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Abstract: In this paper, control of nonlinear teleoperator

systems where both the master and slave systems are kine-

matically redundant robot manipulators is addressed. The

controller is developed under the assumption that the user

and environmental input forces are unmeasurable. Lyapunov-

based stability analysis is used to prove that the proposed

controller yields asymptotic tracking results and ensures the

coordination of the master and slave systems while satisfying

a sub-task objective.

I. INTRODUCTION

Teleoperation, where a human operator implements a

task in a remote or hazardous environment, has been a

mainstream research problem for a long time. Typically,

a teleoperator system consists of a local site, where a

user operates the master manipulator/system to drive the

remotely located slave manipulator/system to implement a

given task. Teleoperator systems have significant impact

on some common applications including handling of haz-

ardous materials, maneuvering mobile robots, underwater

operations, and microsurgery [1], [2], [3], [4]. Transparency

[5], keeping the human and the environment safe, proving

the boundedness of closed-loop signals, tracking a desired

trajectory are important issues in teleoperation. The reader

is referred to [6] for a comprehensive overview of research

and development in teleoperation over the last several years.

In several robotic applications, including teleoperation, the

desired task is usually defined in the Cartesian coordinate

frame attached to the robot manipulator’s end-effector, which

is commonly referred to as the task-space. When a robot

manipulator has more degrees of freedom than are required

to implement a task in its task-space, it is called a kinemati-

cally redundant robot manipulator. The use of kinematically

redundant robot manipulators usually complicates the control

design; however, they provide greater flexibility to the end

user to execute sophisticated or complicated tasks such as

obstacle avoidance, grasping, locomotion, etc. [7]. The fact,

that the number of joints of a redundant robot manipulator is

greater than the dimension of the task-space, results in joint

motion in the null-space of the Jacobian matrix that does not
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affect the end-effector motion of the manipulator, generally

known as self-motion. A user can deploy the self-motion for

achieving a sub-task objective while the task-space controller

achieves the primary task for a particular application. As

noted in [8], [9], and [10], for redundant robots, given a

desired task-space trajectory, an infinite number of inverse

kinematic solutions exist that complicates the selection of

a reasonable desired joint trajectory, to satisfy the control

requirements as well as the sub-task objectives. The reader

is referred to [11] for different sub-task objectives and to [8],

[12], [13], [14], [15], and the references therein for some of

the past research related to the controllers for redundant robot

manipulators.

Teleoperation with kinematically redundant robot manip-

ulators is an interesting open research area. Some past work

that discuss teleoperation with kinematically redundant robot

manipulators can be found in [16] and [17]. Hwang et al. [16]

described the performance of a teleoperator system where

only the slave system was a redundant robot manipulator.

This work failed to provide robustness when the robot

operates close to its kinematic singularities or for high joint

velocities. In [16], the controller was developed for the

primary task and the sub-task objectives were considered

as an add-on to the tracking objective; hence, completion

of certain sub-task objectives such as joint-limit avoidance

was not guaranteed. Das et al. [17] developed kinematic

controllers for redundant teleoperator systems to avoid ob-

stacle collision by utilizing a visual display of the slave

environment system where just the task-space control was

applied. While addressing an interesting problem, [16] and

[17] failed to make complete use of the properties of the

redundant manipulators.

This work aimed to develop a novel control scheme

for teleoperator systems where master and slave systems

are kinematically redundant robot manipulators. The control

objectives are to track a desired task-space trajectory, to

ensure the coordination between the master and the slave

systems and to utilize the self-motion of the redundant robot

manipulators to achieve sub-task objectives. The control

problem is further complicated due to unmeasurable user and

environmental input forces. To achieve the control objectives,

first the dynamic models of the master and slave systems

are put together to form a combined dynamic model for the

teleoperator system. Then, robust integral of the sign of the

error terms are utilized in the design of a force observer to

estimate the unmeasurable input forces. Next, a null-space

decomposition is utilized to decompose the control input

and the input forces into their task-space and null space
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components; thus, the control development is separated into

two parts, namely task-space control and null-space control.

To facilitate the task-space control development, an invertible

transformation [18] is utilized to encode the control ob-

jectives. Another continuous nonlinear observer is designed

to estimate the task-space component of the input forces.

