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Abstract— In this paper we propose a new nonparametric
approach to identification of linear time invariant systems using
subspace methods. The nonparametric paradigm to prediction
of stationary stochastic processes, developed in a companion
paper, is integrated into a recently proposed subspace method.
Simulation results show that this approach significantly im-
proves over standard subspace methods when using small sam-
ple sizes. In particular, the new approach facilitates significantly
the order selection step.

Index Terms— Subspace Methods; kernel-based methods;
Bayesian estimation;regularization; Gaussian processes

I. INTRODUCTION

Subspace methods for identification of Multi-Input Multi-

Output (MIMO) linear time invariant systems have received

a considerable attention in the last decades. While many sub-

space algorithms have been developed, and still the picture is

not completely clear as to relative performance, it has been

recently shown [12], [15], [8], [9], [6] that a whole class of

subspace methods are based on preliminary estimation of a

linear predictor. Among these methods, which rely on the so

called “state sequence” approach [2], it is fair to say that the

PBSIDopt algorithm, introduced in [7] and further studied in

[8], plays a special role. In fact, it has been shown in [7],

that this method is optimal within a class of methods using

the so called “CCA” weight. Moreover, as demonstrated

in [8], it can be implemented with a lower computational

complexity than most “classical” methods; this algorithm

hinges on the estimation of a Vector AutoRegressive with

eXogenous inputs (VARX) model; using the coefficients of

this VARX model, the state is recovered using the standard

circle of ideas from stochastic realization theory [17], [18],

[10] subspace methods are based on.

While the asymptotic properties of these methods are by

now fairly well understood, see [12], [2], [11], [8], [7],

less clear is the situation when the sample size is small. In

particular, since the VARX models estimated in a first step

may require a large number of coefficients (see e.g. [12], [2],

[8]), some care needs to be taken for small sample size.

In our opinion, it is quite natural to ask whether regular-

ization techniques [27], [5], which have played an important
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role in statistics to deal with either ill-conditioned problems

or model estimation with small sample sizes, could help also

in the area of subspace identification.

In a companion paper [22], we have proposed estimation

methodologies based on Gaussian regression [24], [20], [21],

first introduced in [13], to the purpose of constructing pre-

dictors for stationary stochastic processes. These models, see

formula (2), can be thought of as non-parametric extensions

of infinite order auto-regressions and, as such, are prone to

a variety of applications.

In this paper we shall discuss the use of these models

in subspace methods. In particular the predictor based on a

VARX model, estimated in the first step of the PBSIDopt

algorithm, is replaced by the nonparametric predictor. We

shall report simulation results in a number of examples

including a system operating in closed loop.

The simulation results suggests that, for small sample

sizes, the nonparametric predictor outperforms the standard

subspace methods in most cases.

The structure of the paper is as follows: Section II sum-

marizes the main facts about the nonparametric predictor.

In Section III we describe the PBSIDopt method, as well as

we quote from the literature two order estimation criteria.

Section IV shows how the nonparametric predictor is used

in the PBSIDopt algorithm, while Section V contains the

simulation results. Conclusions are drawn in Section VI.

II. PREDICTOR IDENTIFICATION VIA GAUSSIAN

REGRESSION

In a companion paper [22] we have seen that, given two

scalar stationary stochastic processes {yt}, {ut}, the predictor

ŷt =
∞

∑
k=1

Fkyt−k +
∞

∑
k=1

Gkut−k (1)

can be conveniently estimated via regularization techniques

by imposing that the impulse responses {Fk} and {Gk} live

in suitable infinite dimensional spaces. In particular, being

ζ a finite dimensional parameter to be estimated from data,

the predictor is taken to be of the form

ŷt(ζ ) =
∞

∑
k=1

Fk(ζ )yt−k +
∞

∑
k=1

Gk(ζ )ut−k (2)

Ft(ζ ) =
∞

∑
k=1

ak(ζ ) ft−k Gt(ζ ) =
∞

∑
k=1

bk(ζ )gt−k (3)

where the infinite sequences { ft} and {gt} are modeled

as zero mean Gaussian processes of given covariance and

a(ζ ) and b(ζ ) represent finite-dimensional components of
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the model. The choice of the covariance of the Gaussian

process, the structure of a(ζ ) and b(ζ ), the estimation of the

sequences { ft} and {gt} and the vector of parameters ζ given

two finite sequence of data points {y1, ...,yN}, {u1, ...,uN} is

discussed in the companion paper [22].

In [22] we have also shown that this methodology outper-

forms standard PEM as far the predictive performance of the

estimated models is concerned.

This approach can quite naturally be extended to predic-

tion of multivariate time series. We shall not enter into the

details, which are not relevant to this paper, but we need at

least to set up notation for future use.

