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Abstract— This paper addresses the state-estimation problem
for nonlinear systems with an interval constraint on the state
vector. Approximate solutions to this problem are reviewed
and compared with new algorithms, which are based on the
unscented Kalman filter. An illustrative example is discussed.

I. INTRODUCTION

The classical Kalman filter (KF) provides optimal state

estimates under Gaussian disturbances and linear model

assumptions [2]. In practice, however, the dynamics and

disturbances may be such that the state vector is known to

satisfy an inequality [7] or an equality [11] constraint. For

example, in a chemical reaction, the species concentrations

are nonnegative [14]. Additional examples of systems with

inequality-constrained states arise in aeronautics [9]. The

equality-constrained case is addressed in [11–13] and is

outside the scope of this paper. However, Gaussian noise and

an inequality-constrained state vector are mutually exclusive

assumptions even for linear systems [5, 6]. Therefore, for

such systems, KF does not guarantee that its estimates

satisfy the inequality constraint. In such cases, as well as

for nonlinear systems, we wish to obtain state estimates

that satisfy inequality constraints. In this paper, we are

specifically concerned with interval constraints.

Various approximate algorithms have been developed for

inequality-constrained linear state estimation. One of the

most popular techniques is the moving horizon estimator

(MHE) [5], which formulates the state-estimation problem

as a non-recursive constrained quadratic program. The trun-

cation procedure [8] reshapes the probability density function

computed by KF, which is assumed to be Gaussian and is

given by the state estimate and the error covariance, at the

inequality constraint edges. Finally, if the state estimates do

not satisfy the inequality constraint, then they are projected

onto the boundary of the constraint region by the projection

approach [8, 9].

For nonlinear systems, algorithms based on MHE are

employed [1, 6]. However, since these techniques are non-

recursive, they are computationally expensive and difficult to

use in some real-time applications [14]. For such cases, the

constrained extended KF (CEKF) [6, 14], which is a special

case of MHE with unitary moving horizon and is called
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recursive nonlinear dynamics data reconciliation (RNDDR)

in [14], is presented as a simpler and less computationally de-

manding algorithm. Motivated by the improved performance

[4] of the unscented KF (UKF) [3] over the extended KF

(EKF) [2], the unscented RNDDR, which is referred to as

the sigma-point interval unscented Kalman filter (SIUKF) in

this paper, is presented in [14].

The present paper addresses the state-estimation prob-

lem for interval-constrained nonlinear systems. We review

UKF and SIUKF and present approximate solutions to this

problem based on UKF as follows. We combine either the

unscented transform (UT) [3] or the interval-constrained UT

(ICUT) [14], which are used during the forecast step of UKF

and SIUKF, respectively, together with one of the following

data-assimilation approaches, namely, (i) the classical KF

update [2, 3], (ii) the constrained Kalman update of CEKF

[10, 14], (iii) the sigma-point constrained update of SIUKF

[14], (iv) the classical KF update followed by either the

truncation procedure [8], or (v) the projection approach [9].

Then we obtain six new algorithms, namely, the constrained

UKF (CUKF), the constrained interval UKF (CIUKF), the

interval UKF (IUKF), the truncated UKF (TUKF), the trun-

cated IUKF (TIUKF), and the projected UKF (PUKF); see

Table I. These algorithms are compared to UKF and SIUKF

in terms of accuracy and processing time by means of a

continuously stirred tank reactor [1] example. Our goal is to

obtain nonnegative state estimates. A detailed version of this

paper appears as [10, Chapter 6].

TABLE I: Interval-constrained state estimators based on the unconstrained
UKF. We make explicit the procedure used during the forecast step (column-
wise), as well as the type of KF update (KFU) used during data-assimilation
(DA) (row-wise). Inside parentheses, we cite the section in which the method
is either reviewed or presented.