The task-space controller is developed to meet the task-

space tracking objective and to ensure the coordination of

the master and slave systems. In the design of the task-space

desired trajectory, an optional strategy of encoding a velocity

field assist mechanism [18] is provided to help the user in

controlling the slave system. The null-space component of

the controller is then designed to meet the null-space velocity

tracking objective. Finally, a sub-task controller is developed

to make use of the kinematic redundancy of the master and

slave systems. Lyapunov-based techniques are utilized in the

design of the controllers and the force observers.

II. DYNAMIC AND KINEMATIC MODELS

The dynamic model for a 2n-DOF nonlinear teleoperator

system consisting of a revolute n-DOF master and a revolute

n-DOF slave system is described by the following expres-

sions

M1(θ1)θ̈1 + N1(θ1, θ̇1)θ̇1 = T1 + FH (1)

M2(θ2)θ̈2 + N2(θ2, θ̇2)θ̇2 = T2 + FE (2)

where θi (t), θ̇i (t), θ̈i (t) ∈ R
n denote the joint-space

position, velocity, and acceleration for the master and the

slave systems, respectively, Mi (·), Ni (·) ∈ R
n×n represent

the inertia effects and other dynamic effects, respectively,

Ti (t) ∈ R
n represents the control input vector where i=1

denotes the master system and i=2 denotes the slave system.

In (1) and (2), FH (t) ∈ R
n represents the unmeasurable user

input force applied to the master system, and FE (t) ∈ R
n

represents the unmeasurable input force from the environ-

ment. The subsequent development utilizes the property that

the inertia matrices are positive definite, symmetric and

satisfy the following inequalities [19]

m1i ‖ξ‖
2
≤ ξT Mi (·) ξ ≤ m2i ‖ξ‖

2
(3)

∀ξ ∈ R
n and i=1, 2 where m1i, m2i ∈ R are positive

constants, and ‖·‖ denotes the standard Euclidean norm.

Assumption 1: To achieve the control objectives, the sub-

sequent development is derived based on the assumption that

θi (t), θ̇i (t) are measurable, and Mi (·), Ni (·) are second

order differentiable for i=1, 2.

Assumption 2: The unmeasurable input forces and their

first and second time derivatives, FH (t), ḞH (t), F̈H (t),
FE (t), ḞE (t), and F̈E (t) are bounded (see [20] and [21]

for the precedence of this type of assumption).

The kinematic models for the master and slave systems

are described by the following expressions

ẋm = J1 (θ1) θ̇1 (4)

ẋs = J2 (θ2) θ̇2 (5)

where xm (t), xs (t) ∈ R
m are the task-space positions of

the master and the slave systems, respectively, and J1 (θ1),

J2 (θ2) ∈ R
m×n are the Jacobian matrices for the master

and the slave systems, respectively. To facilitate the control

development, x (t) ∈ R
2m and θ (t) ∈ R

2n are defined as

follows

x ,
[

xT
m xT

s

]T
(6)

θ ,

[

θT
1 θT

2

]T

. (7)

After utilizing (4)-(7) the following expression can be ob-

tained

ẋ = J (θ) θ̇ (8)

where J (·) ∈ R
2m×2n is defined as follows1

J ,

[

J1 0m×n

0m×n J2

]

. (9)

To facilitate the subsequent development, the dynamic mod-

els of the teleoperator system given in (1) and (2) can be

combined as follows

Mθ̈ + Nθ̇ = T + F (10)

where M (·), N (·) ∈ R
2n×2n, T (·), and F (·) ∈ R

2n are

defined as follows

M ,

[

M1 0n×n

0n×n M2

]

(11)

N ,

[

N1 0n×n

0n×n N2

]

(12)

T ,
[

T T
1 T T

2

]T
(13)

F ,
[

FT
H FT

E

]T
. (14)

The kinematic model given in (8) can be written as follows

ẋ = Jfθf (15)

where θf (t) ∈ R
2n is defined as follows

θf , Mθ̇ (16)

and Jf (θ) ∈ R
2m×2n is a Jacobian-type matrix, defined as

follows

Jf , JM−1. (17)

The primary control design objective for teleoperator

systems is to ensure the coordination between the master

and the slave systems and to meet the tracking objective in

the following sense

xs (t) → xm (t) as t → ∞ (18)

xm (t) → ξ1 (t) as t → ∞ (19)

where ξ1 (t) ∈ R
m is a subsequently designed desired trajec-

tory. Other control objectives are to prove the boundedness

of the closed-loop signals and accomplishment of a sub-task

objective.

