
Team Task Allocation and Routing in Risky Environments under Human
Guidance

David A. Castañón and Darryl K. Ahner

Abstract— In this paper we design coordination policies for
unmanned vehicles that select and perform tasks in uncertain
environments where vehicles may fail. We develop algorithms
that accept different levels of human guidance, from simple
allocation of priorities through the use of task values to
more complex task partitioning and load balancing techniques.
The goal is to maximize expected value completed under
human guidance. We develop alternative algorithms based on
approximate dynamic programming versions appropriate for
each level of guidance, and compare the resulting performance
using simulation results.

I. INTRODUCTION

The purpose of this paper is to develop approaches for
adaptive replanning and routing of unmanned vehicles to
spatially distributed tasks in scenarios where there is risk
of vehicle loss. Such situations arise typically in complex
environments where adversarial actions will try to prevent ve-
hicles from pursuing tasks. We consider a class of problems
where vehicles follow paths to perform a sequence of tasks,
and the choice of path affects the probability that a vehicle
may be destroyed before completing its tasks. The presence
of risk in these problems may require the assignment of
multiple vehicles to important tasks. Of particular interest
is the development of algorithms that can accept a varying
level of human guidance, allowing for detailed control of
the individual vehicles. In particular, we are interested in
two modes of human guidance: a nearly autonomous mode
where values are assigned to tasks, and a second mode where
tasks are partitioned across vehicles and values are assigned
to tasks.

From a dynamic perspective, traversal of a segment of
a path is an observable event with two random outcomes:
vehicle destruction or arrival at the end of the segment.
This suggests the use of stochastic dynamic programming
techniques that observe outcomes and adapt assignments
and routes accordingly. However, the resulting stochastic
dynamic program is cumbersome to solve, and not suitable
for real-time replanning.

In this paper, we propose an alternative approach based on
an expected value formulation that incorporates the effects
of risk. Our approach mimics model-predictive control [9]
in that this expected value formulation is used to develop
a planned course of action. Once information is collected

This work was supported by AFOSR under grant FA9550-07-1-0361 and
by ODDR&E MURI Grant FA9550-07-1-0528

D. Castañón is with the Department of Electrical and Computer Engi-
neering, Boston University, Boston, MA dac@bu.edu

D. Ahner is with the Department of Mathematical Sciences, United States
Military Academy, West Point, NY darryl.ahner@usma.edu

concerning vehicle and task status, the plan will be re-
computed using the most recent information. The resulting
optimization problem is NP-hard, so our proposed algorithms
are based on approximate solution of the resulting problem
using approximate dynamic programming techniques.

Much of the previous work on stochastic scheduling
problems has focused on scheduling of vehicles subject to
random demands. The extensive work of Powell and his
colleagues [1], [2], [3] illustrates these approaches. In these
formulations, vehicles are reliable carriers that respond to
random demands. In contrast, we consider scenarios where
vehicles are lost, and other vehicles must compensate for
these losses. In our previous work [4], we considered routing
and scheduling of a single vehicle in risky networks, and
developed a class of approximate dynamic programming
techniques known as rollout algorithms that compensated
for vehicle failures. The problem considered in this paper
is an extension of the formulation in [4] to include multiple
vehicles.

Other related work includes a class of stochastic resource
assignment problems that explicitly model the risk of asset
loss [5], [6]. In these models, multiple assets are assigned
to individual tasks to hedge against potential loss of assets.
Our problem generalizes these models to include decisions
concerning routing as well as assignment.

The rest of this paper is organized as follows. Section II
presents a formulation of the risky vehicle routing problem
that will be used for algorithm development. Section III
introduces two classes of approximate algorithms to solve
the models in Section II. Section IV discusses the implemen-
tations of these algorithms under different levels of human
guidance. Section V presents experimental evaluations of
the alternative algorithms, and discusses further experiments.
Section VI includes concluding remarks.

