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Abstract— The paper deals with decentralized Bayesian de-
tection with M hypotheses, and N sensors making conditionally
correlated measurements regarding these hypotheses. Each
sensor sends to a fusion center an integer from {0, 1, .., D − 1},
and the fusion center makes a decision on the actual hypothesis
based on the messages it receives from the sensors so as to
minimize the average probability of error. Such conditionally
dependent scenarios arise in several applications of decentral-
ized detection such as sensor networks and network security.
Conditional dependence leads to a non-standard distributed
decision problem where threshold based policies (on likelihood
ratios) are no longer optimal, which results in a challenging
distributed optimization/decision making problem. We show
that, in this case, the minimum average probability of error
cannot be expressed as a function of the marginal distributions
of the sensor messages. Instead, we characterize this probability
based on the joint distributions of these messages. We also
provide some numerical results for the case where the sensors’
measurements follow bivariate normal distributions.

I. INTRODUCTION

Centralized hypothesis testing has been examined in many

papers and texts (see, for example, [1]). Tenney and Sandell

[2] were the first to study hypothesis testing within a decen-

tralized setting, where each of two sensors locally selected

its threshold for the likelihood ratio test to minimize a

common cost function. Sadjadi [3] later extended this work to

accommodate arbitrary numbers of sensors and hypotheses.

The paper did not consider a fusion center: the cost was

a function of the sensor decisions and the true hypothesis.

A comprehensive survey of decentralized detection can be

found in [4], which examined different decentralized detec-

tion structures with both conditionally independent and cor-

related sensor observations. The complexity of decentralized

detection problems was also studied in [5]. In [6], Hoballah

and Varshney proposed a Person-By-Person Optimization

(PBPO) scheme to optimize a distributed detection system

using the Bayesian criterion. The decentralized detection

problem with quantized observations was addressed in [7],

where the authors also introduced a joint power constraint

on the sensors. An extension to [7] was given in [8], where

the constraint was placed on the average cost of the system.

For a single sensor, it has been proved in [9] that the set of

conditional distributions, Q, is a compact set, and thus any
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cost function that is a continuous function on Q will attain

a minimum, which corresponds to an optimal quantizer. In

a parallel configuration with multiple sensors and a fusion

center, if the sensor observations are independent given

each hypothesis, it has also been shown in [9] that there

exists an optimal solution over the Cartesian product of

the sets of conditional marginal probabilities {Pi(d)}, i ∈
{0, 1, . . . , M − 1}, d ∈ {0, 1, . . . , D − 1}.

However, in several applications of hypothesis testing

such as sensor networks and attack/anomaly detection, it is

generally seen that the observations from different sensors

may be correlated (see, for example, [10], [11], [12], [13]).

It is this scenario we address in this paper. We show that

when the observations are conditionally dependent, minimum

average probability of error, Pe, can no longer be expressed

as a function of the marginal probabilities. We then proceed

to characterize Pe based on the set of joint probabilities of the

sensor messages. We show that there exist optimal solutions

for both the general case and the special case where the

sensors are restricted to threshold rules based on likelihood

ratios.

The paper is organized as follows. In Section II, we formu-

late the problem and specify the decision rules of the sensors

and the fusion rule of the fusion center. Next, in Section III,

we derive the relationships among the minimum probability

of error, the marginal distributions, and the joint distributions

of sensor messages, given that the sensor observations are

conditionally correlated. We provide an example where the

joint distributions of the sensor observations are bivariate

normal in Section IV. Finally, some concluding remarks end

the paper.

II. PROBLEM FORMULATION

A. Background

We consider the decentralized Bayesian detection prob-

lem with a parallel configuration, where N sensors are

directly connected to a fusion center. The sensors observe

M hypotheses (M ≥ 2), H0, H1 . . . , HM−1, whose prior

probabilities π0, π1 . . . , πM−1 are known. The observations

of the sensors are Y1, Y2, . . . , YN , where Yj is a random

variable that takes values in an appropriately defined finite or

infinite set Yj , j = 1, . . . , N . Given hypothesis Hi, the joint

distribution of the observations is Pi(y1, . . . , yN), where

i = 0, 1, . . . , M − 1. Sensor observations are not assumed

to be conditionally independent nor identically distributed.