1Throughout the paper, 0i×j and Ii will be used to denote an i× j zero
matrix and an i× i standard identity matrix, respectively.
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Remark 1: The pseudo-inverse of the Jacobian Jf (θ) de-

noted by J+

f (θ) ∈ R
2n×2m, is defined as follows

J+

f , JT
f

(

JfJT
f

)−1
(20)

where J+

f (θ) satisfies the following equality

JfJ+

f = I2m. (21)

As shown in [8], the pseudo-inverse defined by (20) satisfies

the Moore-Penrose conditions given below

JfJ+

f Jf = Jf J+

f JfJ+

f = J+

f

(J+

f Jf )T = J+

f Jf (JfJ+

f )T = JfJ+

f . (22)

Additionally, the matrix (I2n−J+

f Jf ) satisfies the following

properties

(I2n − J+

f Jf )(I2n − J+

f Jf ) = I2n − J+

f Jf (23)

(I2n − J+

f Jf )T = I2n − J+

f Jf (24)

Jf (I2n − J+

f Jf ) = 02m×2n (25)

(I2n − J+

f Jf )J+

f = 02n×2m (26)

(I2n − J+

f Jf )Jφ = Jφ (27)

where Jφ(t) ∈ R
2n×2n is defined as follows2

Jφ , J̇+

f Jf + J+

f J̇fJ+

f Jf . (28)

Remark 2: During the control development, it is assumed

that the minimum singular value of the manipulator Jacobian

matrix, denoted by σm, is greater than a known small positive

constant δ > 0, such that max
{
∥

∥

∥
J+

f (θ)
∥

∥

∥

}

is known a priori

and all kinematic singularities are always avoided.

III. FORCE OBSERVER DEVELOPMENT

In this section, a nonlinear force observer is designed to

compensate for the unmeasurable user and environmental

forces.

A. Closed-Loop Error System

Taking the time derivative of (16), results in the following

expression

θ̇f = Ṁθ̇ + T + F − Nθ̇ (29)

where (10) was utilized. Based on the assumption of the

exact model knowledge, the control input is designed as

follows

T , u + (N − Ṁ)θ̇ (30)

where u (t) ∈ R
2n is a subsequently designed auxiliary

control input. After substituting (30) into (29), the following

simplified expression can be obtained

θ̇f = u + F. (31)

The estimate of (31) is defined as follows
.

θ̂f , u + F̂ (32)

where F̂ (t) ∈ R
2n is the estimate of F (t) which is to be

designed and θ̂f (t) is the estimate of θf (t). To facilitate the

2The reader is referred to [22] for the proof of (27).

development of the closed-loop error system, the observer

error, denoted by θ̃f (t) ∈ R
2n, is defined as follows

θ̃f , θ̂f − θf . (33)

After taking the time derivative of (33), the following ex-

pression can be obtained

.

θ̃f= F̂ − F (34)

where (31) and (32) were utilized. A filtered observer error

signal, denoted by rf (t) ∈ R
2n, is defined as follows

rf ,

.

θ̃f + θ̃f . (35)

The error system dynamics for rf (t) can be derived by

taking time derivative of (35)

ṙf =
.

F̂ − Ḟ + rf − θ̃f (36)

where the time derivatives of (34) and (35) were utilized.

Based on the subsequent stability analysis, the proportional-

integral like nonlinear observer F̂ (t) is designed as follows

F̂ , − (Ks + 1)

[

θ̃f (t) − θ̃f (t0) +

∫ t

t0

θ̃f (τ )dτ

]

− (β1 + β2)

∫ t

t0

sgn(θ̃f (τ ))dτ (37)

where Ks, β1, β2 ∈ R are positive control gains, and sgn(·)
denotes the vector signum function applied to each element

of θ̃f (t). In (37), the term θ̃f (t0) is used to ensure that

F̂ (t0) = 02n×1. The time derivative of (37) is obtained as

follows
.

F̂= − (Ks + 1) rf − (β1 + β2) sgn(θ̃f ) (38)

where (35) was utilized. Substituting (38) into (36) results

in the following closed-loop error system

ṙf = −Ksrf − (β1 + β2) sgn(θ̃f ) − Ḟ − θ̃f . (39)

Remark 3: After utilizing (14) and Assumption 2,

∥

∥

∥
Ḟ (t)

∥

∥

∥

and

∥

∥

∥
F̈ (t)

∥

∥

∥
can be upper bounded as follows

∥

∥

∥
Ḟ (t)

∥

∥

∥
≤ ς1

∥

∥

∥
F̈ (t)

∥

∥

∥
≤ ς2 (40)

where ς1, ς2 ∈ R represent positive bounding constants.

