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Abstract— To investigate the influence of input from fellow
group members in a constrained decision-making context, we
consider a game in which subjects freely select one of two
options (A or B), and are informed of the reward resulting
from that choice following each trial. Rewards are computed
based on the fraction x of past A choices by two functions fA(x),
fB(x) (unknown to the subject) which intersect at a matching
point x̄ that does not generally represent globally optimal
behavior. Playing individually, subjects typically remain close
to the matching point, although some discover the optimum.
We investigate the effects of additional feedback regarding
the choices and reward scores of other players. We generalize
a drift-diffusion model, commonly used to model individual
decision making, to incorporate feedback from other players,
study the resulting coupled stochastic differential equations,
and compare the distributions of choices that they predict with
those produced by a pool of subjects playing in groups of five
without feedback and with feedback on other players’ choices.

I. INTRODUCTION

In an attempt to better understand and model collective de-

cision making in small human groups, we have designed and

are currently carrying out a highly constrained experiment

that probes the manner in which limited input from group

members influences individual choices. We have adapted

and generalized an experimental paradigm of Montague et

al. [1], [2] to a social context, allowing different types of

feedback from group members to subjects playing a simple

game: a ”two-armed bandit” in which they select one of two

alternatives on each trial, presumably basing their choices on

the resulting rewards. We wish to understand how limited

information regarding other players’ rewards, or choices, or

both, modifies individual behaviors.

In the game a deterministic rule, unknown to the subject,

computes rewards based on his or her choice history, and,

in the version of [1], [2], two different types of behavior

are observed. A majority of subjects settle near a “matching

point,” at which both choices result in the same (moderate)

reward, while a minority of “explorers” endure runs of low

rewards and discover a global optimum that is substantially

better than the matching strategy. This type of rule permits

examination of whether subjects exploit a particular strategy
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in the long term, or explore different ones in an attempt

to maximize their rewards. The explore vs. exploit question,

central to studies of foraging in animal communities [3], is

of increasing interest in cognitive neuroscience [4].

To describe the social context, here we generalize a

commonly-used drift-diffusion (DD) model, in which evi-

dence in favor of one choice over the other (a logarithmic

likelihood ratio [5]) is integrated until a predetermined

threshold is reached. We show that the model not only fits the

behaviors of subjects playing alone, but, equipped with inter-

subject feedback, also those of a group exchanging limited

information. The DD model, and extensions of it, have been

fitted to accuracy and reaction time data in numerous two-

alternative forced-choice tasks [6], [7], [8]. For a recent

review and derivations of DD processes from other, more

complex, neurally-based models, see [9].

In §II we describe the reinforcement learning model of

[1], [2], some of the games, and our extension to the

group context. §III presents preliminary analyses of data and

matches to the model, and we conclude in §IV. A related

article maps a robot foraging task onto the two-armed bandit

game and further explores the exploitation vs. exploration

dichotomy [10], [11].

II. COGNITIVE CONTROL AND CHOICE WITH

AND WITHOUT GROUP FEEDBACK

Here we describe the model for individual choices, the

games and reward schedules, and an extension of the model

to include feedback regarding other subjects’ choices.

A. A model for individual choices

The simplest version of a DD process is described by the

following stochastic differential equation:

dx = α dt + σ dW ; x(0) = 0, (1)

where α denotes the drift rate and σ dW increments drawn

from a Wiener process with standard deviation σ. The state

variable x(t) represents the integrated evidence in favor of

choice A over choice B. On each trial the choice A or B

is made when x(t) first crosses either of the predetermined

thresholds ±xth. As we show in §II-B, rewards are deter-

mined by the proportion of choices of alternative A, which,

for (1), is governed by probability of choosing A:

P (A) =
1

1 + exp(2ηθ)
, where η = (α/σ)2, θ = xth/α,

(2)

[12], [13], cf. [9]. Here η is the square of the signal-to-noise

ratio (SNR, having the units of inverse time), and θ is the
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threshold-to-drift ratio: i.e., the threshold passage time for

the noise-free process x(t) = αt. An explicit expression for

the mean first passage time, corresponding to the average

decision time, is also available [9], but we shall not need it

here.

