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Abstract— The aim of this paper is to show the applicability
of geometric techniques to a regulation problem for linear,
time-delay systems. Given a plant whose dynamics equations
include delays, the problem we consider consists in finding a
feedback regulator which guarantees asymptotic stability of
the regulation loop and asymptotic command following of the
reference signal generated by an exosystem, for any initial
condition of the overall system. By associating to the time-delay
plant a corresponding abstract system with coefficients in a ring,
it is possible to place our investigation in a finite dimensional
algebraic context, where intuition and results obtained in the
classical case, that is without delays, may be exploited.

I. INTRODUCTION

Time-delay dynamical systems of various kind frequently

appear in industrial applications, where delays are unavoid-

able effects of the transportation of materials, and, more

generally, in control applications where information is dis-

patched along slow or very long communication lines, like

in tele-operated systems, networked systems, large Integrated

Communication Control Systems or ICCS. The study of

control problems concerning time-delay systems has, for

that reason, attracted the attention of several authors and

motivated, in the last years, large research efforts (see the

Proceedings of the IFAC Workshops on Time-delay Systems

[1], [2], [3], [4], [5], [6] and the books [7], [8] for an account

of the recent literature).

Among the various approaches developed for dealing with

time-delay systems and related control problems, the one

based on the use of geometric methods, in the spirit of

[9] and [10], has proved to be particularly effective in

many situations, as shown in [11], [12] and the references

therein. Application of geometric methods to time-delay

systems relies on the possibility of associating naturally

to any linear, time-delay system an abstract system with

coefficients in a suitable ring. In this way, control problems

arising in the time-delay framework can be equivalently

formulated, and possibly solved, in an algebraic framework

where input/output behaviours have finite dimensional state

space realizations. Here, after recalling in Section II the

relationship between time-delay systems and systems with

coefficients in a ring and some basic notions and results of

the geometric approach, we study the so-called Multivariable
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Autonomous Regulator Problem for linear, time-delay sys-

tems with geometric methods. A description of the problem

for linear systems without delays and further references can

be found in [13] and [14].

Given a linear, time-delay plant Σpd, the problem, formally

stated in Section III, consists in finding a feedback regulator

Σrd which guarantees asymptotic stability of the regulation

loop and asymptotic command following of the reference sig-

nal generated by an exosystem Σed, for any initial condition

of the overall system. By extending the results known in the

classical case, we find sufficient conditions for the solution of

the considered problem in the ring framework. The solution

then can be re-interpreted in the original delay-differential

framework. The results obtained show the applicability and

the efficacy of the geometric approach combined with meth-

ods of algebra and ring theory in solving control problems

for time-delay systems.

II. PRELIMINARY RESULTS

Let us consider a linear, time invariant, time-delay system

Σd defined by equations of the form

Σd =























ẋ(t) =

a
∑

i=0

Aix(t − ih) +

b
∑

i=0

Biu(t − ih),

y(t) =

c
∑

i=0

Cix(t − ih),

(1)

where, denoting by R the field of real numbers, x(·) belongs

to the space Rn, u(·) belongs to the input space Rm, y(·)
belongs to the output space Rp, Ai, with i = 0, 1, . . . , a, Bi,

with i = 0, 1, . . . , b, Ci, with i = 0, 1, . . . , c, are matrices of

suitable dimensions with entries in R, and h∈R
+ is a given

time delay.

According to a well-known procedure (see e.g. [11]), the

system Σd can be associated to a new system Σ, defined over

a ring. More precisely, by introducing the delay operator δ,

defined, for any function f(t), by δf(t)= f(t−h), we can

rewrite equations (1) as























ẋ(t) =

a
∑

i=0

Aiδ
ix(t) +

b
∑

i=0

Biδ
iu(t),

y(t) =

c
∑

i=0

Ciδ
ix(t).