Each sensor uses a decision rule, which is a map γj : Yj 7→
{0, 1, . . . , D − 1}, and then sends the resulting message,
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which is an integer dj ∈ {0, 1, . . . , D−1}, to the fusion cen-

ter. We take the communication channels between the sensors

and the fusion center to be perfect. At the fusion center, a

fusion rule γ0 : {0, 1, . . . , D − 1}N 7→ {0, 1 . . . , M − 1} is

employed to finally decide which hypothesis is true. Using

the Bayesian approach, we seek a joint optimization of

the decision rules at the sensors and the fusion rule to

minimize the probability of error Pe at the fusion center.

The configuration of the N sensors and the fusion center are

shown in Figure 1.

{H0, . . . , HM−1}

γ1(.)

γ2(.)

γN(.)

PY1|Hi
(y)

PYN |Hi
(y)

d1

dN

Fusion Center, γ0(.)

Fig. 1. Decentralized hypothesis testing with N sensors and a fusion center.

Taking a realization of the random variable Yj and sending

out a message in {0, 1, . . . , D − 1}, each sensor can be

considered as a quantizer. As mentioned in the Introduc-

tion, [9] characterizes these quantizers based on the set of

marginal distributions of the messages given each hypothesis.

Following [9], let

qd(γj |Hi) = Pr(γj(Yj) = d|Hi), i = 0, . . . , M − 1,

j = 1, . . . , N, d = 0, . . . , D − 1. (1)

For any γj ∈ Γj , where Γj is the set of all deterministic

quantizers for sensor j, let

q(γj |Hi) = (q0(γj |Hi), . . . , qD−1(γj |Hi)). (2)

Define the vector q(γj) ∈ RMD , for any γj ∈ Γj , as

q(γj) = (q(γj |H0), . . . , q(γj |HM−1)). (3)

Now a quantizer can be represented by its vector q(γ) for

the purpose of detecting the hypotheses. Let

Qj = {q(γj) : γj ∈ Γj}. (4)

For a parallel configuration with N sensors, we define

q(γ1, γ2, . . . , γN ) = (q(γ1), q(γ2), . . . , q(γN )) . (5)

Then we have q(γ1, γ2, . . . , γN ) ∈ Qa, where Qa is the

Cartesian product of all Qj, j = 1, . . . , N : Qa = ×N
j=1Qj .

As previously mentioned, it has been proved in [9] that

Qj is a compact set, and thus any cost function that is

a continuous function on Qj will attain a minimum. In a

parallel configuration with multiple sensors and a fusion

center, if the sensor observations are independent given each

hypothesis, it has also been shown that there exists an optimal

solution over the set Qa [9].

B. Decision Rules at the Sensors and the Fusion Center

First we define two classes of decision rules at each sensor

and the fusion center. (A fusion center can also be viewed as

a sensor; thus we use the term “sensor” to refer to both in this

subsection.) A general rule is one in which the observation

space is partitioned into M regions, Ri, i = 0, 1, . . . , M −1,

and the sensor will pick Hi if Y ∈ Ri. In the scope of this

paper, we define the threshold rule for the case of binary

hypotheses (M = 2) as follows. A threshold rule is a general

rule where

R1 =

{

y ∈ Y :
P1(y)

P0(y)
≥ τ

}

(6)

R0 =

{

y ∈ Y :
P1(y)

P0(y)
< τ

}

(7)

where Y is the observation space of the sensor, and P0(y)
and P1(y) are the conditional distributions of the observation

given H0 and H1, respectively.

Assuming uniform costs, the Bayes risk will become

the average probability of error [1]. As mentioned above,

the fusion center can be considered as a sensor with the

observation being (d1, d2, . . . , dN ). Note that we seek a joint

optimization of the decision rules at the (local) sensors and

the fusion rules at the fusion center to minimize the Bayes

risk. However, if the decision rules at the (local) sensors have

already been optimized, the fusion rule at the fusion center

must be the solution to the centralized detection problem to

minimize the Bayes risk. From [1], the fusion rule for binary

hypotheses can be written as a likelihood ratio test:

γ0(d1, d2, . . . , dN ) =

{

1 if
P1(d1,d2,...,dN)
P0(d1,d2,...,dN) ≥ π0

π1

0 otherwise,
(8)

and the corresponding average probability of error at the

fusion center is given as

Pe = π0P0

(

La ≥
π0

π1

)

