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Abstract— In this paper we study different distributed es-
timation schemes for stochastic discrete time linear systems
where the communication between the sensors and the estima-
tion center is subject to random packet loss. Sensors are pro-
vided with computational and memory resources so that they
can potentially perform data processing of the measurements
before sending their information. In particular, we explore
three different strategies. The first, named measurement fusion
(MF), optimally fuses the raw measurements received so far
from all sensors. The second strategy, named optimal partial
estimate fusion (OPEF), optimally fuses at the central node the
last local state estimates received from each sensor. The last
strategy, named open loop partial estimate fusion (OLPEF),
simply sums local state estimates received from each sensor
and replace the lost ones with their open loop prediction.
We provide some analytical results about the performance
of these three schemes in special regimes conditions, namely
low and high process noise. We also show through numerical
simulations that, although none of the three schemes achieves
the ideal performance of a scheme with infinite bandwidth
communication between sensors and the central node, the
OPEF scheme provides almost ideal performance.

I. INTRODUCTION

The rapid proliferation of large wireless interconnected

systems capable of sensing and computation is posing sev-

eral challenges due to the unavoidable lossy nature of the

wireless channel. These challenges are particularly evident

in control and estimation applications since packet loss and

random delay degrade the overall system performance, thus

motivating the development of novel tools and algorithms,

as illustrated in the survey [8]. In this work we focus on the

problem of estimating a stochastic discrete time linear system

observed by a number of sensors which can communicate

with a central node via a wireless lossy channel.

A. Previous Work

There is a vast literature regarding distributed estimation

and sensor fusion with perfect communication links. It is

well known that the optimal solution in the standard scenario

where all sensors are co-located with the estimation center,

is given by the centralized Kalman filter (CKF) [2]. In the

seminal papers [13] and [9] it was shown that it is not

necessary to send the raw measurements to the central node

to recover the CKF estimate, but it is possible to reconstruct

it from local Kalman filter (LKF) estimates generated by

each sensor. In particular, the CKF can be obtained as the
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output of a linear filter which uses the LKF estimates as

inputs. The idea behind the fusion of LKF estimates rather

than the raw measurements was motivated by the need of

distributing part of the computational burden of the central

estimation center to the sensors. More recently Wolfe et al.

[14] showed that the computational load of the central node

can be reduced even further by running on each sensor a

local filter which generates a partial estimate of the state

so that the central node just need to sum them together

to recover the CKF estimate. We refer to this strategy as

partial estimate fusion (PEF). Moreover, this strategy does

not even require uncorrelated measurement noise among

sensors, differently from [13]. There are also dedicated

distributed estimation algorithms such as the federated filters

proposed by Carlson [5]. However, the framework adopted

in all these works did not include packet loss nor delay,

and the topology was supposed to be known to all sensors

and the central node. Sensor fusion, whose goal is to devise

efficient numerical algorithms to fuse measurements (and

not local estimates) from heterogeneous sensors like radars

and GPS with possibly different random delays or missing

data, is also a deeply investigated area, in particular in the

context of moving target tracking [4]. For example in [3] and

[15] the authors showed how to perform optimal estimation

with time-varying delay and out-of-order packets without

requiring the storage of large memory buffers and the inver-

sion of many matrices. In [12] the authors provided lower

and upper bounds for optimal estimator subject to random

measurement loss, and in [10] those results were extended to

multiple distributed sensors subject to simultaneous packet

loss and random delay. Finally, the recent paper [11] analyzes

some tradeoffs between communication, computation and

estimation performance in multi-hop tree networks.

B. Motivations

Differently from distributed estimation with perfect com-

munication and sensor fusion, little attention has been given

to fusion of local estimates from multiple sensors subject

to random packet loss and random delay. In fact, it has

been shown in [7] that sending the LKF estimates allows the

central node to construct a better state estimate than sending

the raw measurements, even in the presence of packet loss.