B. Stability Analysis

Theorem 1: The observer given in (37) guarantees that all

signals are bounded and F̂ (t) → F (t) as t → ∞ provided

the control gain β1, introduced in (37) is selected to satisfy

the following sufficient condition

β1 > ς1 + ς2 (41)

where ς1 and ς2 were introduced in (40).

Proof: See Theorem 5 in [11] for a similar proof.
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IV. TASK-SPACE CONTROLLER DEVELOPMENT

To facilitate the task-space control development, an in-

vertible transformation that encodes the control objectives is

defined as follows3

x̄ , Sx +

[

0m×1

ξ2

]

(42)

where x̄ ∈ R
2m, ξ2 (t) ∈ R

m is an auxiliary signal that will

be designed subsequently and S ∈ R
2m×2m is defined as

follows

S ,

[

Im 0m×m

Im −Im

]

. (43)

To meet the control objectives, a filtered tracking error signal,

denoted by rT (t) ∈ R
2m, is defined as follows

rT , ṡT + sT (44)

where sT (t) ∈ R
2m is defined as follows

sT , ėT + eT (45)

where eT (t) ∈ R
2m is defined as follows

eT , ξd − x̄. (46)

where ξd (t) ∈ R
2m is defined as follows

ξd ,

[

ξT
1 ξT

2

]T

(47)

where ξ1(t) ∈ R
m is the actual desired trajectory that will be

tracked by the master and the slave systems. After utilizing

(6), (42), and (47), the error signal eT (t) can be written as

follows

eT ,

[

e1

e2

]

=

[

ξ1 − xm

xs − xm

]

(48)

where e1 (t) ∈ R
m represents the tracking error between the

master system and the desired trajectory ξ1(t), and e2 (t) ∈
R

m represents the coordination error between the master and

the slave systems. From (48), it is clear that if ‖eT (t)‖ → 0
then xs(t) → xm(t) and xm(t) → ξ1(t).

Remark 4: The input force defined in (14) can be decom-

posed as follows

F , J+

f FT + (I2n − J+

f Jf )FN (49)

where FT (t) ∈ R
2m and FN (t) ∈ R

2n are the task-

space and the null-space components of the unmeasurable

input forces. The auxiliary control input, u (t) is designed as

follows

u , J+

f uT + (I2n − J+

f Jf )uN (50)

where uT (t) ∈ R
2m and uN (t) ∈ R

2n represent subse-

quently designed task-space and null-space components of

the auxiliary control input, respectively.

To compensate for the task-space component of the un-

measurable input forces, a nonlinear force observer is de-

signed subsequently which is also utilized to drive the target

3The reader is referred to [18] for a detailed explanation of the transfor-
mation.

system. The desired trajectory ξd (t) is generated by the

following second order coupled dynamic target system [18]

ξ̇d = γ

[

ϕ (ξ1)
0m×1

]

+ ηd (51)

η̇d + BT ηd + CT λd = F̂T (52)

where ηd (t) ∈ R
2m is an auxiliary filter signal, BT ,

CT ∈ R
2m×2m represent constant, positive definite, diagonal

matrices, F̂T (t) ∈ R
2m is a subsequently designed nonlinear

observer to estimate FT (t), ϕ (·) ∈ R
m is a velocity field

function [23] that encodes the user assist mechanism, and γ

is a constant gain that is either 0 or 1. It should be noted that,

when γ = 1, the user assist mechanism is enabled and it is

disabled when γ = 0. Also, in (52) the term λd (t) ∈ R
2m

is defined as follows

λd , ξd − γ

[ ∫ t

t0
ϕ (ξ1 (τ )) dτ

0m×1

]

. (53)

Remark 5: The velocity field function ϕ (·) is assumed

to be designed such that, from (51), if ηd (t) ∈ L∞ then

ξd (t), ξ̇d (t) ∈ L∞. Subsequent analysis shows that F̂T (t) ∈
L∞. These facts can be utilized along with the analysis

in Appendix G of [11] to prove that all the signals in

the dynamic target system along with their higher order

derivatives are bounded.