+ π1P1

(

La <
π0

π1

)

= π0

∑

(d1,d2,...,dN ):La≥
π0
π1

P0(d1, d2, . . . , dN )

+ π1

∑

(d1,d2,...,dN):La<
π0
π1

P1(d1, d2, . . . , dN )

where La =
P1(d1, d2, . . . , dN )

P0(d1, d2, . . . , dN )
. (9)

Here Pi(d1, d2, . . . , dN ), i = 0, 1, are the conditional joint

probability density functions (given Hi) of the sensor mes-

sages, which can be computed as follows

Pi(d1, d2, . . . , dN ) =

∫

R
(N)

dN

. . .

∫

R
(1)

d1

Pi(y1, . . . , yN)

dy1 . . . dyN (10)

where dj = 0, 1, . . . , D − 1 and R
(j)
dj

is the region where

sensor j decides to send message dj , j = 1, . . . , N . Thus,

it can be seen that in the optimal solution (which achieves

the minimum Pe) the fusion rule is always a likelihood
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ratio test (8), but the decision rules at the local sensors can

be general rules. It has been shown in [4] that when the

sensor observations are independent given each hypothesis,

the optimal solution can be achieved with the decision

rule at each sensor being also a threshold rule. However,

when the sensor observations are conditionally dependent,

the threshold rules at the local sensors can no longer achieve

the minimum Pe in general [4]. It is also worth noting that,

in general, the minimum Pe at the fusion center only depends

on the decision rules at the sensors. If we restrict the sensors

to threshold rules, the minimum Pe will only depend on the

thresholds at the sensors, {τ1, τ2, . . . , τN}.

III. THE EXISTENCE OF OPTIMAL SOLUTIONS

In this section, we first prove that when the observations

are conditionally dependent, Pe can no longer be expressed

as a function of the marginal distributions of the messages

from the sensors. We then characterize Pe based on the set

of joint distributions of the sensor messages. We show that

this set is compact and there exists an optimal solution (that

minimizes Pe) when general rules are used at the sensors,

and there also exists an optimal solution when the sensors are

restricted to threshold rules. Propositions 1 and 2 are stated

for D = 2 and M = 2 but their results can be extended to

M > 2.

Proposition 1: Let f0(y1, y2) and f1(y1, y2) be two non-

identical joint probability density functions, where fi(y1, y2),
i = 0, 1, is continuous on R2 and nonzero for −∞ <
y1, y2 < ∞. Let Φi(y1, y2), i = 0, 1, denote the correspond-

ing cumulative distribution functions. Let

α0 = Φ0(y
∗
1 , y∗

2) =

∫ y∗1

−∞

∫ y∗2

−∞

f0(y1, y2)dy2dy1, (11)

α1 = Φ1(y
∗
1 , y∗

2) =

∫ y∗1

−∞

∫ y∗2

−∞

f1(y1, y2)dy2dy1. (12)

where (y∗
1 , y∗

2) is an arbitrary point in R2. Then, specifying a

value for α0 ∈ (0, 1) does not uniquely determine the value

of α1, and vice versa.

y1

y2

f1(y1, y2)

f0(y1, y2)

Fig. 2. α0 and α1 are integrations of f0(y1, y2) and f1(y1, y2) over the
same region.

Proof: Let gi(y1) and hi(y2) be the marginal densities

of y1 and y2 given Hi, where i = 0, 1. For each 0 <
α0 < 1, we can pick γ0 > 0 such that α0 + γ0 < 1. As

the conditional marginal density g0(y1) is continuous, we

can always uniquely pick y∗
1 such that

∫ y∗1
−∞

g0(y1)dy1 =

α0 + γ0. Once y∗
1 is specified, we can also choose y∗

2 such

that
∫ y∗1
−∞

∫ y∗2
−∞

f0(y1, y2)dy2dy1 = α0. Thus, for each fixed

value of γ0, we have a unique pair (y∗
1 , y∗

2). It can be

seen that there are infinitely many values of γ0 satisfying

α0 + γ0 < 1, each of which yields a different pair (y∗
1 , y∗

2).
Therefore, specifying a value for α0 ∈ (0, 1) does not

uniquely determine the value of α1, and vice versa, unless

f0(y1, y2) and f1(y1, y2) are identically equal.