This is because the local estimate includes the information

about all previous measurements, therefore as soon as the

central node receives the local estimate it can reconstruct

the optimal estimate even if some previous packets were

lost. Differently, by sending the raw measurements, if a

measurement is lost then the information that it conveys is

lost forever. This observation, which is valid in general only

when a single sensor is considered, suggests that sending
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a local estimate of the state x̂i
t|t is the right thing to do

also in the context of lossy communication. Indeed we will

show that, when there is no process noise (Q=0), sending

partial estimates, as suggested in [14], allows to recover the

CKF filter as if all measurements up to the latest received

packet from each node were received at the central node.

However, this is not the case when there is process noise.

Moreover, it is not clear how to modify the LKF fusion or

the PEF schemes proposed by [13] and [14] when packets

are lost, since these strategies rely on the assumption that all

packet will be received. A naive adaptation of these schemes

to include missing packets, would be the use an open loop

estimate based on the last received packet, suggested by the

fact that E[xt | y1, . . . , yt−τ ] = AτE[xt−τ | y1, . . . , yt−τ ] =
Aτ x̂t−τ |t−τ , where τ is the delay of the last packet received

by the central node. However, as observed in [1], this

strategy can lead to much worse performance than simple

measurement fusion (MF), i.e. the strategy based on the

transmission of the raw measurements.

C. Contribution

Motivated, by these considerations, in this paper we ex-

plore in more detail the problem of distributed estimation

where the communication between the sensors and the esti-

mation center is subject to packet loss. Also we assume that

sensors are “smart”, i.e. they can preprocess the measured

data, e.g. computing local state estimates. We first show that

with multiple sensors it is not possible to find a distributed

estimation algorithm transmitting a packet of bounded size

which provides the same performance of a CKF based on all

measurements from each sensor till the last received packet.

This ideal filter is referred as infinite bandwidth filter

(IBF). Based on this negative result, we propose three

suboptimal strategies, the first is based on standard measure-

ment fusion (MF), the second on the optimal (best linear)

fusion of partial state estimate (OPEF), and the last on the

simple sum of partial state estimates by substituting the ideal

current partial state estimate with its open loop estimate if

some packets are lost (OLPEF). We prove that the last two

strategies can achieve the optimal performance when there

is no process noise (Q = 0), while in the opposite regime

when there is no measurement noise (R = 0), none of the

proposed filters achieve the optimal performance, although

the measurement fusion scheme seems to be very close to the

optimal in numerical simulations. We also observed through

numerical simulations that the approach based on optimal

fusion of partial estimates (OPEF), although not optimal,

provides a performance with is very close to the infinite

bandwidth filter (IBF) in any noise regime and even for high

packet loss rates.

II. PROBLEM FORMULATION

A. Modeling

We consider a discrete time linear stochastic systems

observed by N sensors:

xt+1 = Axt + wt

yi
t = Cixt + vi

t, i = 1, . . . , N
(1)

where x ∈ Rn, yi ∈ Rmi , wt and vi
t are uncorre-

lated, zero-mean, white Gaussian noises with covariances

E[wtw
T
t ] = Q, and E[vi

t(v
j
t )

T ] = Rij , i.e. we also allow

for correlated measurement noise. More compactly, if we

define the compound measurement column noise vector vt =
(v1

t , . . . , vN
t ) ∈ Rm,m =

∑

i mi, we have E[vtv
T
s ] =

Rδ(t−s), where the (i, j)-th block of the matrix R ∈ Rm×m

is [R]ij = Rij ∈ Rmi×mj . The initial condition x0 is again

a zero-mean Gaussian random variable uncorrelated with

the noises and covariance E[x0x
T
0 ] = P0. We also assume

that R > 0, the pair (A,Q1/2) is reachable and (A, C)
is observable, where CT = [CT

1 CT
2 . . . CT

N ], which are

sufficient conditions for the existence of a stable estimator.