II. PROBLEM STATEMENT

Define a directed graph G = (N,A), where the nodes
correspond to possible vehicle waypoints or tasks to be done,
and the arcs represent segments connecting these waypoints.
Associated with each node i is a value Vi of reaching the
node, representing completion of the task associated with
the node. Each arc (i, j) has a probability pij that a vehicle
traversing it will successfully reach the destination node j.
For simplicity, this probability is assumed independent of
the vehicle. We assume that the events of successful vehicle
traversals of arcs are mutually independent across vehicles
and arcs. Furthermore, if the same vehicle traverses the same
arc twice, these events are also independent. We also assume

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuB15.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1139

for simplicity that the time required to traverse each arc
is normalized to 1. We can introduce additional nodes as
required to enforce this.

Assume that there are K vehicles present, initially located
at known nodes n1, . . . , nK . For each vehicle k, one must
select a path P k on the directed graph, which will include
a specified number of arcs M . A path P k will be denoted
by a sequence of nodes (nk

0 , . . . , nk
M) where (nk

i , nk
i+1) ∈ A

for i = 0, . . . ,M −1 and nk
0 = nk. Associated with the path

for vehicle k is the probability that the vehicle will complete
the first s segments, defined as

pk
s =

s−1∏

l=0

pnk
l ,nk

l+1
(1)

As notation, we denote pk
0 = 1, and pk

−1 = 0.
Note that it is desirable to assign multiple paths to traverse

a valuable node, because each vehicle is not guaranteed to
reach a node to complete the task. Consider a task at node
n. For each path P k, denote qk(n) to be the first position
in path P k that the node is visited, where qk(n) = −1 is
used to indicate that path P k does not visit node n. The
independence assumptions lead to the following result:

Lemma 2.1: Given paths P k, k = 1, . . . , K, the probabil-
ity that node n will be visited by a vehicle is given by

P (n) = 1 −
K∏

k=1

(1 − pk
qk(n)) (2)

The objective of the risky path planning problem is to select
K paths of length M so as to maximize the expected node
value completed, given by

J =
∑

n∈N

VnP (n) (3)

The above problem formulation is an optimization prob-
lem over deterministic paths, as opposed to a feedback
formulation where the choice of paths would depend on
observation of successful traversals. Note that the objective
is to have at least one vehicle visit each node, with the
assumption that when a vehicle visits a node, the node’s value
is collected, and subsequent visits to the same node collect
no additional value. The resulting deterministic optimization
problem is complex, as detailed next.

Lemma 2.2: The risky path planning problem is NP-hard.
Proof: Instances of this problem with M = 1 and dense

graphs become instances of the weapon target assignment
problem which was shown to be NP-hard by Lloyd and
Witsenhausen [8].

There are simpler instances of the problem, but even these
instances tend to be hard to solve. For instance, if risk is
removed, so that pij = 1 for all arcs (i, j) ∈ A, the resulting
problem is a deterministic problem. However, the constraint
that only one vehicle can collect the value of a task over
all time creates nonlinear couplings that prevent the use of
network optimization techniques with polynomial complex-
ity. This emphasizes that the computational complexity arises
from both coupling the performance of multiple vehicles, and

hedging against the possibility of vehicle loss.
Note that there is no explicit cost associated with the loss

of a vehicle, but simply an opportunity loss. The formulation
can be easily extended to include the cost of vehicle loss.

The single vehicle version of this problem is similar to
the stochastic scheduling problems studied in [4]. For dense
graphs with probabilities of success that depend only on the
end node, the optimal single vehicle path is given by the quiz
heuristic that maximizes at step the node n with maximal
index

Q(n) =
pinVn

1 − pin

where i is the current node of the vehicle, n are indices
of the nodes that have not been visited yet which can be
directly reached from node i, and pin is the probability of
successfully traversing link (i, n). Note that this heuristic is
an optimal strategy for dense graphs where the probability of
successful traversal depends only on the end node n, as noted
in [4]. For sparse graphs, or for graphs where the success
probability depends on both start node and end node of arcs,
[4] describes approximate dynamic programming techniques
based on rollout algorithms to solve these problems, and
shows that the average performance of these algorithms is
within 5% of the optimal stochastic dynamic programming
solution.