Proposition 2: Consider a parallel structure as in Figure 1

with the number of sensors N ≥ 2, the number of messages

D = 2, and the number of hypotheses M = 2. When

the observations of the sensors are conditionally dependent,

there exists a fusion rule γ0 in which the minimum average

probability of error Pe given in (9) cannot be expressed

solely as a function of q(γ1, . . . , γN ) (given in (5)).

Proof: We first prove this proposition for the 2-sensor

case and then use induction to extend the result to N > 2. As

before, let d1 and d2 denote the messages that sensor 1 and

sensor 2 send to the fusion center. For notational simplicity,

let Pi(l1, l2) denote P (d1 = l1, d2 = l2|Hi) where l1, l2 ∈
{0, 1}. We have the following linear system of equations with

Pi(0, 0), Pi(0, 1), Pi(1, 0), and Pi(1, 1) as the unknowns.

Pi(0, 0) + Pi(0, 1) = Pi(l1 = 0)

Pi(1, 0) + Pi(1, 1) = Pi(l1 = 1) = 1 − Pi(l1 = 0)

Pi(0, 0) + Pi(1, 0) = Pi(l2 = 0)

Pi(0, 1) + Pi(1, 1) = Pi(l2 = 1) = 1 − Pi(l2 = 0)

Note that the matrix of coefficients is singular. Solving this

system, we have that

Pi(0, 0) = αi

Pi(0, 1) = Pi(l1 = 0) − αi

Pi(1, 0) = Pi(l2 = 0) − αi

Pi(1, 1) = 1 − Pi(l1 = 0) − Pi(l2 = 0) + αi

where αi, i = 0, 1, corresponding to H0, H1 are real numbers

in (0, 1). Now we rewrite (9) for a fixed fusion rule γ0:

Pe = π0

∑

(d1,d2)∈R1

P0(d1, d2) + π1

∑

(d1,d2)∈R0

P1(d1, d2) (13)

where R0 and R1 are two partitions of the set of all

possible values of (d1, d2) in which the fusion center decides

hypothesis H0 or hypothesis H1 is true, respectively. Now

suppose that the fusion center uses the following fusion

rule: It picks 1 if (d1, d2) = (1, 1) and picks 0 for the

remaining three cases. After some manipulation, expression

(13) becomes

Pe = π0(1 − P0(d1 = 0) − P0(d2 = 0) + α0)

+π1 (P1(d1 = 0) + P1(d2 = 0) − α1) (14)

From Proposition 1, α0 is not uniquely determined given α1

and vice versa. Thus Pe in (13) cannot be expressed solely

as a function of q(γ1, γ2).
Now we prove the proposition for N > 2 by induction on

N . Suppose that there exists a fusion rule γ
(N)
0 that results
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in P
(N)
e that cannot be expressed solely as a function of

q(γ1, . . . , γN ); we will then show that there exists a fusion

rule γ
(N+1)
0 that yields P

(N+1)
e that cannot be expressed

solely as a function of q(γ1, . . . , γN+1). Let R̃
(N)
0 and R̃

(N)
1

be the decision regions (for H0 and H1, respectively) at the

fusion center when there are N sensors. Let R̃
(N+1)
0 and

R̃
(N+1)
1 be those of the (N +1)-sensor case. Without loss of

generality, we assume that the observation of sensor (N +1)
is independent of those of the first N sensors. Rewriting (9)

for the N -sensor problem, we have that:

P (N)
e = π0

∑

(l1,...,lN )∈R̃
(N)
1

P0(l1, . . . , lN )

+ π1

∑

(l1,...,lN )∈R̃
(N)
0

P1(l1, . . . , lN)

Now we construct R̃
(N+1)
0 and R̃

(N+1)
1 based on R̃

(N)
0

and R̃
(N)
1 as follows. R̃

(N+1)
0 consists of combinations

of the forms (l1, . . . , lN , 0) and (l1, . . . , lN , 1) where

(l1, . . . , lN ) ∈ R̃
(N)
0 ; R̃

(N+1)
1 consists of combinations

of the forms (l1, . . . , lN , 0) and (l1, . . . , lN , 1) where

(l1, . . . , lN ) ∈ R̃
(N)
1 . Note that, for i = 0, 1,

Pi(l1, . . . , lN , 0) + Pi(l1, . . . , lN , 1) = Pi(l1, . . . , lN) .