(2)
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Now, by formally substituting the operator δ by the indeter-

minate ∆, we can consider the matrices

A =
a

∑

i=0

Ai∆
i, B =

b
∑

i=0

Bi∆
i, C =

c
∑

i=0

Ci∆
i,

having their elements in the ring of polynomials R[∆], and

we can associate to Σd the system Σ defined over the ring

R[∆] by the set of equations

Σ =

{

x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t),
(3)

where, by abuse of notation, we denote by x(·) an element

of the free state module X = (R[∆])n, by u(·) an element

of the free input module U =(R[∆])m, and by y(·) an

element of the free output module Y =(R[∆])p.

The system Σ, derived as described above, is an

exemplification of system with coefficients in a ring.

Abstract systems with coefficients in a ring R have been

considered by many authors (see [15], [16], [17], [18],

[19], [20] and the references therein) and their study has,

in general, provided a better insight into the properties of

classical dynamical systems with coefficients in R, which in

particular is a ring, as well as it has been useful in dealing

with systems with integer coefficients, time-delay systems

and families of parameter depending systems.

Note that Σd and Σ are quite different objects from a

dynamical point of view. However, they share the structural

properties that depend on the defining matrices and, in

particular, they have the same signal flow graph. This fact

implies that control problems concerning the input/output

behavior of Σd can be formulated naturally in terms of the

input/output behavior of Σ. Solutions found in the framework

of systems over rings can often be interpreted in the original

delay-differential framework, providing in this way a solution

to the problem at issue. The advantage of working in the ring

framework consists in the possibility of employing algebraic

tools and of dealing with finite dimensional modules instead

of infinite dimensional vector spaces, like the state space

of Σd (see [21] for comments on this point). In particular,

using the associated systems with coefficients in a ring, it

is possible to extend to time-delay systems the methods and

tools of the geometric approach: see [11] for an account of

the geometric approach for systems with coefficients in a

ring.

Since a ring cannot, in general, be endowed with a natural

metric structure, when using systems over rings stability must

be defined in a formal way by introducing the concept of

Hurwitz set.

Definition 1: Given a ring R, a subset S ⊆R[z] of poly-

nomials with coefficients in R in the indeterminate z is said

an Hurwitz set if

(i) it is multiplicatively closed;

(ii) it contains at least an element of the form z − α, with

α∈R;

(iii) it contains all the factors of all its elements.

Given a Hurwitz set S, a system Σ of the form (3) with

coefficients in R is said S-stable if det(zI − A) belongs to

S.

When systems over a ring are used to model time-delay sys-

tems and R = R[∆], the chosen Hurwitz set is the following

(see [22]):

H = {p(z, ∆) ∈ R[z], such that

p(γ, e−γh) 6= 0 for all γ ∈ C, with Re γ ≥ 0},

where C denotes the field of complex numbers.

Stability of the time-delay system Σd in the delay differen-

tial framework corresponds to H-stability of the associated

system Σ in the ring framework.

The basic notions of the geometric approach we will need

in the following are briefly recalled below.

Definition 2 ([23]): Given a system Σ, defined over a ring

R by equations of the form (3), a submodule V of its state

module X is said to be

(i) (A, B)-invariant, or controlled invariant, if and only if

AV ⊆V + Im B;

(ii) feedback invariant if and only if there exists an R-linear

map F : X →U such that (A+ BF )V ⊆V .

Any feedback F as in (ii) above is called a friend of V .

While controlled invariance is a purely geometric property,

feedback invariance is a notion related to system dynamics

and it is equivalent to invariance with respect to a closed

loop dynamics. For systems with coefficients in a ring, an

(A, B)-invariant submodule V is not necessarily of feedback

type and therefore it cannot always be made invariant with

respect to a closed loop dynamics, as it happens in the special

case of systems with coefficients in the field of real numbers

R. The geometric notion of (A, B)-invariance is weaker than

the dynamic notion of feedback type invariance, which is

the most important in applications and the most difficult

to check. Here, we are only interested in remarking that

equivalence between them holds if V is a direct summand

of X (see [24] for further comments).