The sensors are not directly connected with each other and

can send messages to a common central node through a lossy

communication channel, i.e. there is a non zero probability

that the message is not delivered correctly. We model the

packet dropping events through a binary random variable

γi
t ∈ {0, 1} such that:

γi
t =

{

0 if packet sent at time t by node i is lost

1 otherwise
(2)

Each sensor is provided with computational and memory

resources to (possibly) preprocess information before send-

ing it to the central node. More formally, at each time instant

t each sensor i sends the preprocessed information zi
t ∈ Rℓ:

zi
t = f i

t (y
i
1, y

i
2, . . . , y

i
t) = f i

t (y
i
1:t) (3)

where ℓ is bounded and f i
t () are causal functions of the local

measurements. Natural choices are zi
t = yi

t, i.e. the latest

measurement, or the output of a (time varying) linear filter:

ξi
t = F i

t ξ
i
t−1 + Gi

ty
i
t

zi
t = Hi

tξ
i
t + Di

ty
i
t

as for example a local Kalman filter.

The objective is to find the best mean square estimate

given the information available at time t at the central

node. More formally, let us define the information set

It =
⋃N

i=1
Ii

t available at the central node, where Ii
t =

{zi
k | γ

i
k = 1, k = 1, . . . , t}, then the best mean square

estimate and its corresponding error covariance at the central

node are given by x̂t|t = E[xt | It] and Pt|t = var(xt −
x̂t|t | It) = E[(xt − x̂t|t)(xt − x̂t|t)

T | It]. It is evident that

also the error covariance Pt|t is random variable since it

depends on the specific packet drop history represented by

the random variables γi
t . Also, the error covariance is a

function of specific preprocessing strategy defined by the

functions f i
t (). If we do not constrain the dimension of

the messages transmitted by each node to be bounded, then

an optimal strategy is to send all measurements up to that

instant, i.e. zi
t = yi

1:t. Using this strategy the corresponding

information sets available at the central node are I
i

t = {∅}

if γi
k = 0,∀k = 1, . . . , t or I

i

t = {yi
1:t−τi

t

}, where τ i
t =

t − argmax{k|γi
k = 1, = 1, . . . , t) is the delay of the last

packet received from node i at time t. In this idealized

situation, the minimum mean square estimate (MMSE) is

given by x̂∗
t|t = E[xt |

⋃

i I
i

t] = E[xt | y
1

1:t−τ1

t

, . . . , yN
1:t−τN

t

];

we shall also call this estimator infinite bandwidth filter

(IBF). Its error covariance P ∗
t|t = V ar(xt − x̂∗

t|t | It) is

clearly a lower bound for any linear estimator independently
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of the preprocessing f i
t () performed by each node for any

possible packet loss sequence, i.e.

P ∗
t|t ≤ Pt|t, ∀f i

t (),∀γi
t .

Our objective is to find preprocessing schemes f i
t (y

i
1:t) with

bounded size output zi
t which can achieve the lower bound

on error covariance P ∗
t|t. The next theorem shows that it is

not possible:

Theorem 1: Let us consider the state estimate x̂t|t and x̂∗
t|t

defined as above. Then there do not exist (possibly nonlinear)

functions zi
t = f i

t (y
i
1:t) ∈ Rℓ with bounded size ℓ < ∞ such

that P ∗
t|t = Pt|t for any possible packet loss sequence, i.e.

∄f i
t () |Pt|t = P ∗

t|t, ∀γi
t

Proof: We will prove the theorem by providing an

explicit example. Let us consider the following scalar dy-

namical systems with two sensors:

xt+1 = xt + wt

y1
t = xt + v1

t ; y2
t = xt + v2

t

where x0, wt, v
1
t , v2

t are uncorrelated zero-mean white ran-

dom variables with covariance σx = σw = σv1 = σv2 =
1, respectively. We consider two different packet arrival

scenarios:

