk{τ gT
h E(wj) rk}, ωj ∈

vert(Q), rk ∈ vert(D), for every gT
h : gT

h vi = ξh}.

Remark 14: According to Theorem 9, conditions (7)

and (2) provide us with a set of inequalities in the unknowns

K defining the polytope K of all the state feedback matrices

solving the DLCRP.

III. THE VISIBILITY MAINTENANCE PROBLEM

Let Σ0 ≡ {O0 ;x0, y0} be the fixed reference frame

in R
2 and ΣF ≡ {OF ;xF, yF} and ΣL ≡ {OL ;xL, yL} the

reference frames attached to a follower robot F and a leader

robot L (see Fig. 1). The robots are supposed to have single

integrator dynamics,

ṗF
F = σF

F ,

θ̇ F = ωF ,

ṗL
L = σL

L ,

θ̇L = ωL ,
(8)

where pF
F = (xF, yF)

T , pL
L = (xL, yL)T are the positions,

σF
F = (σF

F [1], σF
F [2])T , σL

L = (σL
L [1], σL

L [2])T the linear

velocities and ωF, ωL the angular velocities of robots F and L

in the frames ΣF and ΣL, respectively. We are going to derive

a dynamic model describing the relative dynamics of the

robots F and L. Referring (8) to the frame Σ0, we obtain,

ṗ0
F = R0

F(θF)σF
F , ṗ0

L = R0
L(θL)σL

L ,

where R0
F(θF) =

[

cos θF − sin θF

sin θF cos θF

]

and R0
L(θL) is defined ana-

logously. The position of robot L with respect to ΣF is then

given by pF
L =RF

0(θF)(p
0
L −p0

F). Differentiating this equation,

x0

y0

∑

0

xF

yF

θF
∑

F

xL

yL θL

∑

L

Fig. 1. Leader-follower setup.

we get, ṗF
L = ṘF

0(θF)(p
0
L − p0

F) + RF
0(θF)

(

R0
L(θL)σL

L −

R0
F(θF)σF

F

)

. Since ṘF
0(θF) =

[

0 ωF

−ωF 0

]

RF
0(θF), we can

rewrite the previous expression as,

ṗF
L =

[

0 ωF

−ωF 0

]

pF
L + RF

L(β)σL
L − σF

F , (9)

where β , θL − θF is a shorthand of βF
L. Collecting

equation (9) and the relative angular dynamics of the robots

together, we obtain the system,





ṗF
L

β̇



=







−I2

pF
L[2]

−pF
L[1]

0 0 −1







[

σF
F

ωF

]

+







RF
L(β)

0

0
0 0 1







[

σL
L

ωL

]

,

(10)

where pF
L = (pF

L[1], pF
L[2])T . For the sake of simplicity, we

will suppose that robots F and L have,

σF
F = (1 + vF , 0)T , σL

L = (1 + vL , 0)T , (11)

where |vF(t)| < 1, |vL(t)| < 1, for all t ≥ 0. Substituting

(11) in (10), we finally come up with the following system,






ṗF
L[1]

ṗF
L[2]

β̇






=







cos β − 1

sinβ

0






+







−1 pF
L[2]

0 −pF
L[1]

0 −1







[

vF

ωF

]

+







cos β 0

sin β 0

0 1







[

vL

ωL

]

,

(12)

with state vector s = (pF
L[1], pF

L[2], β)T ∈ X ⊂ R
2×S

1, input

vector u = (vF, ωF)
T ∈ U ⊂ (−1, 1) × R and disturbance

vector δ = (vL, ωL)T ∈ D ⊂ (−1, 1) × R.

In the forthcoming analysis, we will suppose that robot F

is equipped with a sensor (e.g., a panoramic camera, a laser

range finder, etc.) with limited sensing range. We will call

visibility set of robot F any compact and convex polyhedral

set S ⊂ X containing the origin in its interior. Note that the

visibility set generalizes the notion of sensor footprint since

it embeds not only position but also angle information.