In general it is not easy to characterize direct summands, but

if R is a Principal Ideal Domain (PID), as in case R = R[∆],
this can be done by using the notion of closure as described

below.

Definition 3 ([25]): Let V ⊆W⊆Rn. The closure of V
in W is the submodule

clW(V) = {x∈W for which there exists

a∈R, a 6=0, such that ax∈V}.
Remark that clW(V) is the smallest closed submodule con-

taining V and that it has the same dimension of V . When no

confusion arises, we drop the subscript in denoting closures.

Proposition 1 ([25]): Let R be a PID, then a submodule

V ⊆Rn is a direct summand of X if and only if V is closed.

Given a system Σ, it is often of interest to consider the maxi-

mum (A, B)-invariant submodule contained in the Kernel of

the output map C, which is generally denoted by V∗. For
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systems with coefficients in a Principal Ideal Domain R, V∗

is of feedback type if and only if it is closed (see [24]). A

procedure for constructing V∗ can be found in ([26]).

III. STATEMENT OF THE PROBLEM

In order to formally state the problem we want to tackle,

let us consider a linear, time-delay, to-be-controlled system

defined by equations of the form

Σpd =







ẋp(t) =
∑ap

i=0
Apixp(t − ih)+

+
∑bp

i=0
Bpiu(t − ih)

y(t) =
∑cp

i=0
Cpixp(t − ih),

(4)

where the state xp(·), the input u(·) and the output y(·)
respectively belong to Rn, Rm, Rp, the matrices Api,

with i =0, 1, . . . , ap, Bpi, with i =0, 1, . . . , bp, Cpi, with

i =0, 1, . . . , cp, have compatible dimensions and entries in

R, the scalar h∈R+ is a given time delay. Indeed, according

to the procedure introduced in Section II, we will henceforth

consider the following, equivalent writing for (4)
{

ẋp(t) =
∑ap

i=0
Apiδ

ixp(t) +
∑bp

i=0
Bpiδ

iu(t)
y(t) =

∑cp

i=0
Cpiδ

ixp(t)

Let us also consider the exogenuos generator Σed of refer-

ence signals, of the form

Σed =

{

ẋe(t) = Aexe(t),

r(t) = Eexe(t),
(5)

where the state xe(·) and the output r(·) respectively belong

to Rne and Rp, and where the matrices Ae and Ee have

compatible dimensions and entries in R.

Then, let the system Σd be defined as the parallel connection

of Σpd and Σed shown in Figure 1. Namely, let the output

e∈Rp of Σd be defined as the regulation error: i.e., the

difference between the reference signal r and the controlled

output y.

Problem 1: Given the linear, time-delay to-be-controlled

system Σpd, described by (4), and the linear exogenous

system Σed, described by (5), the Multivariable Autonomous

Regulator Problem consists in finding a time-delay feedback

regulator Σrd, of the form

Σrd =























ẋr(t) =

ar
∑

i=0

Arixr(t − ih) +

br
∑

i=0

Brie(t − ih),

u(t) =

cr
∑

i=0

Crixr(t − ih) +

dr
∑

i=0

Drie(t − ih),

(6)

where the state xr(·), the input e(·), the output u(·) respec-

tively belong to Rnr , Rp, Rm, and where the matrices Ari,

with i =0, 1, . . . , ar, Bri, with i =0, 1, . . . , br, Cri, with

i =0, 1, . . . , cr, Dri, with i =0, 1, . . . , dr, have compatible

dimensions and entries in R, which achieves asymptotic

stability of the regulation loop and asymptotic tracking of

the reference signal for any initial condition of the composite

system Σd.

The complete block diagram for the Multivariable Au-

tonomous Regulator Problem is shown in Figure 1.