DA \ forecast UT [3] ICUT [14]

classical KF update [2] UKF (III) IUKF (V-D)
CEKF update [14] CUKF (V-B) CIUKF (V-C)
sigma-point constrained up-
date [14]

– SIUKF (V-A)

KFU plus truncation [8] TUKF (V-E) TIUKF (V-F)
KFU plus projection [9] PUKF (V-G) –

II. STATE ESTIMATION FOR NONLINEAR SYSTEMS

For the stochastic nonlinear discrete-time dynamic system

xk = f (xk−1, uk−1, k − 1) + wk−1, (2.1)

yk = h (xk, k) + vk, (2.2)

where f : R
n × R

p × N → R
n and h : R

n × N → R
m are,

respectively, the process and observation models, the state-

estimation problem can be described as follows. Assume that,
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for all k ≥ 1, the known data are the measurements yk ∈ R
m,

the inputs uk−1 ∈ R
p, and the probability density functions

(PDFs) ρ(x0), ρ(wk−1) and ρ(vk), where x0 ∈ R
n is the

initial state vector, wk−1 ∈ R
n is the process noise, and

vk ∈ R
m is the measurement noise. Next, define the profit

function

J(xk)
△
= ρ(xk|(y1, . . . , yk)), (2.3)

which is the value of the conditional PDF of the state

vector xk ∈ R
n given the past and present measured data

y1, . . . , yk. Under the stated assumptions, the maximization

of (2.3) is the state-estimation problem, while the maximizer

of J is the optimal state estimate.

The solution to this problem is complicated by the fact

that, for nonlinear systems, ρ(xk|(y1, . . . , yk)) is not com-

pletely characterized by its mean x̂k|k and covariance P xx
k|k

△
=

E [(xk − x̂k|k)(xk − x̂k|k)
T

]. We thus use an approximation

based on the classical Kalman filter (KF) for linear systems

[2] to provide a suboptimal solution to the nonlinear case,

specifically, the unscented Kalman filter (UKF) [3]. To

accomplish that, UKF propagates only approximations to

x̂k|k and P xx
k|k using the initial mean x̂0|0 and the covariance

P xx
0|0

△
= E [(x0− x̂0)(x0− x̂0)

T

] of ρ(x0), which are assumed

to be known. We assume that the maximizer of J is x̂k|k.

Furthermore, we assume that the mean and covariance of

ρ(wk−1) and ρ(vk) are known and equal to zero and Qk−1,

Rk, respectively. Also, wk−1 and vk are assumed to be

uncorrelated.

III. UNSCENTED KALMAN FILTER

Instead of analytically or numerically linearizing (2.1)-

(2.2) and using the KF equations [2], UKF employs

the unscented transform (UT) [3], which is a numerical

procedure for approximating the mean and covariance of a

random vector obtained from a nonlinear transformation.

UKF is a two-step estimator whose forecast step is given
by

γ0 =
λ

n + λ
, γj

△
=

1

2(n + λ)
, j = 1, . . . , 2n, (3.1)

Xk−1|k−1 = x̂k−1|k−111×(2n+1) +
√

n + λ
[

0n×1 (P
xx
k−1|k−1)

1/2 − (P
xx
k−1|k−1)

1/2
]

, (3.2)

Xj,k|k−1 = f(Xj,k−1|k−1, uk−1, k − 1), j = 0, . . . , 2n, (3.3)

x̂k|k−1 =

2n
∑

j=0

γi Xj,k|k−1, (3.4)

P
xx
k|k−1 =

2n
∑

j=0

γj [Xj,k|k−1 − x̂k|k−1][Xj,k|k−1 − x̂k|k−1]
T
+Qk−1, (3.5)

Xk|k−1 = x̂k|k−111×(2n+1) +
√

n + λ
[

0n×1 (P
xx
k|k−1)

1/2 − (P
xx
k|k−1)

1/2
]

, (3.6)

Yj,k|k−1 = h(Xj,k|k−1, k), j = 0, . . . , 2n, (3.7)

ŷk|k−1 =
2n
∑

j=0

γj Yj,k|k−1, (3.8)

P
yy
k|k−1

=

2n
∑

j=0

γj [Yj,k|k−1 − ŷk|k−1][Yj,k|k−1 − ŷk|k−1]
T
+Rk, (3.9)

P
xy
k|k−1

=
2n
∑

j=0

γi [Xj,k|k−1 − x̂k|k−1][Yj,k|k−1 − ŷk|k−1]
T

, (3.10)

where (·)1/2 is the Cholesky square root, λ > −n, Xj is the

jth column of the sigma-point matrix X ∈ R
n×(2n+1) with

weights γj satisfying
∑2n

j=0 γj = 1, P xx
k|k−1 is the forecast

error covariance, P
yy
k|k−1 is the innovation covariance, P

xy
k|k−1

is the cross covariance, and P xx
k|k is the data-assimilation

error-covariance, and whose data-assimilation step is given

by the classical KF update, that is,

Kk = P
xy
k|k−1(P

yy
k|k−1)

−1, (3.11)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1), (3.12)

P xx
k|k = P xx

k|k−1 − KkP
yy
k|k−1K

T

k , (3.13)

where Kk ∈ R
n×m is the Kalman gain matrix. Henceforth,

the notation x̂k|k−1 indicates an estimate of xk at time k

based on information available up to and including time k−1.