We suppose that robot L moves along an arbitrary

trajectory and the aim of robot F is to keep L always inside

its visibility set S, while respecting the control bound U .

By referring to system (12), we can formalize this problem

as follows.
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Problem 15 (Visibility maintenance problem (VMP)):

Let S be the visibility set of robot F and let s(0) ∈ S. Find

a control u(t) such that for all δ(t) ∈ D, the conditions

s(t) ∈ S and u(t) ∈ U are fulfilled for t > 0.

If we rewrite system (12) in the linear parametric form (5),

then the VMP simply reduces to the DLCRP introduced in

Sect. II and suitable solvability conditions can be derived

using conditions (7) and (2). After simple matrix manipula-

tions in (12), we obtain,







∆ṗF
L[1]

ṗF
L[2]

β̇






=







0 0 cos β−1
β

0 0 sin β
β

0 0 0













∆pF
L[1]

pF
L[2]

β






+

+







−1 pF
L[2]

0 −∆pF
L[1] − d

0 −1







[

vF

ωF

]

+







cos β 0

sinβ 0

0 1







[

vL

ωL

]

,

(13)

which can be written in the form (5) with,

A(q) =







0 0 q2

0 0 1+q1

0 0 0






, B(q) =







−1 q4

0 −d−q3

0 −1






, E(q) =







1+q5 0

q6 0

0 1






,

(14)

q1 = sin β
β

− 1, q2 = cosβ−1
β

, q3 = ∆pF
L[1], q4 = pF

L[2],
q5 = cos β − 1 and q6 = sin β. We made the following

change of variables in system (13): (pF
L[1], pF

L[2], β)T →
(∆pF

L[1], pF
L[2], β)T , ∆pF

L[1] = pF
L[1] − d, where d is a

strictly positive constant. There are two main reasons for this

transformation: first of all, if robot F is able to keep L always

inside a visibility set displaced of d with respect to its center

(with d > max{ 1
2 ‖s1 − s2‖ : s1, s2 ∈ vert(S)}), then this

automatically guarantees the collision avoidance between the

robots. Second, this choice simplifies the study of the VMP

when multiple leaders are considered.

Note that A0, B0 and E0 in (14) (recall the notation used

in Sect. II) correspond to the constant matrices obtained

by linearizing system (12) around the equilibrium seq =
(d, 0, 0)T , ueq = (0, 0)T , δeq = (0, 0)T .

Assumption 16: For the sake of simplicity, hereafter we

will suppose that,

U =
{

(vF, ωF)
T : −VF ≤ vF ≤ VF,−ΩF ≤ ωF ≤ ΩF

}

,

D=
{

(vL, ωL)T : −VL ≤ vL ≤ VL,−ΩL ≤ ωL ≤ ΩL

}

,
(15)

where VF < 1, VL < 1, ΩF and ΩL are strictly positive

constants. We will also restrict our attention to the following

visibility set,

S = {(∆pF
L[1], pF

L[2], β)T : −a ≤ ∆pF
L[1] ≤ a,

−a ≤ pF
L[2] ≤ a, −b ≤ β ≤ b},

(16)

where a > 0 and b > 0, (see Fig. 2).

Constraint (15) is motivated by the presence of saturation

bounds on the driving motors of the robots. The set (16) has

been chosen because is computationally simple to handle and

because its cross section is a coarse approximation of a disk

sensor footprint (e.g., due to a omnidirectional camera or a

360◦ laser scanner).

d

F

a
a

b
L

2
2

2

xL

y
L

Fig. 2. The visibility set (16) and the pose of the robots L and F for
(∆pF

L[1], pF
L[2], β)T = (0, 0, 0)T , d > a.