III. SOLUTION ALGORITHMS

Given the complexity of exact solution of the risky vehicle
routing problem, we focus on developing approximate solu-
tions using the rollout approaches introduced in [4]. Note
that each of these algorithms is intended to be a centralized
algorithm, where knowledge of the full information about the
problem details is assumed. Although distributed algorithms
are of interest, they are beyond the scope of the current
paper. We describe two solution algorithms below, originally
introduced in [7].

A. Coordinate Ascent Algorithms

The first approach we propose is a direct extension of
the single vehicle rollout algorithms described in [4]. Our
approach is to optimize (3) by varying the path selected by a
single vehicle, keeping the paths of the other K−1 vehicles
fixed. Alternating over the various vehicles, one defines a
coordinate ascent approach that improves the objective at
each iteration, and stops when a full cycle of optimizations
fails to improve the objective. The resulting single vehicle
optimization problems are solved using a direct extension of
the rollout algorithms of [4], as follows.

For solving the subproblem for vehicle j, define the
reduced values of nodes Ṽn as follows

Ṽn = Vn

K∏

k=1,k �=j

(1 − pk
qk(n)) (4)

This is the expected value of node n that is not completed
by any of the vehicles other than j.

Our approach will be based on approximate dynamic
programming using rollout techniques. Consider a single

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB15.5

1140

vehicle j. The problem of selecting a path for vehicle j,
given that the other vehicles’ paths are known, becomes a
dynamic programming problem. Selection of the first link out
of the initial node nj

0 is done following Bellman’s equaton:

nj
1 ∈ arg max

(nj
0,n)∈A

pnj
0,n(Ṽn + R(n,M − 1))

where R(n,M − 1) is the maximum expected reward (in
terms of reduced values) that vehicle j can collect in the
subsequent M − 1 transitions. The rollout algorithm is an
approximate dynamic programming technique, that computes
an approximation R̃(n,M−1) by using a suboptimal policy.
The rollout algorithm for vehicle j is described below:

1) Enumerate the possible next nodes n1 out of node nj
0,

the initial node for vehicle j, examining the arcs in A.
2) For each possible next node n1, let s = 1 and compute

the approximate reward-to-go R̃(n1,M−1) as follows:
• Given ns, select ns+1 to maximize over the fea-

sible next nodes in A, the index

Q(n) =
pns,nṼn

1 − pns,n

where Ṽn is set to zero if n is already in the
evaluated path.

• Set s = s + 1, and repeat the above step until
s = M .

• Evaluate the value attained by the rollout path out
of n1, R̃(n1,M − 1), recursively backwards as

R̃(nM , 0) = ṼnM
(5)

R̃(ns,M − s) = Ṽns
+ pns,ns+1R̃(ns+1,M − s − 1)

s = M − 1, . . . , 1 (6)

3) Select the next node nj
1 from the feasible next nodes

n1 to maximize the expected rollout value from the
initial position, given as

R(nj
0) = Ṽnj

0
+ pnj

0,n1
R̃(n1,M − 1) (7)

4) We now have the path for the first step, (n0, n1). To
extend this path to the end, set s = 1, 2, ..., M-1, and
repeat the above procedure starting from nj

s with M−s
steps to go, setting Ṽnj

s
= 0.

5) Compute the overall reward of all K vehicles using
(1)-(3).

The above procedure is initialized by selecting a vehicle,
assuming no other vehicle is used, so all the node values are
set to the original values. The algorithm is then repeated for
each vehicle j, until a full pass of all K vehicles yields no
further improvement in overall reward achieved.