A. Closed-Loop Error System

Taking the time derivative of (15) results in the following

expression

ẍ = uT + FT + J̇fθf (54)

where (21), (25), (31), (49), and (50) were utilized. After

taking the second time derivative of (42), the following

expression is obtained

..
x̄= S(uT + J̇fθf ) + F̄T +

[

0m×1

ξ̈2

]

(55)

where (54) was utilized and F̄T (t) ∈ R
2m is defined as

follows

F̄T , SFT . (56)

To facilitate the closed-loop error system for rT (t), the error

system dynamics for sT (t) and eT (t) are derived first. After

taking the second order derivative of (46), the following

expression is obtained

ëT = γ

[

ϕ̇ (ξ1)
0m×1

]

+ F̂T − BT ηd − CT λd

−S(uT + J̇fθf ) − F̄T −

[

0m×1

ξ̈2

]

(57)

where (51), (52) and (55) were utilized. The task-space

component of the auxiliary control input, uT (t) is designed

as follows

uT , −J̇fθf + S−1(γ

[

ϕ̇ (ξ1)
0m×1

]

− BT ηd

−CT λd −

[

0m×1

ξ̈2

]

) + S−1ūT (58)
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where ūT (t) ∈ R
2m is a subsequently designed auxiliary

control input. After substituting (58) into (57), the following

simplified expression is obtained

ëT = F̂T − F̄T − ūT . (59)

The time derivative of sT (t) can be obtained as follows

ṡT = F̂T − F̄T − ūT + sT − eT (60)

where (45) and (59) were utilized. Based on (60), the

auxiliary control input ūT (t) is designed as follows

ūT , sT − eT . (61)

After substituting (61) into (60), the following simplified

expression is obtained

ṡT = F̂T − F̄T . (62)

The error system dynamics for rT (t) can be derived by

taking the time derivative of (44)

ṙT =
.

F̂T −
.

F̄T + rT − sT (63)

where (44) and the time derivative of (62) were utilized.

Based on (63), the proportional-integral like nonlinear ob-

server introduced in (52) is designed as follows

F̂T , − (KT + 1)

[

sT (t) − sT (t0) +

∫ t

t0

sT (τ )dτ

]

− (β3 + β4)

∫ t

t0

sgn (sT (τ )) dτ (64)

where KT , β3, β4 ∈ R are positive control gains. In (64),

the term sT (t0) ensures that F̂T (t0) = 02m×1. The time

derivative of (64) is obtained as follows
.

F̂T = − (KT + 1) rT − (β3 + β4) sgn (sT ) (65)

where (44) was utilized. After substituting (65) into (63), the

following closed-loop error system is obtained

ṙT = −KT rT − (β3 + β4) sgn (sT )−
.

F̄T −sT . (66)

Remark 6: After utilizing (14), Assumption 2, (49), and

(56),

∥

∥

∥

˙̄FT (t)
∥

∥

∥
and

∥

∥

∥

¨̄FT (t)
∥

∥

∥
can be upper bounded as follows

∥

∥

∥

˙̄FT (t)
∥

∥

∥
≤ ς3

∥

∥

∥

¨̄FT (t)
∥

∥

∥
≤ ς4 (67)

where ς3, ς4 ∈ R represent positive bounding constants.

B. Stability Analysis

Theorem 2: The controller given in (58) and (61) and the

observer in (64) guarantee that all signals are bounded under

the closed-loop operation and that coordination between the

master and slave systems, and the tracking objective are met

in the sense that

xs (t) → xm (t) as t → ∞ (68)

xm (t) → ξ1 (t) as t → ∞ (69)

provided the control gain β3, introduced in (64) is selected

to satisfy the sufficient condition

β3 > ς3 + ς4. (70)

Proof: See Theorem 5 in [11] for a similar proof.

V. NULL-SPACE CONTROLLER DEVELOPMENT

In this section the null-space controller uN(t) will be

designed to meet the null-space velocity tracking objective.

In the controller design, the redundancy of the master and

the slave manipulators will be utilized to perform certain

sub-task objectives required for a particular application.

To integrate this sub-task objective into the controller, an

auxiliary control signal, denoted by g (t), will be introduced.

This auxiliary controller is designed through the joint motion

in the null-space of the Jacobian matrix.