Thus, Pe for the (N + 1)-sensor case can be written as

P (N+1)
e = π0

∑

(l1,...,lN ,lN+1)∈R̃
(N+1)
1

P0(l1, . . . , lN , lN+1)

+ π1

∑

(l1,...,lN ,lN+1)∈R̃
(N+1)
0

P1(l1, . . . , lN+1)

= π0

∑

(l1,...,lN )∈R̃
(N)
1

P0(l1, . . . , lN)

+ π1

∑

(l1,...,lN )∈R̃
(N)
0

P1(l1, . . . , lN ) = P (N)
e

But P
(N)
e cannot be expressed solely as a function of

q(γ1, . . . , γN ) and q(γN+1) due to the induction hypothe-

sis and the independence assumption of sensor (N + 1)’s

observation. Thus P
(N+1)
e cannot be expressed solely as a

function of q(γ1, . . . , γN+1).
Thus, for the case of conditionally dependent observations,

instead of using conditional marginal distributions, we relate

the Bayesian probability of error to the joint distribution

of the decisions of the sensors. In what follows, we use

γ to collectively denote (γ1, γ2, . . . , γN ) and Γ to denote

the Cartesian product of Γ1, Γ2, . . . ,ΓN , where Γj is the set

of all deterministic decision rules (quantizers) of sensor j,

j = 1, . . . , N . Also, we define

sd1,...,dN
(γ|Hi) = Pr(γ1 = d1, . . . , γN = dN |Hi) (15)

Then, the DN -tuple s(γ|Hi) is defined as:

s(γ|Hi) = (s0,0,...,0(γ|Hi), s0,0,...,1(γ|Hi), . . . ,

sD−1,D−1,...,D−1(γ|Hi)) (16)

Finally, we define the M × DN -tuple s(γ):

s(γ) = (s(γ|H0), s(γ|H1), . . . , s(γ|HM−1)) (17)

From (9), it can be seen that Pe is a continuous function on

s(γ) for a fixed fusion rule. We now prove that the set S =
{s(γ) : γ1 ∈ Γ1, . . . , γN ∈ ΓN} is compact, and therefore

there exists an optimal solution for a fixed fusion rule. As

the number of fusion rules is finite, we then can conclude

that there exists an optimal solution for the whole system for

each class of decision rules at the sensors.

Theorem 1: The set S given by

S = {s(γ) : γ1 ∈ Γ1, γ2 ∈ Γ2, . . . , γN ∈ ΓN} (18)

is compact.

Proof: To prove this theorem, we follow the same line

of argument as in the proof of compactness of the set of

conditional distributions for the one sensor case by Tsitsiklis

[9]. Let P = (P0 + . . . + PM−1)/M , where P0, . . . , PM−1

are the conditional distributions of the observations given

H0, . . . , HM−1, respectively. We use G to denote the set of

all measurable functions from the observation space, Y =
Y1 × Y2 × . . . × YN , into {0, 1}. Let G(DN ) denote the

Cartesian product of DN replicas of G. Let

F =
{

(f00...0, . . . , f(D−1)(D−1)...(D−1)) ∈ G(DN )

∣

∣

∣

∣

∣

∣

P





D−1
∑

d1,...,dN=0

fd1,...,dN
(Y ) = 1



 = 1







(19)

For any γ ∈ Γ and d1, . . . , dN ∈ {0, . . . , D − 1},

we define fd1,...,dN
such that fd1,...,dN

(y) = 1 if and

only if γ(y) = (d1, . . . , dN ), and fd1,...,dN
(y) = 0

otherwise. Then, fd1,...,dN
will be the indicator func-

tion of the set γ−1(d1, . . . , dN ). It can be seen that

(f00...0, . . . , f(D−1)(D−1)...(D−1)) ∈ F . Also, we have

sd1,...,dN
(γ|Hi) = Pr(γ(y) = (d1, . . . , dN )|Hi)

=

∫

fd1,...,dN
(y)dPi(y). (20)

Conversely, for any f = (f00...0, . . . , f(D−1)(D−1)...(D−1)) ∈
F , define γ ∈ Γ as follows.