Note that, for each vehicle, there is no further value in
revisiting a node that was previously visited by the same
vehicle. This is because the event that the vehicle is still
present in the second visit requires that the first visit was
successful (i.e. the vehicle was not destroyed before the first
visit), and so the second visit is superfluous. This is why the
reduced values are set to 0 once a path is extended to include
a node.

The algorithm presented above is a vehicle-by-vehicle
improvement algorithm, where a subset of decision variables
are modified at a time. As such, it converge to solutions
where no single vehicle modification can improve the so-
lution, but multi-vehicle perturbations would result in im-
provement. Furthermore, the convergence value may depend
on the order in which vehicles are considered. In our limited
experiments, we have found little difference in convergence
value based on the vehicle order explored.

B. Multi-vehicle Rollout Algorithms

The algorithm in the previous subsection considered mod-
ifying complete paths for each vehicle, one vehicle at a
time, while keeping the paths of other vehicles the same.
An alternative approach is to use approximate dynamic
programming across all vehicles simultaneously, obtaining
individual trajectories for each vehicle.

The idea for the multi-vehicle rollout algorithms is to
select the transtion arc for each vehicle in a round-robin
manner, using approximate dynamic programming based on
rollout techniques. We artificially order the decisions of each
vehicle, and consider the sequential decision problem one
vehicle at a time for each time step, across M time steps.
Thus, we create M ∗K decision steps, for K vehicles, where
vehicle k acts at decision steps t such that k = (t − 1)
mod K + 1. We summarize the algorithm below:

1) Number each vehicle 1, . . . ,K. Start with step t = 1,
time s = �t − 1/K� + 1 and vehicle j = (t − 1)
mod K + 1. Initialize the reduced values Ṽn = Vn.

2) Enumerate the possible next nodes nt out of node
nj

s−1, the current node for vehicle j at time s − 1.
3) For each possible next node nt, compute the approxi-

mate reward R̃(nt) as follows:
a) Set nj

s = nt, and decrement the value Ṽnt
=

Ṽnt
∗ (1 − pnj

s−1,nt
).

b) Select the next vehicle to move as k = t
mod K + 1, and select its move nk

s at stage
s = �t/K� + 1 to maximize over the feasible
next nodes in A, the index

Q(n) =
pnk

s−1,nṼn

1 − pnk
s−1,n

where Ṽn is set to zero if n is already in the
evaluated path for vehicle k.

c) Decrement the value Ṽnk
s

= Ṽnk
s
(1 − pnk

s−1,nk
s
).

Increment t = t + 1, and repeat the above two
steps until t = K ∗ M .

d) We have now selected complete paths for each
vehicle. Evaluate the value attained by the rollout
path out of nt, R̃(nt), using (1)-(3).

4) Select the next node nj
s from the feasible next nodes

nt to maximize the expected rollout value from the
initial position, R̃(nt).

5) Increment t = t + 1. Set time s = �t − 1/K� + 1
and vehicle j = (t − 1) mod K + 1. Initialize the
reduced values Ṽn using the partial paths computed

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB15.5

1141

for nodes nk
r , r < s and nk

s , k < j using (1)-(2) to
compute P (n) for each node n. Set the reduced values
as Ṽn = Vn(1 − P (n))

6) Repeat steps 2-5 above until t > K ∗M . Compute the
overall reward of all K vehicles using (1)-(3).

The multi-vehicle rollout algorithm described above has
significant computation advantages for approximate dynamic
programming. Although the algorithm has been described
to compute the full rollout paths nk

s , k = 1, . . . K; s =
1, . . . ,M , the algorithm can be stopped once there is a
single stage of decisions available, corresponding to a single
stage of the approximate dynamic programming algorithm.
The current decisions would be implemented, and the status
information of each task and vehicle would be updated.
Subsequently, a new rollout approximation to the cost to go
can be used to determine the decisions for each vehicle at
the next decision time.

The coordinate ascent algorithms do not have this property.
For each vehicle, one must determine the full path of
decisions in order to evaluate the reduced values that these
decisions imply for other vehicles. This is the computation
cost that goes along with reducing the problem to a vehicle-
by-vehicle optimization iteration.