The null-space velocity tracking error, denoted by ėN (t) ∈
R

2n, is defined as [24]

ėN , (I2n − J+

f Jf ) (g − θf ) (71)

where g (t) ∈ R
2n is the subsequently designed sub-task

controller. After utilizing (31), (49), and (50) the following

expression is obtained

θ̇f = J+

f uT + J+

f FT + (I2n − J+

f Jf )(uN + FN ). (72)

After taking the time derivative of (71), the dynamics of

ėN (t) can be obtained as follows

ëN = (I2n − J+

f Jf )ġ − (J̇+

f Jf + J+

f J̇f ) (g − θf )

−(I2n − J+

f Jf )(uN + FN ) (73)

where (21), (23), (26), (71) and (72) were utilized. After

adding and subtracting the term J+

f J̇fJ+

f Jf (g − θf ) to the

right-hand-side of (73), the following expression is obtained

ëN = (I2n − J+

f Jf )(ġ − uN ) + J+

f FT − F

−Jφ (g − θf ) − J+

f J̇f ėN (74)

where (28), (49), and (71) were utilized. The null-space

component of the auxiliary control input uN (t), introduced

in (50), is now designed as follows

uN , −Jφ (g − θf ) + ġ + KN ėN − F̂ (75)

where KN ∈ R is a positive constant. After substituting (75)

into (74) and utilizing (21)-(27) the following expression for

the dynamics of ėN (t) is obtained

ëN = −(I2n − J+

f Jf )(KN ėN − F̂ )

+J+

f FT − F − J+

f J̇f ėN . (76)

Theorem 3: The null-space component of the control in-

put described by (75) guarantees that the null-space velocity

tracking is obtained in the sense that ‖ėN(t)‖ → 0 as t → ∞.

Proof: See [22].

VI. SUB-TASK CONTROLLER DEVELOPMENT

In this section, the sub-task controller g(t) is developed.

The subsequent stability analysis shows that the sub-task

objective is met if the Jacobian-related null space matrix

maintains full-rank.

An auxiliary positive function yai (t) ∈ R is defined as

follows

yai , exp (−kiρi(θi)) ∀i = 1, 2 (77)
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where i=1 and 2 for the master and the slave systems,

respectively and ki ∈ R is a positive constant, ρi(·) ∈ R

is a nonnegative function that is specific to a sub-task,

and exp (·) is the natural logarithmic exponential function.

To facilitate the sub-task controller development, a positive

function ya (t) ∈ R is defined as follows

ya , ya1 + ya2. (78)

After taking the time derivative of (78), the following ex-

pression can be obtained

ẏa = Jsθ̇ (79)

where (7) was utilized and Js (t) ∈ R
1×2n is a Jacobian-type

vector defined as follows

Js ,

[

∂ya1

∂θ1

∂ya2

∂θ2

]

. (80)

After utilizing (16), (79) can be expressed as follows

ẏa = J̄sθf (81)

where the term J̄s , JsM
−1 ∈ R

1×2n is again a Jacobian-

type vector. After adding and subtracting the term J̄s(I2n −
J+

f Jf ) (g − θf ) to the right-hand-side of (81) the following

simplified expression is obtained

ẏa = J̄s(I2n − J+

f Jf )g − J̄sJ
+

f Jfθf − J̄sėN (82)

where (71) was utilized. Based on the subsequent stability

analysis, the sub-task controller is designed as follows

g , −KgJ̄
T
s ya (83)

where Kg ∈ R is a positive constant. After substituting (83)

into (82), the following expression is obtained

ẏa = −KgJ̄s(I2n−J+

f Jf )J̄T
s ya− J̄sJ

+

f Jfθf − J̄sėN . (84)

Theorem 4: The control law described by (83) guarantees

that ya (t) is ultimately bounded in the following sense

|ya(t)| ≤

√

|y2
a(t0)| exp (−2νt) +

ε

ν
(85)

provided that

Kg >
1

δ̄
(86)

where ε, ν, δ̄ ∈ R are positive constants.

Proof: See Theorem 2 in [11] for a similar proof.

VII. CONCLUSION

A controller for nonlinear teleoperator systems where both

the master and slave systems are kinematically redundant

robot manipulators was presented. Lyapunov-based stability

analysis was used to show that the proposed controller

yields asymptotic results despite the unmeasurable user and

environmental input forces. Also, the kinematic redundancy

of the teleoperator system was utilized to integrate a sub-

task controller. The proposed controller ensured that the

master system accurately tracks a desired task-space tra-

jectory, coordinates the master and the slave systems and

additionally, satisfies sub-task objectives. An optional user

assist mechanism was also presented that assists the user of

the system to complete a pre-defined contour with the slave

system.
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