+


_






























Σpd

Σed

Σrd

Σd

eu

r

y

Fig. 1. Block diagram of the Multivariable Autonomous Regulator Problem
for linear, time-delay systems.

IV. STATEMENT OF THE PROBLEM IN GEOMETRIC

TERMS FOR SYSTEMS OVER A RING

In order to solve Problem 1, we will reformulate it in the

ring framework and we will apply the methods and tools of

the geometric approach to systems over rings.

According to the technique recalled in Section II, let the

systems Σe and Σp be defined, respectively, over the ring

R[∆] by the equations

Σe =

{

xe(t + 1) = Aexe(t),

r(t) = Eexe(t).
(7)

and

Σp =

{

xp(t + 1) = Apxp(t) + Bpu(t),

y(t) = Cpxp(t),
(8)

with

Ap =

ap
∑

i=0

Api∆
i, Bp =

bp
∑

i=0

Bpi∆
i, Cp =

cp
∑

i=0

Cpi∆
i. (9)

Hence, the system Σ over the ring R[∆], associated to Σd,

is defined by the equations

Σ =

{

x(t + 1) = Ax(t) + Bu(t),

e(t) = Ex(t),
(10)

with

A =

[

Ap O
O Ae

]

, B =

[

Bp

O

]

, E =
[

−Cp Ee

]

.

(11)

The regulator Σr over the ring R[∆], associated to a feed-

back regulator Σrd, which possibly solves the Multivariable

Autonomous Regulator Problem in the delay-differential

framework, is defined by the equations

Σr =

{

xr(t + 1) = Arxr(t) + Bre(t),

u(t) = Crxr(t) + Dre(t).
(12)

where

Ar =
∑ar

i=0
Ari∆

i Br =
∑br

i=0
Bir∆

i

Cr =
∑cr

i=0
Cir∆

i Dr =
∑dr

i=0
Dri∆

i.
(13)
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Now, let the so-called autonomous extended system Σ̂ be

defined as the closed loop connection of Σ and Σr, so that,

with x̂=
[

x⊤
p x⊤

e x⊤
r

]⊤
, its equations are

Σ̂ =

{

x̂(t + 1) = Â x̂(t),

e(t) = Ê x̂(t),
(14)

where

Â =





Ap − BpDrCp BpDrEe BpCr

O Ae O
−BrCp BrEe Ar



 , (15)

Ê =
[

−Cp Ee O
]

. (16)

In the light of the above correspondences, the Multivariable

Autonomous Regulator Problem is recast in geometric terms

in the framework of systems over a ring as follows.

Problem 2: Given the system Σ described by (10) and

(11), the Multivariable Autonomous Regulator Problem con-

sists in finding a feedback regulator Σr, described by (12),

such that there exists a closed Â-invariant submodule Ŵ ⊆ X̂
of Σ̂, which satisfies the conditions

(i) Ŵ ⊆ Ker Ê,

(ii) the dynamics induced on the quotient module X̂/Ŵ
by that of Σ̂ is H-stable.

Note that, since Ŵ is a closed submodule, Ŵ is a direct

summand of X̂ . Therefore, the quotient X̂/Ŵ is a free R-

submodule of the form Rq, for some q and the induced

dynamics can be represented by a suitable, q × q matrix

Z , with entries in R. H-stability of the induced dynamics

means that det(zI − Z) belongs to H.

Moreover, condition (i) of Problem 2 means that any state

trajectory originating from a state on Ŵ evolves inside

Ŵ ⊆ Ker Ê. Hence it is invisible at the output of Σ̂ (perfect

tracking).

Condition (ii) corresponds, in the time delay framework, to

the fact that any state trajectory originating from a state

external to Ŵ asymptotically tends to Ŵ, so that asymptotic

tracking is assured.