C. Stochastic Dynamic Programming

The previous two algorithms solve a deterministic approx-
imation of the multi-vehicle risky planning problem, which
is useful in a model-predictive control approach where real-
time recomputation of decisions takes place in response to
observed events. An alternative approach is to solve the
full stochastic feedback version of the multi-vehicle risky
planning problem, using stochastic dynamic programming. In
this formulation, events of successful or failed link transitions
at each stage are observed, and the solution is expressed
in terms of feedback strategies from the observed state
into admissible decisions. Note that the state space for the
dynamic programming formulation is

S =
K∏

k=1

(N ∪ {0}) × 2N

where the first product terms correspond to the vehicle states
(state 0 indicates a destroyed vehicle), and the last term 2N

is the set of subsets of tasks that have not been completed
yet.

Denote the state st ∈ S to be the state at time t. A
decision ut ∈ F (st) at time t is a set of feasible moves
(F (st)) of each of the surviving vehicles in st, according to
the arcs in A. Associated with each set of feasible moves
is a transition probability kernel, Q(st+1|st, ut), which is
readily computed given the independence assumption of the
transitions described in Section II.

Given the above setup, the stochastic dynamic program-
ming algorithm can be used to determine the optimal ex-
pected performance for any initial condition, as follows:

Initialize the terminal cost as

V (s,M + 1) =
∑

n∈N,n/∈s

Vn (8)

where one sums the values of the tasks that have been
completed. The stochastic dynamic programming iteration
becomes

V (s, t) = max
u∈F (s)

∑

s′∈S

Q(s′|s, u)V (s′, t + 1) (9)

t = 1, . . . ,M ; s ∈ S (10)

The above procedure computes the optimal value completed
for the initial condition where no task has been completed
and all vehicles are in their starting positions.

Unfortunately, exact solution of the above dynamic pro-
gramming problem is possible only for small numbers of
tasks and vehicles, as the cardinality of the state S grows
exponentially with the number of tasks and the number of
vehicles. In the experimental results, we show comparisons
with the performance obtained by the rollout algorithms and
the optimal performance as computed by stochastic dynamic
programming in small examples.

IV. OPERATION UNDER VARIABLE HUMAN GUIDANCE

There are two modes that we consider in this paper. In
the autonomous mode, the operator specifies values for the
different task locations. The vehicles use either the multi-
vehicle rollout algorithm or the coordinate ascent algorithm
to select paths among the tasks. After each step is complete,
the vehicle and task states are recomputed, and the same
algorithms are used to determine a new path with a smaller
horizon.

In the partition mode, tasks are assigned to individual
vehicles, and vehicles are constrained to act on the assigned
tasks. Values are also assigned to tasks, and it is possible to
assign the same task to multiple vehicles. Solution for the
routing of each vehicle can be done with the same algorithms
as before, constrained to the constraints that vehicles be
restricted to their subset of designated nodes.

Since both of the proposed algorithmic techniques are
suitable for opertion in either of the modes, it is important
to determine which of the two techniques provides superior
performance. That is the purpose of the next section, our
experiment results.

V. EXPERIMENTS

In our experiments, we compare the performance of
the multi-vehicle rollout algorithm (MVRA), the coordinate
ascent rollout algorithm (CARA) and the full stochastic
dynamic programming solution whenever possible.