• If
∑D−1

d1,...,dN=0 fd1,...,dN
(y) = 1, then γ(y) =

(d1, . . . , dN ) such that fd1,...,dN
(y) = 1.

• If
∑D

d1,...,dN=1 fd1,...,dN
(y) 6= 1, then γ(y) =

(1, 1, . . . , 1).

As P
(

∑D

d1,...,dN=1 fd1,...,dN
(Y ) 6= 1

)

= 0, (20) still holds.

Now we define a mapping h : F → ℜMDN

such that

hi,d1,...,dN
(f) =

∫

fd1,...,dN
dPi(y) (21)

It can be seen that S = h(F ). If we can find a topology on

G in which F is compact and h is continuous, S will be a

compact set.

Let L1(Y;P) denote the set of all measurable functions

f : Y → R that satisfy
∫

|f(y)|dP(y) < ∞, L∞(Y;P)
denote the set of all measurable functions f : Y → R
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such that f is bounded after removing the set Yz ⊂ Y
that has P(Yz) = 0. Then G is a subset of L∞(Y;P).
It is known that L∞(Y;P) is the dual of L1(Y;P) [14].

Consider the weak* topology on L∞(Y;P), which is the

weakest topology where the mapping

f →

∫

f(y)g(y)dP(y) (22)

is continuous for every g ∈ L1(Y;P). Using Alaoglu’s

theorem [14], we have that the unit ball in L∞(Y;P) is

weak*-compact. Thus G is compact. Then G(DN ), which is a

Cartesian product of DN compact sets, is also compact. Now,

from (19), every point
(

f00...0, . . . , f(D−1)(D−1)...(D−1)

)

∈
F satisfies

∫

A

D−1
∑

d1,...,dN=0

fd1,...,dN
(y)dP(y) = P(A), (23)

where A is any measurable subset of Y . If we let XA denote

the indicator function of A, it follows that

∫ D−1
∑

d1,...,dN=0

fd1,...,dN
(y)XA(y)dP(y) = P(A). (24)

As XA ∈ L1(Y;P) and the mapping in (22) is continuous

for every g ∈ L1(Y;P), we have that the map f → P(A) is

also continuous. Furthermore, F is a subset of the compact

set G(DN ), and thus F is also compact.

Let gi, i = 0, . . . , M − 1 denote the Radon-Nikodym

derivative of Pi with respect to P , gi(y) = dPi(y)
dP(y) . Then

we have gi ∈ L1(Y;P) [9]. Also, we have that
∫

fd1,...,dN
(y)dPi(y) =

∫

fd1,...,dN
(y)gi(y)dP(y),

∀i, d1, . . . , dN . (25)

From (22), (25) and the fact that gi ∈ L1(Y;P), it follows

that the mapping f →
∫

fd1,...,dN
(y)dPi(y) is continuous.

Therefore the mapping h given in (21) is continuous. As

S = h(F ), we finally have that S is compact.

Theorem 2: There exists an optimal solution for the gen-

eral rules at the sensors, and there also exists an optimal

solution for the special case where the sensors are restricted

to the threshold rules on likelihood ratios.

Proof: For each fixed fusion rule γ0 at the fusion

center, the probability of error Pe given in (9) is a continuous

function on the compact set S. Thus, by Weierstrass theorem

[14], there exists an optimal solution that minimizes Pe for

each γ0. Furthermore, there is a finite number of fusion rules

γ0 at the fusion center (in particular, this is the number of

ways to partition the set {d1, d2, . . . , dN} into two subsets,

which is 2N ). Therefore, there exists an optimal solution over

all the fusion rules at the fusion center. Note that the use of

the general rule or the threshold rule will result in different

fusion rules, but will not affect the reasoning in this proof.

The optimal solutions in each case, however, will be different

in general. More specifically, the set of all the decision rules

(of the sensors) based on the threshold rule will be a subset of

the set of all decision rules (of the sensors), thus the optimal

solution in the former case will be worse than that of the

latter in general.