For the MIMO case, i.e. yt ∈ R
p and ut ∈ R

m, we shall

allow for Fk and Gk in (2) to be matrix coefficients. To be

more specific, let us introduce the following notation: given

a matrix A we shall denote by [A]i the i− th row of A and by

[A]i j the element in position i, j. The i− th row, i = 1, .., p,

of ŷt(ξ ) can be written as

[ŷt(ξ )]i = ∑∞
k=1[Fk(ξ )]iyt−k +∑∞

k=1[Gk(ξ )]iut−k (4)

where

[Ft(ξ )]i j =
∞

∑
k=1

a
i j

k (ξ )[ ft−k]i j [Gt(ξ )]iℓ =
∞

∑
k=1

biℓ
k (ξ )[gt−k]iℓ

for j = 1, .., p and ℓ = 1, ..,m.

The processes fk and gk are independent, matrix valued

zero-mean Gaussian processes with suitable covariance func-

tions. A simple and reasonable choice is to assume that

vec( fk) and vec(gk) have independent components each of

them having covariance function of the form λ 2K(·, ·;β ) as

in [22] where the hyperparameters λ and β are possibly

different for each component.

Several simplifications are possible to the purpose of

reducing the number of hyperparameters ξ . For instance it is

reasonable to assume that ai j = biℓ for all i, j, ℓ. Of course

this is not necessary and distinct parametric parts could be

estimated for each output component and for each component

of the regressors [yk] j and [uk]ℓ.

III. SUBSPACE IDENTIFICATION BASED ON PREDICTOR

IDENTIFICATION: THE PBSIDopt ALGORITHM

The purpose here is to estimate the parameters

(A,B,C,D,K) of a state space model
{

xt+1 = Axt +But +Ket

yt = Cxt + et
(5)

starting from a finite set of data points {y1, ..,yN̄},

{u1, ..,uN̄}.

Since this algorithm is designed to be consistent also in

the presence of feedback, D = 0 is imposed for identifiability

reasons. Of course the algorithm can be modified if D is to

be estimated, provided there is knowledge that a delay is

present somewhere else in the loop.

We shall also denote with Λ := E[e(t)e⊤(t)] the variance

of the innovation, F(z) :=C(zI−A)−1B the transfer function

from u to y while G(z) := C(zI −A)−1KΛ1/2 +Λ1/2.

In subspace identification the two integers p and f (respec-

tively “past” and “future”) are the number of block rows in

certain block Hankel data matrices we shall encounter later

on. The choice of these parameters is not an entirely trivial

fact, and in fact is subject of current research [3], [4], [2],

[23], [8], [9], [6].

Uppercase letters (e.g. Y M
t ) denote tails of length M

formed with data points starting at time t, i.e. Y M
t :=

[yt ,yt+1, ..,yt+M−1]. Most tails which we shall use are

of length N := N̄ − p − f . When M = N we shall

drop the superscript M, i.e. Yt := Y N
t . The symbol Y[t1,t2]

denotes a block Hankel matrix as follows: Y[t1,t2] :=
[

Y⊤
t1

Y⊤
t1+1 . . . Y⊤

t2

]⊤
. With some abuse of notation

the same symbol will also be used for the row space

of these matrices. We shall define the predictor ma-

trix Ā := A − KC and the observability matrix Γ̄ f−1 :=
[C⊤, Ā⊤C⊤, ...,(Ā f−1)⊤C⊤]⊤.

First of all we recall the reader that subspace methods for

identification of linear time-invariant (LTI) systems in state

space form can be thought of as two-step procedures based

on the following:

1) Estimate bases for the state space Xp and Xp+1. These

will be matrices with n rows (the number of state

components, which will be determined as part of the

estimation procedure, see subsection III-A) and N

columns (N is of the order of the number of data

available)

2) From the estimated state sequences Xp and Xp+1,

estimate the system matrices A, B, K, C by solving

{

X̂p+1 ≃ AX̂p +BUp +KÊp

Yp ≃ CX̂p
(6)

in the least squares sense, where Êp := Yp −ĈX̂p.

The first step in the optimized version of PBSID intro-

duced in [7] (PBSIDopt) is based on the estimation of the

coefficients of the VARX model

yt =
∞

∑
i=1

Ξizt−i + et (7)

where Ξi = [Fi Gi] and zk := [y⊤k u⊤k ]⊤. These coefficients are

estimated in the least squares sense, i.e. solving1

arg min
Ξi

‖Y f−1+N
p −

p

∑
i=1

ΞiZ
f−1+N
p−i ‖F ; (8)

this may include estimation of the appropriate p using

standard criteria (e.g AIC) for VARX order estimation.

Let us now define the multi-step predictors (i = 0,1)

Ŷ[p+i,p+i+ f ) :=







Ξ̂p . . . Ξ̂ f . . . Ξ̂1

...
. . .

. . .
. . .

...