Since the state (∆pF
L[1], pF

L[2], β)T is constrained in (16),

the polyhedron Q ⊂ R
6 of system (13) is defined by,

q1 ∈
[

sin b
b

− 1, 0
]

, q2 ∈
[

cos b−1
b

, 1−cos b
b

]

, q3 ∈ [−a, a] ,

q4 ∈ [−a, a] , q5 ∈
[

cos b − 1, 0
]

, q6 ∈ [− sin b, sin b].
(17)

We are now ready to state the main result of this section.

Theorem 17 (Solvability of the VMP): Choose U , D and

S as in Assumption 16 and let d > a, 0 < b ≤ π/2.

The VMP for the robots F and L has a solution if the

following conditions are satisfied,

VF ≥ VL

(

1 +
a sin b

d − a

)

+ 1 − cos b +
a b

d − a
, (18)

ΩL ≤
(1 − VL) sin b

d + a
,

VL sin b + b

d − a
≤ ΩF . (19)

Proof: Let us apply Corollary 13 to system (13).

By selecting τ = 1 in (7), we obtain,






1−k11+ q4k21 −k12+ q4k22 q2− k13+ q4k23

−(d+q3)k21 1−(d+q3)k22 1+q1−(d+q3)k23

−k21 −k22 1− k23






vi∈ C⋆

i.

(20)

Condition (20) must be evaluated only on the vertices

v1 = (a, a, b)T , v2 = (a, a,−b)T , v3 = (a,−a, b)T , v4 =
(a,−a,−b)T since the set (16) is symmetric with respect

to the origin. Because of the special structure of B(q)
in (14), we can select a simplified state feedback matrix

K =
[

k11 0 0

0 k22 k23

]

, that allows us to the decouple the control

inputs vF and ωF (and visualize the polytope K ⊂ R
3 of all

the feasible gain matrices). Rewriting (20) in a simplified

form, the following set of linear inequalities in the variables

k11, k22, k23 is obtained,

−k11 + q4k22 + b
a

q4 k23 ≤ − b
a

q2 −
VL

a
,

−(d + q3) k22 −
b
a

(d + q3) k23 ≤ − b
a

(1 + q1) −
VL sin b

a
,

−k11 + q4 k22 −
b
a

q4 k23 ≤ b
a

q2 −
VL

a
,

−(d + q3) k22 + b
a

(d + q3) k23 ≤ b
a

(1 + q1) −
VL sin b

a
,

−a
b

k22 − k23 ≤ −ΩL

b
, a

b
k22 − k23 ≤ −ΩL

b
,

−k11 − q4 k22 + b
a

q4 k23 ≤ − b
a

q2 −
VL

a
,

−k11 − q4 k22 −
b
a

q4 k23 ≤ b
a

q2 −
VL

a
.

(21)
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The admissibility condition (2) leads to the additional

constraints,

k11 ≤ VF

a
,

k11 ≥ −VF

a
,

k22 + b
a

k23 ≤ ΩF

a
,

k22 −
b
a

k23 ≤ ΩF

a
,

k22 −
b
a

k23 ≥ −ΩF

a
,

k22 + b
a

k23 ≥ −ΩF

a
.
(22)

Applying the Fourier-Motzkin elimination method [15] to

the inequalities (21)-(22) with the assumption that d > a
(in order to fix the sign of the coefficients of k22 and k23

in the second and fourth expression in (21)) we obtain the

following conditions on the variables a, b, d, VF, VL, ΩF, ΩL

and uncertain parameters q1, . . . , q4 : ΩL ≤ b(1+q1)−VL sin b

d+q3

,

ΩF ≥ b(1+q1)+VL sin b

d+q3

. VF ≥ VL

(

1+ q4 sin b
d+q3

)

+b
(

q2+
q4(1+q1)

d+q3

)

and VF ≥ VL

(

1+ q4 sin b
d+q3

)

−b
(

q2+ q4(1+q1)
d+q3

)

, for q4 > 0. VF ≥

VL+b q2, for q4 = 0. VF ≥ VL

(

1− q4 sin b
d+q3

)

+b
(

q2 + q4(1+q1)
d+q3

)

and VF ≥ VL

(

1 − q4 sin b
d+q3

)

− b
(

q2 + q4(1+q1)
d+q3

)

, for q4 < 0.