a : {γ1
2 = 1; γ1

1 = γ2
1 = γ2

2 = 0},
b : {γ1

1 = γ2
1 = 0; γ1

2 = γ2
2 = 1}

i.e. at time t = 2 in scenario (a) only the second packet

from the first sensor arrived successfully to the central node,

while in scenario (b) both packets corresponding to time

t = 2 were received but the packets corresponding to time

t = 1 were lost. We start by showing that there do not

exist linear functions of the measurement zi
t = f i

t (y
i
1:t) =

∑t
k=1

αi
t,kyi

k of size one, i.e. zi
t ∈ R, that can retrieve

the optimal mean square estimate x̂∗
t|t for the two scenarios

just illustrated. In fact, let us consider scenario (a) which

leads to x̂
∗,a
2|2 = E[x2 | y

1
1 , y1

2 ] = ᾱ
1,a
1 y1

1 + ᾱ
1,a
2 y1

2 , where

ᾱ
1,a
1 6= ᾱ

1,a
2 6= 0, and we made explicit with the superscript

()a that the actual optimal mean square estimate depends

on the particular packet loss sequence history. Therefore,

in order to have x̂a
2|2 = E[x2 | z

1
2 ] = βa

1z1
2 equal to x̂

∗,a
2|2 ,

we must have βa
1 [α1

2,1 α1
2,2] = [ᾱ1,a

1 ᾱ
1,a
2 ]. Differently, in

scenario (b), the optimal mean square estimate x̂
∗,b
2|2 =

E[x2 | y
1
1 , y1

2 , y2
1 , y2

2 ] = ᾱ
1,b
1 y1

1 + ᾱ
1,b
2 y1

2 + ᾱ
2,b
1 y2

1 + ᾱ
2,b
2 y2

2 ,

where [ᾱ1,b
1 ᾱ

1,b
2 ] 6= γ [ᾱ1,a

1 ᾱ
1,a
2 ],∀γ ∈ R, i.e. the two

vectors of coefficients are not parallel. This implies that

also [ᾱ1,b
1 ᾱ

1,b
2 ] 6= γ [α1

2,1 α1
2,1],∀γ ∈ R. Therefore, since

the estimate x̂b
2|2 = E[x2 | z

1
2 , z2

2 ] = β1z
1
2 + β2z

2
2 and

z1
2 = γ(α1

2,1y
1
1 + α1

2,2y
1
2) for some γ, it follows that x̂b

2|2 6=

x
∗,b
2|2. This concludes the proof that there do not exist linear

functions of dimension one that allow to retrieve the optimal

estimate for all possible packet loss sequences.

This results continue to hold even if we consider more

general nonlinear functions zi
t = f i

t (y
i
1:t). In fact, as shown

in the specific example above, in order to reconstruct the

optimal estimate, z̄a = f1
2 (y1

1 , y1
2) = ᾱ

1,a
1 y1

1 + ᾱ
1,a
2 y1

2 in

the first scenario and z̄b = f1
2 (y1

1 , y1
2) = ᾱ

1,b
1 y1

1 + ᾱ
1,b
2 y1

2

in the second, must hold. Since the two pair of coefficients

are not parallel, the central node can also reconstruct y1
1 , y1

2

from z̄a, z̄b. This is equivalent to saying that the function

z1
2 = f1

2 (y1
1 , y1

2) maps two real numbers into a single real

number, and that the central node can reconstruct the two

real numbers from the single real number z1
2 , which is clearly

impossible 1.

The proof for arbitrary but finite packet size ℓ, i.e zi
t ∈ Rℓ

can be obtained similarly by properly constructing ℓ + 1
different packet loss scenarios for which the gains of the

optimal linear combination of the measurements are linearly

independent, which means that there do not exists linear

functions f i
t () which always recover the optimal mean square

estimate x∗
t|t. Also similarly to the proof above, this can be

extended to general nonlinear functions f i
t ().