V. SOLUTION OF THE PROBLEM

In the classical case, suitable stabilizability and detectabil-

ity assumptions have to be made in order to solve the

problem (see [13]). In the ring framework, this corresponds

essentially to assume H-stabilizabilty of the pair (A, B)
and H-detectability of the pair (A, E). Since the use of

static feedback and of static output injection would be too

restrictive, these notions mean that there exists a dynamic

extension (A′, B′) of (A, B) and a feedback F such that

det(zI − (A′ +B′F )) belongs to H and, respectively, that

there exists a dynamic extension (A′′, E′′) of (A, E) and an

output injection G such that det(zI − (A′′ +GE′′)) belongs

to H. In order to simplify notations, we will assume in

the following, that, if necessary, dynamic extensions have

already been made. This allows us to assume, as basic con-

ditions for solving the Multivariable Autonomous Regulator

Problem, that

• Stabilizability: there exists a feedback F such that

det(zI − (A+ BF )) belongs to H,

• Detectability: there exists an output injection G such

that det(zI − (A+GE)) belongs to H.

In order to state sufficient conditions for the solvability of

Problem 2 in terms of the autonomous extended system Σ̂,

we introduce the free submodule P̂ ⊆ X̂ , spanned in X̂ by

the columns of the matrix

P̂ =





I O
O O
O I



 , (17)

which refers to the partition considered in (15). The submod-

ule P̂ is Â-invariant. In fact, we have

ÂP̂ = P̂ Ŝ (18)

with

Ŝ =

[

Ap − BpDrCp BpCr

−BrCp Ar

]

.

This also shows that the dynamics induced by the matrix Â
on the submodule P̂ coincides with that of the regulation

loop.

Now we can state sufficient conditions for solvability of

Problem 2, referred to Σ̂.

Theorem 1: The Multivariable Autonomous Regulator

Problem is solvable for the system Σ̂ if, for some regula-

tor (12), there exists an Â-invariant submodule V̂ ⊆ X̂ , such

that

(i) V̂ ⊆Ker Ê,

(ii) V̂ ⊕ P̂ = X̂ ,

(iii) the dynamics restricted to the quotient module X̂/V̂ is

H-stable.

PROOF. Assume that, for some regulator (12), there exists an

Â-invariant submodule V̂ ⊆ X̂ satisfying conditions (i)-(iii).

Then, Problem 2 is solvable, since conditions (i)-(ii) of the

problem statement are satisfied with Ŵ = V̂ .

In order to provide checkable conditions for the solvability

of Problem 2 directly referred to the regulated system Σ, let

us denote by P ⊆X the submodule spanned by the columns

of the matrix

P =

[

I
O

]

, (19)

which refers to the partition considered in (11). Since

AP =PAp,

P is A-invariant and the dynamics induced by A on P is

that of the to-be-controlled system.

Then, the sufficient condition for solvability of Problem 2,

referred to Σ, is expressed by the following

Theorem 2: The Multivariable Autonomous Regulator

Problem is solvable if there exists an (A, B)-controlled

invariant submodule V ⊆X such that

(i) V ⊆Ker E,

(ii) V ⊕P = X .

PROOF. Let V ⊆X be an (A, B)-controlled invariant sub-

module satisfying conditions (i)–(ii). By condition (ii) V is
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of feedback type and it can be shown, as in [13], that there

exists a friend F , partitioned into [Fp Fe] according to (11),

such that Ap + BpFp is H-stable. Now, let G be such that

(A+ GE) is H-stable. The regulator Σr of the form (12),

with
Ar =A+ BF +GE, Br =−G,

Cr =F, Dr =O,

then solves the problem. In fact, the matrices Â and Ê have

the form

Â =

[

A BF
−GE A + BF + GE

]

, Ê =
[

E O
]

,

(20)

and conditions (i)–(iii) of Theorem 1 are satisfied by taking

V̂ as the submodule spanned by the columns of the matrix
[

V
V

]

,

where, by (ii), a basis matrix for V has the form

V =

[

V1

I

]

.