Likewise, x̂k|k indicates an estimate of xk at time k using

information available up to and including time k.

IV. STATE ESTIMATION FOR INTERVAL-CONSTRAINED

NONLINEAR SYSTEMS

Assume that, for all k ≥ 0, the state vector xk satisfies

the interval constraint

dk ≤ xk ≤ ek, (4.1)

where dk ∈ R
n and ek ∈ R

n are assumed to be known

and, for j = 1, . . . , n, dj,k < ej,k. Also, if xj,k is left-

unbounded or right-unbounded, then we set dj,k = −∞ or

ej,k = ∞, respectively. Thus, the objective of the interval-

constrained state-estimation problem is to maximize (2.3)

subject to (4.1). That is, we look for the maximizer of J

that satisfies (4.1).

In addition to nonlinear dynamics, the solution to this

problem is complicated due the inclusion of an interval

constraint. We thus extend approximate algorithms derived

in the linear scenario to provide suboptimal estimates in the

nonlinear case.

V. INTERVAL-CONSTRAINED UKFS

A. Sigma-Point Interval Unscented Kalman Filter

The sigma-point interval unscented Kalman filter (SIUKF)

uses the interval-constrained UT (ICUT) [14] to generate

sigma points satisfying dk−1 ≤ Xj,k−1|k−1 ≤ ek−1, j =
0, . . . , 2n. In this case, Xk−1|k−1 is chosen as

Xk−1|k−1 = x̂k−1|k−111×(2n+1) +
[

0n×1 θ1,k−1col1[(P
xx
k−1|k−1)

1/2
] . . .

θn,k−1coln[(P
xx
k−1|k−1)

1/2
]

−θn+1,k−1coln+1[(P
xx
k−1|k−1)

1/2
] . . .

−θ2n,k−1col2n[(P
xx
k−1|k−1)

1/2
]
]

, (5.1)

where for i = 1, . . . , n and j = 1, . . . , 2n

θj,k−1 � min (colj(Θ)) , (5.2)

Θ(i,j) �























√
n + λ, if S(i,j) = 0,

min

(√
n + λ,

ei,k−1−x̂i,k−1|k−1
S(i,j)

)

, if S(i,j) > 0,

min

(√
n + λ,

di,k−1−x̂i,k−1|k−1
S(i,j)

)

, if S(i,j) < 0,

(5.3)

S �
[

(P xx
k−1|k−1)

1/2 −(P xx
k−1|k−1)

1/2
]

, (5.4)
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with weights, for j = 1, . . . , 2n,

γ0,k−1 � bk−1, γj,k−1 � ak−1 θj,k−1 + bk−1 (5.5)

satisfying
∑2n

j=0 γj,k−1 = 1, where

ak−1 �
2λ − 1

2(n + λ)
(

∑ n
j=1 θj,k−1 − (2n + 1)

√
n + λ

) , (5.6)

bk−1 �
1

2(n + λ)
− 2λ − 1

(2
√

n + λ)
(

∑ n
j=1 θj,k−1 − (2n + 1)

√
n + λ

) . (5.7)

Note that, for UT, θj,k−1 =
√

n + λ, for all j = 1, . . . , 2n;

see (3.2). Figure 1 illustrates how the sigma points of ICUT

are chosen compared to UT. Note that whenever a sigma

point violates (4.1), it is projected onto the nearest surface

xk−1 = dk−1 or xk−1 = ek−1. In so doing, unlike UT, the

sigma points are not necessarily symmetric around x̂k−1|k−1

such that their weighted sample mean and covariance may

not capture x̂k−1|k−1 and P xx
k−1|k−1.

(a) (b)
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Fig. 1. Sigma points of (a) UT (⋄) in comparison with those of (b)

ICUT (×) and related weights for an example where xk−1 ∈ R
2

,

x̂k−1|k−1 = [ 1 1 ]
T

, P xx
k−1|k−1

= I2×2, dk−1 = [ 0 − 1 ]
T

,

ek−1 = [ 3 1.75 ]
T

, and λ = 0. The circle (◦) represents the weighted
mean of sigma points, the dot-dashed (−·−) line denotes the corresponding
covariance, and (—–) is the actual covariance. For UT, these lines coincide.