IV. A SPECIAL CASE WITH BIVARIATE NORMAL

DISTRIBUTIONS AND SIMULATION RESULTS

In this section, we consider a special case with M = 2,

N = 2, D = 2, and the joint distribution given each

hypothesis is bivariate normal. Particularly, let the joint

distribution of the observations given each hypothesis be

f0(y1, y2) (given H0), which is a bivariate normal density

with means µ1 = µ2 = −1, variances σ2
1 = σ2

2 = 1, the

correlation coefficient ρ = 0.6, and f1(y1, y2) (given H1),

which is also a bivariate normal density, with µ1 = µ2 = 1,

σ2
1 = σ2

2 = 1, ρ = 0.6. These two distributions are plotted

in Figure 3. Here, Yj ≡ R, for j = 1, 2. Note that even

when the observations are i.i.d., restricting the sensors to the

same decision rules may lead to a suboptimal solution [4].

Thus, we do not assume that the decision rules of the two

sensors are the same for the simulations in this section. In

what follows, we derive some properties of the minimum Pe

and present some numerical results for both threshold rules

and general rules at the sensors.
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A. Using Threshold Rules at the Sensors

At each sensor, the marginal distribution of the observation

is Gaussian with variance σ2 = 1 and mean −1 under H0
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and mean 1 under H1. The (marginal) likelihood ratios are

monotonically increasing in y1 and y2, respectively, thus a

threshold rule for the likelihood ratios becomes a threshold

rule for y1 and y2.

γj(yj) =

{

1 if yj ≥ yτj
= σ2 ln τj/2

0 otherwise,
(26)

The conditional joint distributions of sensor messages are

given by (10), where

N = 2, R
(1)
0 = (−∞, yτ1) , R

(1)
1 = [yτ1 ,∞) ,

R
(2)
0 = (−∞, yτ2) , R

(2)
1 = [yτ2 ,∞) . (27)

As
∫ 5

−5

∫ 5

−5 fi(y1, y2)dy1dy2 ≈ 0.9999 for i = 0, 1, it

suffices to let yτj
vary within [−5, 5]. We then use equally

spaced values of yτj
as threshold candidates. The minimum

values of Pe using threshold rules with π0 = 0.3 are plotted

in Figure 4. From the simulation results, it can be observed

that:

Pe ≤ min {π0, π1} , lim
yτ1 ,yτ2→±∞

Pe = min {π0, π1} . (28)

We state below a generalization of these observations.

Proposition 3: Consider a parallel structure as in Figure 1

with the number of sensors N = 2, the number of messages

D = 2, and the number of hypotheses M = 2. Let f0(y1, y2)
and f1(y1, y2) be the joint probability density functions of

the sensor observations given H0 and H1, respectively, where

fi(y1, y2), i = 0, 1, are continuous on R2 and nonzero for

−∞ < y1, y2 < ∞. Assume further that the decision regions

of each sensor are of the form R
(j)
0 = (−∞, yτj

) and R
(j)
1 =

[yτj
, +∞), yτj

∈ (−∞, +∞), where j = 0, 1 (which are

threshold rules on the observation values). Then we have

(28) where Pe is given in (9).

Proof: The proof of this proposition can be found in

the full version of this paper [15].

B. Using General Rules at the Sensors

The observation space of each sensor (Yj) is partitioned

into two decision regions, R
(j)
0 and R

(j)
1 . Particularly, we first

divide Yj into Ij intervals. Then there will be 2Ij different

ways to partition these intervals into R
(j)
0 and R

(j)
1 . To go

through all of these possibilities, we use an Ij-bit counter

where the nth bit, n = 0, . . . , Ij − 1, indicates which region

the corresponding interval resides in. The conditional joint

distributions of sensor messages are given by (10), where

N = 2. In the simulations we have carried out (whose results

can be found in [15]), the general rule leads to the same

optimal solutions as the threshold rule.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that the minimum Bayesian

probability of error Pe in a parallel configuration cannot

be expressed as a function of the conditional marginal

distributions of the messages from the sensors. We have

then characterized this probability of error based on the set

of conditional joint distributions. We have proved that this

set is compact and therefore there exist optimal solutions

that minimize Pe for both the general decision rules and

the threshold rules at the sensors. We have also carried out

simulations for a special case where the joint distributions

of the sensor observations are bivariate normal. Within the

values of the parameters simulated, the results have shown

that the threshold rules at the sensors achieve the optimal Pe

of the general rules.

As mentioned earlier, in the applications of decentralized

detection such as sensor networks and network security,

sensor observations may be correlated given each hypoth-

esis. Characterizing the sensors based on the conditional

joint distributions will open up a new avenue for solving

decentralized detection problems.
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