In the model developed by Egleman et al. [1], cf. [14]

individual subjects maintain a fading memory of prior re-

wards in the expected rewards: weights wA, wB accorded

to the alternatives that are updated as described below. The

probability of choosing A is then determined by

P1(A) =
1

1 + exp[−µ(wA − wB)]
, (3)

which is identical to (2) if we identify the steepness param-

eter µ with the ratio 2θ and the weight difference wA −wB

with η. The weight update rule, motivated by the role of

dopamine neurons in coding for reward prediction error [15],

[16] and by temporal difference learning theory [17], [18],

proceeds as follows. If A is chosen on the nth trial, resulting

in a reward r, the expected rewards are updated according

to

wA(n+1) = (1−λ)wA(n)+λr, wB(n+1) = wB(n); (4)

if B is chosen, the roles of A and B in (4) are reversed.

The learning rate λ determines the time scale on which the

memory of previous choices decays: when λ = 0, no learning

occurs; when λ = 1, memory of the chosen alternative is

instantly erased.

In [14] a further time scale is added in the form of

decaying eligibility traces (ETs) eA (resp. eB) that are

incremented by 1 following a choice A (resp. B):

eA,B 7→ eA,B exp[−(t − t(n))/τ ], (5)

where t(n) denotes the time of the last update and τ is a

further timescale. Now the weights are both updated by

wA(n + 1) = wA(n) + λ(r − w∗)eA(n),

wB(n + 1) = wB(n) + λ(r − w∗)eB(n), (6)

where w∗ = wA (resp. wB) if A (resp. B) was chosen.

For large τ this rule converges to the simpler one above,

since the ET for the choice not made decays immediately

while the other is simply e∗(n) = 1. The model now has

three parameters (µ, λ, τ ). The reason for this modification

is described in the next section.

B. Four gambling tasks

The two-armed bandit delivers rewards according to two

schedules fA(x), fB(x) determined by the fraction x ∈ [0, 1]
of A choices (allocation to A) made over the past N trials.

Clearly if fA lies entirely above (or below) fB the subject

will rapidly deduce the better option and thereafter always

choose A (or B); interesting cases occur when the curves

cross at a matching point(s) x̄, so called because the rewards

are equal there.

At any point x ∈ [0, 1] the average reward is

R(x) = xfA(x) + (1 − x)fb(x), (7)

and rewards could clearly be maximized by following a

hill-climbing algorithm expressible as a gradient dynamical

system [19] with potential function R(x):

ẋ = R′(x), where f ′ = df/dx, (8)

since stable fixed points of (8) are (local) maxima of (7), see

[2]. However, subjects cannot estimate the functionsfA,B(x)
from their trial-to-trial observations, especially if N is large;

hence the more neurobiologically-plausible model of §II-A.

0 1

1

Allocation to A

R
ew

ar
d

 A)  Converging Gaussians

0 1

1

Allocation to A

B)  Diverging Gaussians

R
ew

ar
d

0 1
0

1

Allocation to A

D)  Simple Rising Optimum

R
ew

ar
d

0 1
0

1

Allocation to A

C)  Complex Rising Optimum

R
ew

ar
d

Fig. 1. Reward schedules fA (black) and fB (brown) for four of the
tasks: (A) converging gaussians; (B) diverging gaussians; (C) complex rising
optimum; (D) simple rising optimum. Dashed blue curves denote average
rewards R(x).

We have developed six variants of the two-armed bandit

game, some of which have unique optima while others have

two. Four examples of the reward schedules are shown in

Fig. 1. The converging and diverging gaussians each have

unique global optima at 50% allocation to A, which are

also their matching points. The third and fourth examples,

modifications of the rising optimum task of [1], [2], have

local maxima at 0% A’s, near the matching point, and global

optima at 75% and 100% respectively. (Reflections of the

latter two, with local maxima at 100% A’s, are also used.)

These games all generalize a “matching shoulders” task

with linear schedules: Fig. 2. In this simpler case fA(x) =
a1 − b1x and fB(x) = a2 + b2x, with aj , bj > 0 and

b1 + b2 > a1 − a2 > 0. The curves cross at x̄ = (a1 −

a2)/(b1 + b2) and the global maximum lies at xmax =
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(a1 − a2 − b2)/[2(b1 + b2)]. This example shows that global

(and even local) maxima need not lie at matching points.

In cases where these points do not coincide, experiments

have shown that under most circumstances human subjects

tend to match rather than maximize [20], [21], [22]. In

this study the allocation of A’s is determined by averaging

over the past N = 20 trials. A brief description of the

experimental method is provided in Appendix V; further

details and analyses will be reported in the psychological

literature.
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Fig. 2. The matching shoulders task with linear reward schedules, showing
that optimal behavior (triangle) need not coincide with matching (circle);
coincidence occurs if and only if fA(0) = fB(1) [2, Appendix B].