An appropriate selection of the parameters q1, . . . , q4 on the

extremes of the intervals (17), leads us to (18) and (19).

Note that conditions (18) and (19) are necessary and

sufficient for the linear uncertain system (13). From (19),

we see that ΩF ≥ ΩL.

Once fixed the variables a, b, d, VF, VL, ΩF, ΩL according

to (18) and (19), the polytope K of all the feasible state

feedback matrices is simply given by (21)-(22). By evaluat-

ing (21)-(22) on the 64 vertices of the polyhedron Q, we see

that K is defined by a set of 392 inequalities, only a small

number of which (see for example Fig. 3(a)) is active.

Remark 18: Since the polytope K contains infinite gain

matrices, we may use an optimal criterion to select K, such

as, e.g., minimizing any matrix norm. In the simulations in

Sect. IV, we have chosen the matrix K =
[

k11 0 0
0 k22 k23

]

with

minimum 2-norm.

A. Extension: rejection of UBB disturbances

Consider the following system,






∆ṗF
L[1]

ṗF
L[2]

β̇






=









0 0 cos β−1

β

0 0 sin β
β

0 0 0















∆pF
L[1]

pF
L[2]

β






+

+







−1 0 pF
L[2]

0 −1 −∆pF
L[1] − d

0 0 −1













vF

hF

ωF






+







cos β − sin β 0

sin β cos β 0

0 0 1













vL

hL

ωL






.

(23)

With respect to system (13), two new components, hF and

hL, are present in the vectors u and δ. They are unknown but

bounded (UBB) disturbances acting on the robots F and L

(e.g., lateral wind). Our aim here is to solve the VMP in the

presence of the disturbances hF, hL. We can collect all the

perturbations acting on the nominal system (i.e., vL, ωL, hF

and hL), in the last term of (23). Let U be given in (15) and

define,

D = {(vL, ωL, hF, hL)T : −VL ≤ vL ≤ VL ,−ΩL ≤ ωL ≤ ΩL,

−HF ≤ hF ≤ HF, −HL ≤ hL ≤ HL},
(24)

where HF, HL are strictly positive constants.

Corollary 19 ( Solvability of the VMP with disturbances):

Choose U , D as in (15), (24) and let d > a, 0 < b ≤ π/2.
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Fig. 3. (a) Polytopes K for a set of given parameters: blue, with
UBB disturbances; green, without UBB disturbances. (b) VMP on
a circle (top-down view): the pose of the robots L and F for
(∆pF

L[1], ∆pF
L[2], ∆β)T = (0, 0, 0)T is shown.

The VMP for the robots F and L in the presence of the

UBB disturbances hF, hL has a solution if the following

conditions are satisfied,

VF ≥ VL

(

1+ a sin b
d−a

)

+ 1 − cos b + a(HF+HL+ b)
d−a

+ HL sin b,
(25)

ΩL ≤ (1−VL) sin b−(HF +HL)
d+a

, VL sin b+b+(HF +HL)
d−a

≤ ΩF .
(26)

Note that because of the additional terms HF and HL,

conditions (25) and (26) are stricter than (18) and (19)

and then the polytope K is smaller in this case. This is

evident in Fig. 3(a), where the polytope K (blue) obtained

for a = 0.15 m, b = π/3 rad, d = 1.6 m, VF = 0.95 m/s,

VL = 0.1 m/s, ΩF = π/2 rad/s, ΩL = π/20 rad/s and

HF = 0.2 m/s, HL = 0.1 m/s is compared with the polytope

(green) obtained with HL = HF = 0 m/s.