For our first results, We consider a set of test problems
consisting of three basic problems and a variable number of
tasks assigned. The first test problem consists of 3 vehicles
and 36 tasks distributed uniformly in a square area of size
60 × 60. Quantized task values are integers from 2 to 10.
The second test problem had 3 vehicles and 48 tasks in the
same 60 × 60 area, with 6 values at 10 and 42 values at

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB15.5

1142

Problem Hor. Risk MVRA CARA
1 7 Low 83.43 88.31
1 14 Low 101.47 105.38
1 20 Low 104.41 112.41
1 7 High 68.21 82.49
1 14 High 86.82 105.36
1 20 High 101.57 110.90
2 7 Low 88.16 89.33
2 14 Low 129.19 125.32
2 20 Low 134.99 143.51
2 7 High 77.58 85.30
2 14 High 113.10 123.22
2 20 High 123.73 141.14
3 7 Low 178.26 179.71
3 14 Low 245.82 249.83
3 20 Low 249.07 249.97
3 7 High 168.5 177.99
3 14 High 229.73 249.03
3 20 High 242.58 249.78

TABLE I

PERFORMANCE OF MVRA AND CARA ALGORITHMS ON TEST

PROBLEMS WITH VARIABLE HORIZON AND RISK LEVELS

2. The third problem also had 3 vehicles and 41 tasks, in
a narrow rectangular region of size 60 × 2, and values as
integers between 2 and 10.

For each problem, arcs were introduced between every pair
of tasks. The probabilities pij of successfully traversing an
arc between tasks i and j were selected uniformly in [Lij , 1],
where Lij is a lower bound on the probability of successful
traversal. Two different conditions were used to determine
this bound for each of the test cases, resulting in different
levels of risk. The high risk version had

Lij = 1 − dij

170
where dij corresponded to the distance between tasks i and
j. The low risk version had

Lij = 1 − dij

1000
Additional details on these test problems are provided in [7].

Table I contains the results of our experiments. For each
tested condition, the table reports the expected value obtained
by the paths selected for each vehicle, averaged over ten
instances of the random problems. Across all of these prob-
lems, the maximum computation time was under 17 seconds
in a 1.2 GHz Intel workstation running LINUX. In general,
CARA took about 3 times longer to compute a solution
than MVRA, due to the number of iterations required for
convergence.

The results in Table I show that the CARA algorithm
yields superior performance to that of the MVRA algorithm
across all the tested conditions. These results suggest that it
is superior to construct vehicle paths one vehicle at a time,

Hor. Risk MVRA CARA SDP
5 Low 38.7 39.8 42.3
7 Low 39.5 42.1 44.3
9 Low 40.1 43.2 46.8
5 High 26.8 33.2 36.5
7 High 32.1 35.2 39.1
9 High 34.5 38.4 43.3

TABLE II

PERFORMANCE OF MVRA, CARA AND SDP ALGORITHMS ON SMALL

PROBLEMS WITH VARIABLE HORIZON AND RISK LEVELS

instead of using a rollout approach to compute a cost to
go across vehicles and times. Based on these results, we
propose to use the CARA algorithm as the basis for our
future experiments involving human supervisory control.

The above results do not show whether the performance of
the CARA algorithm is close to the optimal performance as
computed by the stochastic dynamic programming algorithm.
To evaluate this, we consider a smaller problem, which has
a total of 12 tasks and 2 vehicles. As before, the 12 tasks
were distributed uniformly in a square area of size 30× 30,
with quantized task values as integers from 2 to 10. The
probability of successful traversing an arc from node i to
node j was sampled uniformly as in the low-risk and high
risk versions discussed above, in the interval [Lij , 1] where
dij is the Euclidean distance between nodes i and j. To
keep the computations under control, we use three horizons,
corresponding to 5, 7 and 9 units.

Table II contains the results of our experiments with the
three algorithms, where the stochastic dynamic programming
algorithm is denoted SDP. As in the previous experiments,
the results reported are the average of 10 randomly selected
problems generated according to the problem description
above. For the CARA and MVRA algoritms, the value re-
ported is the value computed by the expected cost according
to (3). For the SDP algorithm, the cost reported is the optimal
value computed by the SDP recursion in (9). Note that this
represents comparing the value achieved by a closed-loop
feedback algorithm versus open-loop sequences of nodes
to visit. Thus, there should be a significant performance
difference between the optimal SDP performance and the
open-loop performance achieved by MVRA and CARA.