In the converging gaussians task the optimum coincides

with the matching point, and so we expect all subjects,

whether playing alone or with group feedback, to hover

around this point. Near it the reward schedules are well-

approximated by the linear case of Fig 2, and recalling the

weights accorded to prior rewards of §II-A, this “stable”

behavior can be intuitively understood by noting that, if a

subject is at the matching point and chooses, say, A, so that

the fraction of A’s in his history goes up, then his reward

drops (fA(x) < fA(x̄) for x > x̄), prompting him to choose

B on the next trial. Choice of B (reduction in the fraction of

A’s) following matching also results in a lower reward, again

prompting reversal. Thus, choices tend to cycle around the

matching point, and as we shall see in §III, human subjects

do approximate this, their deviations providing a measure of

noise and/or exploration in the decision making process.

The optimum and matching point also coincide at 50% for

the diverging gaussians, but as we show in §III the weight

change feedback algorithm of §II-A is typically unstable at

this point. This can also be understood by a similar argument:

the slopes are now reversed and, starting from the matching

point, both A and B choices lead to higher rewards and

further divergence, suggesting that players will not match

in this game. Indeed, the task can be parameterized such

that the matching point is a local minimum with two (equal)

maxima on either side, leading to stronger, and ultimately

more rewarding, instability, but here we keep the global

optimum at the matching point. Moreover, since the reward

schedules are symmetric about 50%, we expect this task to

allow us to study “herding” behavior in the group context

when choice feedback is supplied.

In [2, Appendix] it is proved that, if the weight difference

wA − wB employed in the choice probability (3) accurately

reflects the difference in rewards ∆r(x) = fA(x) − fB(x)
received on two succeeding trials, and f ′

A(x̄) < 0 < f ′

B(x̄),
then the matching point x̄ is locally asymptotically stable

(one replaces wA −wB by ∆r in (3) and differentiates w.r.t

x). A related Liapunov stability result appears in [10], [11].

Subject behavior in the rising optimum tasks (Fig. 1C)

is markedly different. In the version of [1], [2] the net

rewards curve rises monotonically with x: there is no local

maximum at or near the matching point. This prompts some

subjects to explore beyond the matching point at ≈ 20%
and discover the global optimum at 100% A’s. In the present

case, however, we select reward schedules with two locally-

optimal behaviors, at 0 and 100% or 0 and 75%, neither

coinciding with matching. These were chosen such that,

playing alone, typical subjects (exploiters) should settle near

matching, but a minority of explorers should discover, and

mostly remain near, the 100% or 75% global optima [1].1

This behavior prompted Bogacz et al. [14] to introduce the

eligibility traces eA,B , since the original model of Eqs. (3-4)

could only capture matching behavior [1, Fig. 2], [2, Fig. 12].

With feedback, we conjecture that some exploiters will be

prompted to discover the global optimum, or (in case of

choice feedback) to follow the lead of the explorers.

C. Models for choice with group feedback

In the no-feedback condition subjects can still be modeled

by independent DD processes, although the knowledge that

they are in a competitive situation may require parameter

modifications. Given explicit information regarding other

players’ choices and/or rewards, we expect parameters to be

updated. When only choice feedback is provided it is not

clear that other subjects, whose choices deviate significantly

from one’s own, are doing better or worse, while if only

reward scores are provided, the strategies by which they are

achieved remain mysterious. With this in mind, we model

parameter updates as follows.

With choice feedback alone, we propose a majority rule.

For the groups of five subjects used in our experiments, each

individual increases his probability of choosing A (or B) by

an amount determined by the fraction of A’s (or B’s) chosen

by the other four players on the previous trial. Specifically,

a decaying preference weight u(n) is updated prior to each

choice by the rule

u(n+1) = (1−λ)u(n)+λ ·







+1 if AAAB or AAAA,
−1 if BBBA or BBBB,

0 otherwise,
(9)

1In [2] these behaviors are called “conservative” and “risky.”
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TABLE I

PARAMETER VALUES AND L2 FITTING ERRORS (ERR.) FOR THE DD

MODEL WITHOUT ELIGIBILITY TRACE.

c. gauss. d. gauss. c. & d. gauss. complex simple

λ 0.95 0.16 0.89 0.10 0.15
µ 2.6 2.5 2.7 11.05 10.90

Err. 0.071 0.114 0.084 & 0.126 0.081 0.165

and added to the weight difference in (3), replacing wA(n)−
wB(n) by wA(n)−wB(n)+ν(n)u(n), where ν(n) scales the

influence accorded to the other players, additionally biasing

the drift rate of the DD process. Eq. (9) maintains the update

structure and learning rate λ of (4). Note that ν(n) ≡ ν
may provide a fitting parameter that remains fixed for a

given player and game, or it may vary during a session,

being determined as described in §III-B. In either case, one

additional parameter describes the strength of feedback.