0 . . . Ξ̂p . . . Ξ̂ f






Z[i,p+i) (9)

The observability matrix and the state sequences are then

estimated as follows:

1The subscript F denotes Frobenius norm.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC04.6

3300



• Given the weighting matrix2 Wp, compute the Singular

Value Decomposition (SVD)

W−1
p Ŷ[p,p+ f ) = PDQ⊤ = [PnP̃n]

[

Dn 0

0 D̃n

][

Q⊤
n

Q̃⊤
n

]

(10)

• Form an estimate of the observability matrix Γ̄ f−1

discarding the “less significant” singular values (i.e.

pretending D̃n ≃ 0) from ˆ̄Γ f−1 = WpPnD
1/2
n .

• Estimate a basis for the state space from

X̂p := ˆ̄Γ−L
f−1Ŷ[p,p+ f ) (11)

X̂p+1 := ˆ̄Γ−L
f−1Ŷ[p+1,p+ f+1) (12)

• An estimator of the innovation sequence Ep can be

found by Êp := Yp −YpX̂⊤
p

(

X̂pX̂⊤
p

)−1
X̂p .

A. Order Estimation

Estimating a model from data includes selecting the com-

plexity of the model. When considering linear state space

models, the complexity is given by the state space dimension,

denoted in this paper by n. In particular, when using subspace

methods, order estimation amounts to deciding a suitable

value of n such that in the SVD (10) one can approximate

D̃n ≃ 0. Similarly to standard criteria for model order esti-

mation such as AIC, MDL, BIC (see e.g. [19], [26]) also

in subspace methods one trades between “goodness of fit”

(measured by a suitable criterion) and the model complexity

d(n), measured by the number of estimated parameters. This

trade off, of course, depends upon the number N of data

available.

To date, there is no established procedure for estimating

the order of subspace methods. According to the recent

surveys [1], [2], we considered the following two criteria:

1) Singular Value Criterion (SVC)

SVC(n) := σ2
n+1 +

log(N)

N
d(n) (13)

where σ2
i is the i− th singular value in the SVD step,

i.e. the i− th eigenvalue of the matrix D;

2) Innovation Variance Criterion (IVC)

IVC(n) := log(det(Λ̂n))+
log(N)

N
d(n) (14)

where Λ̂n is the variance of the prediction error using

the n− th order model.

The order is estimated by computing the value of n which

minimizes either SVC or IVC. In the three SISO examples

included in the paper we have used the SVC criterion while,

to the purpose of comparison, also IVC have been tested in

the MIMO case. We have observed that, even though IVC

tends to strongly overestimate the order, the performance in

terms of L2 norm of the error is better than using SVC (see

Figure 4), which instead underestimates the order. Of course,

this might simply depend upon the specific example and it

is outside the scope of this paper to comment further on this

issue.
2See [8] for a choice which corresponds, asymptotically, to performing

conditional Canonical Correlation Analysis between the “past” of y and u,
and the “corrected future” of y.

IV. USING THE NON-PARAMETRIC PREDICTOR IN

SUBSPACE IDENTIFICATION

In this paper we propose using the nonparametric pre-

dictors introduced in Section II in conjunction with the

PBSIDopt algorithm in Section III. In fact, as discussed

above, the first step in PBSIDopt consists in estimating a

linear predictor of yt , see equations (7) and (8). As discussed

in the papers [2], [7], [8], the length p of this VARX model

needs to be large, so that (A−KC)p becomes negligible. In

practice a suitable value of p can be chosen by standard order

estimation methods such as AIC.

It can be shown that (see [12], Remark 3.6, [16], page 93,

end of Section 2 and [14]) if p̂ is the minimizer of the AIC

criterion, p = Mp̂, with M > 1, guarantees consistency.

Unfortunately having (A−KC)p small might be difficult

to achieve, especially when either the eigenvalues of A−KC

are close to the unit circle or the number of data available

N is small.

In order to circumvent the difficulties in estimating these

predictors, for small sample sizes, we suggest substituting the

estimated coefficients Ξ̂i in (8) with the nonparametric pre-

dictor coefficients3 Ξ̂NP
i := [F̂i(ξ ) Ĝk(ξ )]. These coefficients

are then used in lieu of Ξ̂i in formulas (9).

Unfortunately it seems rather hard to provide a statistical

analysis of this procedure and therefore, in this paper, we

shall only report simulation results in a number of interesting

examples.

V. EXAMPLES

In order to test the proposed approach we consider four

examples. The first three are SISO systems; data have been

generated4 according to the model yt = F(z)ut +G(z)et The

input ut is either zero mean unit variance white noise (System

1 and 3) or obtained by a feedback mechanism (System 2)

ut =−yt +rt where rt is zero mean unit variance white noise.

The details about the transfer functions F(z) and G(z) are

reported in table V.