This can be easily checked by performing the similarity

transformation defined by

T̂ = T̂−1 =

[

I O
I −I

]

.

Theorem 2 gives a sufficient condition for solvability of

the Multivariable Autonomous Regulator Problem in terms

of the original data. However, no algorithm to compute V is

given.

A possible strategy to search for V , in some situations,

is the following. Consider the maximum (A, B)-invariant

submodule V∗ for the system Σ, defined by (10), contained

in Ker E and assume it is closed. If V∗ +P =X holds,

choose a basis T = [T1 T2 T3] of X , with Im T1 =V∗ ∩P
and Im [T1 T2] =V∗. Then, for any friend F of V∗, the

matrix (A + BF ) in the new basis takes the structure

A′

F =





A′
F11

A′
F12

A′
F13

O A′
F22

O
O O A′

F33



 . (21)

If there exists a matrix M of suitable dimension such that

the equality A′
F11

M −MA′
F22

=−A′
F12

holds, it can be

shown that the submodule V = Im (T1 X +T2) is an (A, B)-
controlled invariant submodule satisfying conditions (i) and

(ii) of Theorem 2 and hence the Multivariable Autonomous

Regulator Problem is solvable.

VI. AN ILLUSTRATIVE EXAMPLE

Assume that the time-delay system Σpd, defined by the

equations

Σpd =







ẋ1(t) = −2x1(t) + x2(t − h) + u1(t) + u2(t − h)
ẋ2(t) = −x2(t) + u2(t)
y(t) = x1(t)

(22)

is required to track the reference signals generated by the

exosystem Σed, defined by the equations

Σed =

{

ẋe(t) = 0
r(t) = xe(t)

(23)

Denoting by Σp and Σe the associated systems over the

ring R = R[∆], with the notation of (11), we have that the

regulated system Σ is described by the triple (A, B, E),
where

A =









−2 ∆ 0

0 −1 0

0 0 0









, B =









1 ∆

0 1

0 0









E =
[

−1 0 1
]

(24)

The pair (A, E) is weakly observable. In this case,

V∗ = Ker E = span











1 0
0 1
1 0











and V∗ +P = X holds with

P = span











1 0
0 1
0 0











.

In particular,

V = span











1
0
1











and V is a controlled invariant submodule such that

V ∩ P = {0}, V + P = R3.

Then, V ⊕ P = X and the hypotheses of Theorem 2 are

satisfied.

The feedback

F =

[

1 −∆ 1

0 −1 0

]

,

where

Fp =

[

1 −∆
0 −1

]

is such that Ap + BpFp is H- stable.

G =









0

0

−1









is such that A + GE is H-stable. Then, the regulator Σr

defined by equations of the form (12) with

Ar =









−1 −∆ 1

0 −2 0

1 0 −1









, Br =









0

0

1









Cr =

[

1 −∆ 1

0 −1 0

]

, Dr = 0

(25)
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solves the problem over the ring R.

The problem for the delay differential systems (22) is solved

by the regulator

Σrd =























ẋr1(t) = −xr1(t) − xr2(t − h) + xr3(t)
ẋr2(t) = −2xr2(t)
ẋr3(t) = xr1(t) − xr3(t) + e(t)
u1(t) = xr1(t) + xr2(t − h) + xr3(t)
u2(t) = −xr2(t).

(26)

VII. CONCLUSION

In this work, the classic formulation of the Multivariable

Autonomous Regulator Problem has been extended to en-

compass the case where time delays are present.

The problem, then, has been recast in geometric terms

in the equivalent context of finite-dimensional dynamical

systems with coefficients in the ring of polynomials R[∆].
Algebraic and ring theoretic notions, as well as concepts,

have been used in deriving sufficient conditions for the

solution of the problem.
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[8] K. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems,
ser. Control Engineering. Boston: Birkhäuser, 2003.
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