The results again confirm that the CARA approach yields
improved solutions over the MVRA approach, and is closer
to the optimal SDP algorithm. As the horizon is increased,
the algorithms find less risky paths and exploit the additional
stages to collect additional value. For short time horizons, the
algorithms attempt the higher-valued tasks, even if the risks
are high, and reduce the total value collected.

VI. CONCLUSION

In this paper, we considered the problem of task assign-
ment and scheduling for a team of unmanned vehicles in a
risky environment where vehicles incur the risk of destruc-
tion. The possibility of vehicle loss requires that selected

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB15.5

1143

task assignments hedge against risk by assigning multiple
vehicles to valuable objects. We presented an expected value
formulation for computing the expected task value completed
given deterministic paths for each vehicle. We developed
two extensions of our previous results on rollout algo-
rithms for stochastic scheduling to multivehicle scenarios,
and described their implementation. We also presented a
stochastic control formulation of the problem, and discussed
the dynamic programming solution.

We evaluted the two rollout algorithms and the stochastic
dynamic programming algorithm over a set of randomly gen-
erated problems. Our results indicate that the slower of the
two approaches, the Coordinate Ascent Rollout Algorithm,
achieved superior performance in all of the test conditions.

Our goal in this study is to develop feedback scheduling
algorithms that hedge against and adapt to vehicle loss.
The approximate algorithms presented in this paper solve
an open-loop version of the problem. To generate adap-
tive versions of these algorithms, we will use the rollout
algorithms in a model-predictive control framework, where
new observations will trigger re-optimization of selected
trajectories based on the most recent information available.

The results in this paper illustrate the expected value
achieved by the different algorithms when the trajectories
selected by the CARA and MVRA algorithms are used
without adaptation. Future work will include evaluations
of the closed-loop performance of these algorithms when
adaptation is introduced using model-predictive control. We
will also be implementing this paradigm for experiments

in Boston University’s Mechatronics Laboratory in order to
introduce alternative ways of exercising human guidance and
control of the unmanned vehicles.

VII. ACKNOWLEDGMENTS

The authors would like to thank the Conference Editorial
Board reviewers for their thoughtful comments that improved
the final presentation in the paper.

REFERENCES

[1] W. B. Powell, “A Stochastic Model of the Vehicle Allocation Problem,”
Transportation Science, vol. 20, pp.117-129, 1986.

[2] W. B. Powell and T. A. Carvalho, “Dynamic Control of Logistics
Queueing Networks for Large-scale Feel Management,” Transporta-
tion Science, vol. 32, pp.161-175, 1998.

[3] K. P. Papadaki and W. B. Powell, “An Adaptive Dynamic Pro-
gramming Algorithm for a Stochastic Multiproduct Batch Dispatch
Problem,” Naval Research Logistics Quarterly, vol. 50, pp.742-769,
2003.

[4] D. P. Bertsekas and D. A. Castañón, “Rollout Algorithms for Stochas-
tic Scheduling,” Heuristics, V. 5, pp.89–108, April, 1999.

[5] G. G. denBroder, R. E. Ellison and L. Emerling, “On Optimum Target
Assignment,” Operations Research, V. 7, 1959.

[6] D. A. Castañón and J. Wohletz “Model Predictive Control for Dynamic
Unreliable Resource Allocation,” Proc. 41st IEEE Conference on
Decision and Control, Las Vegas, NV, Dec. 2002.

[7] D. K. Ahner, Planning and Control of Unmanned Air Vehicles in
a Dynamic Stochastic System, Ph. D. Thesis, Systems Engineering,
Boston University, May 2005.

[8] S. P. Lloyd and H. S. Witsenhausen, “Weapons Allocation is NP-
Complete,” Proc. 1986 Summer Conf. on Simulation, Reno, NE 1986.

[9] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Skocaert,
“Constrained Model Predictive Control: Stability and Optimality,”
Automatica, V. 36, 2000.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB15.5

1144