The previous theorem states that there is no hope to find a

preprocessing with bounded message size which can achieve

the error covariance P ∗
t|t of the infinite bandwidth filter (IBF)

since it is not possible to know in advance what the packet

loss event will be. We will therefore propose two suboptimal

estimation strategies which provide the optimal solution in

the special case of perfect communication link, i.e. when

there is no packet loss. The first, referred as measurement

fusion (MF), consists in sending the raw measurements:

zi
t = yi

t

x̂MF
t|t = E[xt | I

i
t , i = 1, . . . , N ]

Ii
t = {yi

k | γ
i
k = 1, k = 1, . . . , t]

(4)

The second, referred as optimal estimate fusion (OEF),

consists in sending filtered estimates from each sensor and

then optimally combining the most recent ones from each

sensor at the central node:

zi
t = Γi

tz
i
t−1 + Gi

ty
i
t

x̂OEF
t|t = E[xt | z

i
t−τi

t

, i = 1, . . . , N ] =
∑N

i=1
Φi

tz
i
t−τ i

t

(5)

for suitable choices of the matrices Γi
t and Gi

t which will be

discussed in the Section IV.

III. MEASUREMENT FUSION

In this section we briefly summarize how to iteratively

compute the estimate based on the measurement fusion

strategy. Let us first define the following variables:

C̄t =







γ1
t C1

...

γN
t CN






, ȳt =







γ1
t y1

t
...

γN
t yN

t






,

R̄t =







γ1
t R11 · · · γ1

t γN
t R1N

...
. . .

...

γN
t γ1

t RN1 · · · γN
t RNN







which can be obtained from the centralized matrices C
and R, and from the lumped column measurement vector

yt = (y1
t y2

t . . . yN
t )T by replacing the rows and columns

1Of course one could argue that in an infinite bandwidth setup there is
essentially no limitation on the number ℓ in (3); however, when bandwidth
limitations come into play, resolution requirements would of course impose
an upper bound on ℓ. It would also be possible to consider “smart” coding
schemes which, however, would have to depend also on the specific packet
loss sequence.
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corresponding to the lost packet with zeros. It was shown

in [10] that the state estimate for the measurement fusion

strategy is given by:

x̂MF
t|t = (I − C̄tLt)Ax̂MF

t−1|t−1 + L̄tȳt (6)

PMF
t|t = Pt|t−1−Pt|t−1C̄

T
t (C̄tPt|t−1C̄

T
t +R̄t)

†C̄tPt|t−1(7)

L̄t = Pt|t−1C̄
T
t (C̄tPt|t−1C̄

T
t + R̄t)

† (8)

Pt+1|t = APMF
t|t AT + Q (9)

where the symbol † indicates the Moore-Penrose pseudoin-

verse. The previous equations correspond to a time-varying

Kalman filter which depends on the packet loss sequence.

Note that only measurements that have arrived are used

to the computation of the estimate x̂MF
t|t , i.e. the dummy

zero measurement in ȳt are not used as if they were real

measurements, but are discarded.

The measurement fusion strategy has the advantage to be

computed recursively and exactly with the inversion of one

matrix of (at most) the size of the lumped measurement

vector yt. On the other hand, if a packet is lost, then the

information corresponding to the measurement in that packet

is lost forever, while sending filtered version of the output as

in the optimal estimate fusion (OEF) this information might

be partially recovered. In fact, as we will see in Section V

there are noise regimes, namely in the absence of process

noise, in which the MF performs considerably worse than

OEF.

IV. STATE ESTIMATE FUSION

In this section we consider the second strategy mentioned

above, named OEF. According to this strategy, the i-th node

sends an “estimate” of the state computed via

zi
t = Γi

tz
i
t−1 + Gi

ty
i
t (10)

and the central node has to compute the optimal fusion rule

x̂OEF
t|t = E[xt | z

i
t−τ i

t
, i = 1, . . . , N ] =

N
∑

i=1

Φi
tz

i
t−τ i

t
(11)

where t − τ i
t is the last time in which the central node has

received a packet from node i. The conditional expectation

will be computed assuming a Gaussian measure2.

Besides computing the coefficients Φi
t one has also to

decide how each node processes its own measurements, i.e.

how Γi
t and Gi

t are chosen.