B. Extension: VMP on a circle

Let us consider the following change of variables in

system (12): (pF
L[1], pF

L[2], β)T → (∆pF
L[1],∆pF

L[2],∆β)T ,

(vL, ωL)T → (vL,∆ωL)T , (vF, ωF)
T → (vF,∆ωF)

T where

∆pF
L[1] = pF

L[1] − sin γ
ρ

, ∆pF
L[2] = pF

L[2] − 1−cos γ
ρ

, ∆β =
β − γ, ∆ωL = ωL − ρ, ∆ωF = ωF − ρ. Parameters

0 < γ < π/2 and ρ > 0 define the pose of robot L with

respect to the frame of robot F (see Fig. 3(b)). Following the

same procedure detailed above, we can obtain the solvability

conditions for the VMP on a circle.

Theorem 20 (Solvability of the VMP on a circle):

Let (vF,∆ωF)
T ∈ [−VF, VF] × [−ΩF, ΩF], (vL,∆ωL)T ∈

[−VL, VL] × [−ΩL, ΩL], (∆pF
L[1],∆pF

L[2],∆β)T ∈
[−a, a]2 × [−b, b] and let 1− cos γ > ρa, 0 ≤ b± γ ≤ π/2.
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Fig. 4. (a) Trajectory of robots L, F and visibility set S (top-down view); (b) ∆pF
L[1], pF

L[2], β (solid) and bounds ±a, ±a, ±b (dash); (c) vF, ωF (solid)
and bounds ±VF, ±ΩF (dash).

The VMP on a circle has a solution if the following

conditions are satisfied,

VF ≥ VL

(

cos(b − γ) + sin(b+γ)(1−cos γ−ρ a)
sin γ+ρa

)

+ cos γ + ρa

− 1−cos γ−ρ a
sin γ+ρa

(

sin(b + γ) − sin γ + ρa
)

− cos(b + γ),

ΩL ≤ ρ
(

(1−VL) sin(b+γ)
sin γ+ρa

− 1
)

,

ΩF ≥ ρ (VL sin(b+γ)+sin(b−γ)+sin γ+ρa)
sin γ−ρa

.

IV. SIMULATION EXPERIMENTS

In the simulation results reported in this section, robot L

moves with velocities vL(t) = 0.05 sin(t) m/s, ωL(t) =
π
20 cos(t/10) rad/s. We set VL = 0.1 m/s, ΩL = π/15 rad/s,

VF = 0.9 m/s, ΩF = π/3 rad/s, a = 0.4 m, b = π/4 rad

and d = 2 m, according to the conditions of Theorem 17.

We chose the gain matrix in K with minimum 2-norm:

K =
[

1.5173 0 0
0 0.3707 0.4925

]

. Note that since K is in the

interior of K, the asymptotic stability is assured. System (13)

has been initialized with (∆pF
L[1](0), pF

L[2](0), β(0))T =
(0.3285 , −0.1626 , 0.1071)T . Fig. 4(a) reports the trajectory

of robot L (red) and F (blue) and the visibility set S (black).

Fig. 4(b) shows that ∆pF
L[1], pF

L[2], β (solid), keep inside the

respective bounds ±a, ±a, ±b (dash), as expected. Finally,

Fig. 4(c) shows that the control inputs vF, ωF (solid), respect

the velocity bounds ±VF, ±ΩF (dash).

V. CONCLUSIONS AND FUTURE WORK

The paper proposes an original solution to the visibility

maintenance problem (VMP) for leader-follower Dubins-

like vehicles, based on the notion of controlled invariance.

By interpreting the nonlinear model describing the relative

dynamics of the robots as a linear system with parameter

uncertainty, the VMP is reformulated as a linear constrained

regulation problem with additive disturbances (DLCRP).

General conditions for the positive D-invariance of linear

uncertain systems with parametric disturbance matrix are de-

rived and used to study the feasibility of the VMP when box

bounds on the state, input and disturbance are considered.

Future research lines include the extension of our results to

vehicles with more involved dynamics and to general robotic

networks described by directed graphs. The integration of

our visibility conditions in the existing rendezvous, cove-

rage or deployment algorithms is also a subject of future

investigation.
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