With reward feedback alone, we suppose that if the max-

imum among the other players’ rewards exceeds his own,

an individual will be prompted to further explore the conse-

quences of his choices. This can be achieved by reducing the

steepness parameter µ of (3) to promote “random” choices

and increase exploratory behavior. Alternatively the weight

difference can be modified to promote a switch or, in case

his reward exceeds all others, to reinforce his last choice.

More complex rules can be envisaged for combined choice

and reward feedback. Due to limited space, here we consider

only choice feedback; other cases will be treated elsewhere.

III. SOME EXPERIMENTAL AND MODEL DATA

We present preliminary analyses of behavioral data from 5-

player groups. Functional magnetic resonance (fMRI) imag-

ing brain scan data from the same groups will be described

in a subsequent publication.

A. Allocations without feedback: group behavior

We start by matching the DD model with drift rates on suc-

cessive trials updated according to the rule (2) (without ETs),

to data from individuals playing the games of Fig. 1 without

feedback from other players. Fig. 3 shows histograms of

choice allocations from the pooled data of 15, 20, 30 and 35

subjects respectively, all of whom played blocks of 150 trials.

To determine initial allocations and hence rewards, subjects

were given “seed” histories of N = 20 trials (unknown to

them).

Model choice distributions were obtained from 15, 20, 30

or 35 consecutive runs of 150 trials, initialized by the starting

allocations supplied to the individuals playing each game.

Table I lists parameter values and fit errors. Here the learning

rate λ and steepness parameter µ were estimated from data

averaged across players, but fitted separately to each game.

Constraining them to common values for the converging and

diverging gaussians shows that the reward schedules, and

the resulting trial-to-trial feedback of individual preformance,

can lead to markedly different choice allocations without

changes in DD parameters (fit errors increase modestly: see

central column of Table I).
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Fig. 3. Envelopes of choice distributions with standard error bars for the
four tasks of Fig 1 (solid blue curves), compared with fits of the DD model
without eligibility trace (solid red curves). Reward schedules are shown as
faint curves. A) converging gaussians; B) diverging gaussians; C) complex
rising optimum; D) simple rising optimum. Rising optimum games were also
played in reflected versions with global optima to the left on the allocation
axes; here data are combined and presented as if all individuals played the
same versions.

Fig. 3 shows that the model captures both the “stable”

behavior of players in the converging gaussians task, whose

allocations remain close to optimal at 50%, as well as their

much more diffuse exploratory behavior in the diverging

gaussians task, although it underestimates choice fractions

near allocations of 0 and 100%. The model captures the

allocation distribution of the complex rising optimum slightly

better than that of the simple rising optimum. In both cases

it reproduces the peak at 0% A’s (the local maximum)

and approximates the small upticks near 100% A’s, but it

overestimates allocations to A immediately to the right of the

matching point, where rewards are lower, and underestimates

them to its left, where rewards are higher. This may be due

to fitting to data averaged across all players rather than fitting

to individuals and averaging across models.

The model also exhibits trial-to-trial dynamics similar to

that of typical subjects. Allocations to A as a function of trial

number for the model show that it qualitatively reproduces
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Fig. 4. Left : Windowed correlation sequences for individuals of group
6 playing the converging gaussians task with choice feedback. Right : DD
model fits to session-averaged allocation data with choice feedback (9) when
corresponding scaled correlation sequence is used as individual’s ν(n));
mean correlation values are shown for each individual’s sequence as dashed
lines.

rapid cycling around the matching point in the converging

gaussians task, and the considerably slower, larger amplitude

cycling seen for diverging gaussians. It even captures some

features of the rising optimum sequences, occasionally re-

producing the discovery, or subsequent abandonment of the

global optimum (data not shown here).

B. Allocations with choice feedback: individual behaviors

In Figs. 4 and 5 we show that the preference weight

(9) proposed in §II-C provides reasonable fits for individual

players of the gaussian games in the choice feedback con-

dition. To better investigate the effect of the time-varying

influence coefficient ν(n) we fixed the parameters λ and µ
at the following values obtained from fits to each groups’

distribution: µ = 2.4, λ = 0.65 and µ = 3.8, λ = 0.55
respectively for groups 6 and 3 playing the converging and

diverging gaussian games. Time-varying sequences ν̃j(n)
were obtained for each individual by comparing their choices

to that of the majority among the other four players. This was

done using sliding windows of length 10 and correlating

segments of the individual’s choice sequence with those

of the majority, under a lag of one trial. The resulting

sequences are shown in the left columns of Figs. 4 and 5.