Before discussing these choices, we first describe how the

gains Φi
t can be computed. Let us define: Φt :=

[

Φ1
t , ...,Φ

N
t

]

and zt,τ :=

[

(

z1

t−τ1

t

)⊤

. . .
(

zN
t−τN

t

)⊤
]⊤

. Of course,

the optimal fusion coefficients of Eqn. (11) can be computed

as:

Φt = E
[

xtz
T
t,τ

]

E
[

zt,τzT
t,τ

]−1
(12)

We shall now outline a procedure which allows to com-

pute the covariance matrices E
[

xtz
T
t,τ

]

and E
[

zt,τzT
t,τ

]

.

To this purpose let us define the augmented state vector

2Alternatively one could think of E[· | ·] as being the best linear estimator.

st :=
(

xt, z
1
t , .., zN

t

)

. Combining equations (1) and (10) it is

immediate to see that

st = Ψtst−1 + Bw
t wt−1 + Bv

t vt (13)

where

Ψt :=











A 0 . . . 0
G1

t C1AΓ1
t Γ1

t . . . 0
...

...
. . .

...

GN
t CNAΓN

t 0 0 ΓN
t











Bw
t :=











I
G1

t C1

...

GM
t CM











Bv
t :=











0 . . . 0
G1

t . . . 0
...

. . .
...

0 . . . GM
t











From this equation the covariance function Σh,k := E[shsT
k ]

can be easily computed, starting from the initial condition

Σ0,0 :=











E[x0x
T
0 ] 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0











.

Observe now that all the elements of E
[

xtz
T
t,τ

]

and

E
[

zt,τzT
t,τ

]

are indeed elements of Σh,k for suitable values

of h and k.

It is also convenient to note that also the conditional

variance of x̂OEF
t|t given the sequence {γi

s}s=1,..,t can be

computed using the standard formula for the error covariance

V ar{x̂OEF
t|t |γi

s, s ≤ t} = V ar{xt} − ΦtE
[

zt,τzT
t,τ

]

ΦT
t

(14)

This equation will be useful in evaluating the performance

of different choices of the local pre-processing strategies Γi
t

and Gi
t. Of course it can also be used to monitor on-line the

performance of the estimator x̂OEF
t|t .

Note that the error covariance of OEF, POEF
t|t that uses

only the latest packet received from each sensor node, is

larger than the one that could be obtained from all received

packets, Pt|t, at the price of a higher computational cost, i.e.:

P ∗
t|t ≤ Pt|t ≤ POEF

t|t ∀γi
t .

The optimal choice of the “local” filter matrices Γi
t and Gi

t in

Eqn. (10) is far from being a trivial task even if topology and

statistics of the model are completely known. Therefore, in

order to gain some further intuition, we explore and compare

some sensible choices of the matrices Γi
t and Gi

t.

A. Optimal Partial Estimate Fusion

This strategy is suggested by the observation that, in the

absence of packet losses, one could compute the gains in a

centralized manner and distribute the computations to each

sensor. To be more precise, assume all measurements were

available to a common location, i.e. that there where no

packet losses. We shall denote with xCKF
t|t := E[xt|y

i
1:t, i =

1, .., N ] the centralized Kalman filter (CKF); its evolution is

governed by the equations:

x̂CKF
t|t = Ftx̂

CKF
t−1|t−1

+ Ltyt

Ft = (I − LtC)A
(15)
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where the gain Lt = [L1
t L2

t · · · LN
t ] is the centralized

Kalman filter gain computed as

Pt+1 = (A − KtC)Pt(A − KtC)T + KtRKT
t + Q

Lt = PtC
T (CPtC

T + R)−1

Kt = ALt

Note now that, defining zi
t to be the solution of

zi
t = Ftz

i
t−1 + Li

ty
i
t, (16)

the CKF estimate x̂CKF
t|t is given by x̂CKF

t|t =
∑N

i=1
zi
t . For

these reason we shall call the zi
t’s “partial estimates”. This

strategy has been suggested in [14] for distributed estimation

to the purpose of reducing the power consumption. Note that

Eqn. (16) falls in the class Eqn. (10) with Γi
t := Ft and

Gi
t := Li

t.