The fourth example (system 4) is a 4-th order system with

2 inputs and 1 output:

xt+1 =









0 1 0 0

0 0 1 0

0 0 0 1

−0.5329 1.606 −2.42 2.2









xt+

+









1 0

0 1

1 1

2 1









ut +









0

0

0

1









et

yt = [−1.1242 1.12 −2.5 2.8]xt + et

The input ut is zero mean white Gaussian noise with covari-

ance E[utu
⊤
t ] = I.

The following identification methods have been compared:

(i) the proposed identification scheme (named Nonpara-

metric in the plots). The length of the nonparametric

predictor has been set to 30, which is the maximum

3The superscript NP stands for nonparametric.
4Transient data have been discarded.
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Fig. 1. System 1: (Top) Singular values: average over 100 Monte Carlo runs. (Bottom) Mean square error (Average L2 norm of the transfer function
error).

F(z) G(z)

System 1
0.5578z−0.242

z2 −0.7z−0.18

z2 +0.4z−0.21

z2 −0.7z−0.18

System 2
0.4802z−1.351

z2 −0.6z+0.73

z2 +0.6z−0.27

z2 −0.6z+0.73

System 3
1.067z3 −6.824z2 −1.39z−0.8556

z4 −1.1z3 +0.95z2 −0.523z−0.153

z4 +0.8z3 +0.8z2 +0.256z−0.1785

z4 −1.1z3 +0.95z2 −0.523z−0.153

TABLE I

DETERMINISTIC (F(z)) AND STOCHASTIC (G(z)) PART OF THE MODELS.

value of p allowed for the VARX model in the

PBSIDopt method below. The future horizon has been

set to 10. The order has been selected using the SVC

criterion.

(ii) the PBSIDopt method, which is based on the VARX

model (named VARX in the plots). The length of the

past horizon p used here has been selected using the

AIC routine in the SI toolbox of Matlab. The maximum

length of p has been set to 30. The future horizon

has been set to 10. The order has been selected using

the SVC criterion (systems 1,2,3,4) or IVC criterion

(system 4).

(iii) Matlab PEM initialized with the nonparametric model

obtained using the proposed approach. The order is

determined by the order of the model obtained in (i).

(iv) the “default” Matlab PEM, which uses the n4sid.m

routine as initialization. AIC has been used to select

the order in the range [1 : 10].

All identification experiments have been performed with

N = 100 for systems 1 and 2, while N = 150 data points

have been used for system 3 and system 4; 100 Monte Carlo

runs have been performed for all the four experiments.

It is clear from the simulation results (see Figures 1, 2,

3, 4 (top)) that, with such a small number of data, order

estimation is difficult by inspecting the singular values. In

fact, for the subspace methods based on the linear (VARX)

predictor, a “jump” in the singular values plot is hardly seen.

This is reflected by the fact that very rarely the SVC criterion

has estimated the correct order.

Instead, rather interestingly, when using the nonparametric

predictor there is a quite remarkable jump in the singular

values. In fact, in this case the SVC has correctly estimated

the order in all runs.

In order to evaluate the quality of the estimated model

we have computed, for each Monte Carlo run, the L2 norm

of the estimation error for both the deterministic (F(z))
and the “stochastic” (G(z)) transfer functions. Figures 1,

2, 3, 4 (bottom) show the relative boxplots. It is clear

that the subspace algorithm which used the nonparametric

predictor performs much better in essentially all cases than

the subspace algorithm based on VARX. It is also remarkable

that not much improvement (if any) is gained running PEM

initialized with the nonparametric subspace estimator; more-

over PEM in conjunction with AIC performs much worse.
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Fig. 2. System 2: (Top) Singular values: average over 100 Monte Carlo runs. (Bottom) Mean square error (Average L2 norm of the transfer function
error).

Indeed, this latter method tends to strongly overestimate the

order.

VI. CONCLUSIONS

In a companion paper we have proposed using nonpara-

metric techniques based on Gaussian regression for predictor

identification. In this paper we suggested employing these

predictors to improve subspace methods. In particular we

substituted the VARX models, used in the PBSIDopt sub-

space algorithm [8], with the nonparametric predictor. Based

on a number of examples we envision that the resulting

algorithm will help improving standard subspace methods,

in particular when using small sample sizes. Our future work

will include a more systematic analysis of the proposed

method. In particular, building upon work presented in [25],

we plan to study consistency of the proposed approach; it

will also be of interest to develop dedicated order estimation

criteria.
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Fig. 3. System 3: (Top) Singular values: average over 100 Monte Carlo runs. (Bottom) Mean square error (Average L2 norm of the transfer function
error).
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Fig. 4. System 4: (Top) Singular values: average over 100 Monte Carlo runs. (Bottom) Mean square error (Average L2 norm of the transfer function
error).
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