Finally the ν̃j(n)’s were multiplied by a scaling factor ν̂j

that was adjusted to obtain the influence sequence νj(n) =
ν̂j ν̃j(n) that best fits each individual’s allocation histogram.

The parameter ν̂j characterizes the individual’s response to
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Fig. 5. Left : Windowed correlation sequences for individuals of group
3 playing the diverging gaussians task with choice feedback. Right : DD
model fits to session-averaged allocation data with choice feedback (9) when
corresponding scaled correlation sequence is used as individual’s ν(n));
mean correlation values are shown for each individual’s sequence as dashed
lines.

feedback.

The individual correlation sequences show that players

within the same group exhibit a variety of different behaviors.

Some have consistently low or high correlations with the

majority while others appear to follow their group only inter-

mittently during the session. The right columns of Figs. 4 and

5 also show that the DD model with feedback modulated by

the correlation sequence can reproduce individual differences

in players’ allocation histograms quite well (e.g., note the

low and high A (left and right) biases of players 2, 4 and 5

in Fig. 5).

Thus, when DD models play the games with information

from human players, they can capture changing feedback

dynamics and the resulting choice allocations. We have also

verified that when DD model players receive information

about other players’ choices, the model produces cycling and

“transfer of allegiance” behaviors similar to those of human

groups (data not shown here). These studies suggest that

simple feedback rules such as (9) can capture aspects of both

group dynamics and individual behavior. We are currently

analyzing and fitting data from other feedback conditions

and from the more challenging rising optimum tasks, which

will provide more stringent tests of the models.

IV. DISCUSSION AND CONCLUSIONS

The behavioral games and mathematical models described

in this article provide a window into the dynamics of
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collective decision making, or “social choice,” in human and

animal groups. We have designed and parameterized games

that can be played alone and in groups, and proposed simple

feedback rules to couple previous reinforcement learning and

DD choice models of single players [1]. Our preliminary

analysis of behavioral data, along with model fitting, con-

firms earlier work on the matching and rising optimum tasks

[2], [14]. More strikingly, in the case of choice feedback,

it shows that the addition of a time-dependent preference

weight based on the actions of fellow players can capture

some aspects of group behavior and dynamics. The ET

extension (5-6) of [14] was not used in the present work; it

could presumably further improve fit quality, particularly in

the rising optimum tasks. Results on stability and equilibrium

distributions for the model, both with and without group

feedback, remain to be determined (cf. [10], [11]). Further-

more, the influence sequences νj(n) can be incorporated

in analysis of fMRI data collected during the experiment.

Variations in susceptibility to social pressure both between

and within subjects may reveal brain structures that process

social feedback or regulate its influence on behavior.

The DD model (1) is a continuum limit of the discrete

sequential probability ratio test [9], which is optimal in that

it delivers a decision of guaranteed accuracy with the smallest

possible number of samples [23]. This observation links

the choice model of [1], [2] with a mainstay of statistical

decision theory, suggesting that related methods in signal

processing such as change detection theory might also be

useful in modeling human social behavior.

V. APPENDIX: EXPERIMENTAL METHOD

Subjects, recruited in the Houston area via website and

fliers, were given consent forms, instructed regarding the

experiment, and led to scanners. An experiment in which

groups of five players exchange information during the

task was performed. In the group experiment, six different

reward-based decision-making games were played, in which

each subject chose by pressing one of two buttons (A or

B), receiving a points reward after each choice. Rewards

were determined as explained in the main text, but the rule

was not explained to participants, who were simply told

to accumulate as many points as possible. Each subject

played each game for a session containing 150 choices

(2.5 seconds inter-trial interval, synchronized across group

members), after which a screen indicated the start of a new

game. Games were presented in a randomized order.

There were four information conditions in group games:

alone, in which subjects only received reward feedback on

their own choices; reward, in which points earned by other

group members after each choice were displayed; choice,

in which subjects could see other group members’ choices,

and both, in which points earned and choices were displayed.

Subjects were shown the type of information being presented,

and feedback conditions remained constant over blocks of

choices. Each group played under each condition at least

once, and the conditions played by the various groups were

balanced across the total number of groups.

After completion, subjects were debriefed and compen-

sated according to their point totals, following guidelines set

by the Princeton University and Baylor College of Medicine

Institutional Review Panels.
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