In the presence of packet losses, only zi
t−τ i

t

are available to

the central node and, with this information, the best (linear)

estimate is given by

x̂OPEF
t|t = E[xt | z

i
t−τ i

t
, i = 1, . . . , N ] =

N
∑

i=1

Φi
tz

i
t−τ i

t
(17)

where the superscript OPEF stands for optimal partial

estimate fusion and the coefficients Φi
t are computed as

described in the previous section.

B. Optimal Kalman Filter fusion

Note that, in the previous strategy, the local filter at

each node depends upon all the other sensors; this is only

reasonable either if the network topology is fixed or if the

central node can communicate to each sensor the new filter

parameters if the network changes.

Alternatively each sensor could compute the best estimate

given its own measurements, which is a local in nature, .i.e.

ẑ
i,l
t = F i

t ẑ
i,l
t−1 + L

i,l
t yi

t

F i
t = (I − L

i,l
t Ci)A

where the gains3 L
i,l
t are the local Kalman filter gains

computed as

P i
t+1 =(A−K

i,l
t Ci)P

i
t (A−K

i,l
t Ci)

T+K
i,l
t Rii

(

K
i,l
t

)

T+Q

L
i,l
t = P i

t C
T
i (CiP

i
t C

T
i + Rii)

−1

K
i,l
t = AL

i,l
t

We shall call the optimal estimate based on the z
i,l
t−τ i

t

’s

optimal Kalman estimate fusion (OKEF):

x̂OKEF
t|t =E[xt | z

i,l
t−τ i

t

, i = 1,. . ., N ]=
N

∑

i=1

Φi,l
t z

i,l
t−τ i

t

(18)

Unfortunately, as discussed in [13], even in the absence of

packet losses the optimal estimate cannot be recovered as a

linear function of the zi
t’s.

3The superscript i,l reminds that z
i,l
t is the local estimate of the state at

the i−th sensor, where the gain Li,l is computed using the local Kalman
filter equations.

C. Open Loop Partial Estimate Fusion

The third strategy, referred to as open loop partial estimate

fusion (OLPEF), aims at simplifying the optimal partial

estimate fusion; in fact the preprocessing of the measurement

is the same, i.e. zi
t are computed as in the OPEF strategy,

but it does not compute the optimal linear combination of

the estimates at the central node.

zi
t = Ftz

i
t−1 + Li

ty
i
t

F i
t = (I − LtC)A

x̂OLPEF
t|t =

∑N
i=1

Aτ i
t zi

t−τ i
t

(19)

The rationale behind this strategy is that, since in the absence

of packet losses x̂t|t =
∑

i zi
t , when zi

t is not available one

could compute an estimate by propagating (in “open loop”)

the last partial estimate zi
t−τi

t

using the approximation zi
t ≃

Aτ i
t zi

t−τ i
t

. Note that P ∗
t|t ≤ Pt|t ≤ POPEF

t|t ≤ POLPEF
t|t , ∀γi

t

where the last inequality follows from the fact that last

messages are not fused optimally in the OLPEF strategy.

Remark 1: If sensor nodes either appear or disappear

OLPEF would most probably fail. Differently it is to be

expected that both OPEF and OKEF will be able to com-

pensate for this changes providing sensible estimates since

the weights Φi
t and Φi,l

t in Eqn. (17) and Eqn. (18) are chosen

adaptively based on the received packets.

V. SPECIAL CASES

A. Small process noise regime (Q=0)

An important regime is when the state evolution can be

described by a deterministic linear map, i.e. when the process

noise is very small. We shall study the limiting case Q = 0,

i.e. no process noise. We shall also restrict our attention to

the case in which the measurement noises are uncorrelated,

i.e. R = block diag{R1, .., RN}.

Proposition 1: Let us consider the proposed estimation

schemes, namely MF and OPEF, OLPEF, OKEF and IBF

for Q = 0 and R = block diag{R1, .., RN}. Then

P ∗
t|t = POPEF

t|t = POKEF
t|t = POLPEF

t|t < PMF
t|t

Proof: See [6]

B. Small measurement noise regime (R=0)

Another important regime to be considered is when the

measurement noise R is much smaller as compared to the

process noise Q. This is a regime for which only recent

measurements convey relevant information. One might won-

der whether one of the proposed fusion schemes, namely the

MF and the OPEF, can always provide the best achievable

estimate x̂∗
t|t, or, at least, if one is always better then the

other. The next proposition shows that the answer to both

questions is negative.

Proposition 2: Let us consider the two proposed estima-

tion schemes, namely MF and OPEF, for R = 0 and Q > 0.

Then there exist scenarios for which PMF
t|t > POPEF

t|t and

scenarios for which PMF
t|t < POPEF

t|t
Proof: See [6]

The proposition shows how in general none of two strategies

MF and OPEF is superior to the other also in the limiting

regime R = 0. As a consequence, it also shows that none of

them always achieves the optimal filter performance x∗
t|t.
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VI. SIMULATIONS

In order to illustrate and compare the methodologies

described above, we consider the following simulation exam-

ple. The measurement vector yt, of dimension 7, is generated

by (1) with

A =

[

0.99 1
0 0.99

]

C =

[

2 .4 1 1 0.4 1 1
0 0 0 0 0 0 0

]T

.

The noises vt and wt are uncorrelated, zero mean Gaussian

white noises with covariances, respectively,

E[vtv
T
t ] = R = diag{10, 20, 40, 0.5, 2, 1, 40}

E[wtw
T
t ] = µQQ = µQdiag{0.001, 0.001}

.

The parameter µQ will be varied to study the behavior under

different regimes, i.e. different ratios between the model and

the measurements noises.

Figure 1 reports the error variance of the first component

of the state as a function of µQ, for the packet drop prob-

ability P[γi
t = 0] = 0.5. Note that the conditional variance

given the packet drop sequence {γi
t} has been computed in

closed form as discussed in Section IV for all methods except

OLPEF. The unconditional variance is obtained simulating

a sufficiently long sequence of packet drop sequence and

averaging the conditional variance over that sequence. The

same could also have been done for the OLPEF; however

this is rather involved from the computational point of view

and hence the variance for OLPEF has been computed purely

by Monte Carlo simulations.

For small values of µQ the OLPEF behaves very similarly

to OPEF. This is reasonable since, for small process noise

it make sense to “trust” the model and hence propagate

estimates in open loop. Note also that MF is the worst

strategy for small µQ; this is also in line with the results

in Section V predicting that OPEF is better than MF for

Q = 0.
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Fig. 1. Error Variance vs. µQ. The curve relative to OPEF coincide, to
any practical purpose, with that corresponding to IBF.

VII. CONCLUSIONS

In this paper we explored the problem of distributed

estimation subject to random packet loss between the sensors

and the central location where the best state estimate is

required. We showed, that differently from classical setup

with perfect communication, random packet dropping de-

stroys the possibility for the sensors to optimally design their

preprocessing scheme since they cannot predict in advance

the loss sequence. Nonetheless, we have observed through

numerical simulations that optimally fusing partial estimates

from each sensor provides a performance that is very close

to the ideal performance. This opens up a number of future

research directions. The first is to provide some upper bound

on the performance of the OPEF strategy and show that it is

not too far from the ideal performance of the IBF. Another

relevant area of research is to provide numerically efficient

algorithms to compute the OPEF. In fact, it requires the

inversion of large size matrices which might be too compu-

tationally demanding, therefore approximation schemes for

OPEF are ought. Finally, it is not clear how the OPEF scheme

can be extended to rooted tree networks, i.e. sensors cannot

send packets directly to the central node, but they have to

route them though other sensors as it typically happens in

Wireless Sensor Networks.
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