SIUKF is a two-step estimator whose forecast step is given

by (5.1)-(5.7) together with (3.3) and

x̂k|k−1 =

2n
∑

j=0

γj,k−1Xj,k|k−1, (5.8)

P
xx
k|k−1 =

2n
∑

j=0

γj,k−1[Xj,k|k−1−x̂k|k−1][Xj,k|k−1−x̂k|k−1]
T
+ Qk−1,(5.9)

and (3.6), and whose data-assimilation step is given by

X̂j,k|k =
arg min J1(Xj,k), j = 0, . . . , 2n,

{Xj,k : dk ≤ Xj,k ≤ ek} (5.10)

x̂k|k =

2n
∑

j=0

γj,k−1 X̂j,k|k, (5.11)

P
xx
k|k =

2n
∑

j=0

γj,k−1

[

X̂j,k|k − x̂k|k

] [

X̂j,k|k − x̂k|k

]T

, (5.12)

where J1(Xj,k)
△
=

[

(yk − h(Xj,k, k))
T

R−1
k (yk − h(Xj,k, k))

+ (Xj,k −Xj,k|k−1)
T

(P xx
k|k−1)

−1(Xj,k −Xj,k|k−1)
]

, and

each column of X̂k|k
△
= [X̂0,k|k X̂1,k|k . . . X̂2n,k|k] ∈

R
n×(2n+1) is the solution of a nonlinear constrained

optimization problem. We refer to (5.10)-(5.11) as the

sigma-point constrained update.

SIUKF enforces (4.1) during both the forecast and data-

assimilation steps. Moreover, not only x̂k|k−1 and x̂k|k,

but also P xx
k|k−1 and P xx

k|k, assimilate the interval-constraint

information.

B. Constrained Unscented Kalman Filter

In this section, we present the constrained unscented

Kalman filter (CUKF). Combining UT for forecast and an

inequality-constrained update for data-assimilation, CUKF is

the straightforward unscented-based extension of the con-

strained extended Kalman filter [6, 14], which corresponds to

the moving horizon estimator with a unitary window length

[6].

Similar to UKF, CUKF is a two-step estimator. The fore-

cast step is given by (3.1)-(3.10). To enforce (4.1), we replace

(3.12) of UKF by the constrained optimization problem

x̂k|k =
arg min J2(xk)

{xk : dk ≤ xk ≤ ek} (5.13)

where J2(xk)
△
=

[

(yk − h(xk, k))
T

R−1
k (yk − h(xk, k)) +

(xk − x̂k|k−1)
T

(P xx
k|k−1)

−1(xk − x̂k|k−1)
]

, such that the

data-assimilation step is given by (3.11), (5.13), (3.13). Note

that, under Gaussian and linear assumptions, maximizing

(2.3) is equivalent to minimizing J2 [11, Lemma 4.1]. Note

that the information provided by (4.1) is not assimilated into

the error covariance P xx
k|k in (3.13).

C. Constrained Interval Unscented Kalman Filter

We present now the constrained interval unscented Kalman

filter (CIUKF) as a simplified version of SIUKF. CIUKF is

a two-step estimator whose forecast step is given by (5.1)-

(5.7), (3.3), (5.8)-(5.9), and (3.6)-(3.7) together with

ŷk|k−1 =

2n
∑

j=0

γj,k−1Yj,k|k−1, (5.14)

P
yy
k|k−1

=

2n
∑

j=0

γj,k−1[Yj,k|k−1 − ŷk|k−1][Yj,k|k−1 − ŷk|k−1]
T
+ Rk,(5.15)

P
xy
k|k−1

=

2n
∑

j=0

γj,k−1[Xj,k|k−1 − x̂k|k−1][Yj,k|k−1 − ŷk|k−1]
T

, (5.16)

and whose data-assimilation step is given by (3.11), (5.13),

(3.13).

Note that the forecast step of both CIUKF and SIUKF use

ICUT, while the data-assimilation step of CIUKF and CUKF

are equal. That is, the data-assimilation step of CIUKF is

a single sigma-point special case of the data-assimilation

step of SIUKF. However, unlike SIUKF, P xx
k|k of CIUKF and

CUKF are not affected by (4.1).

D. Interval Unscented Kalman Filter

The interval unscented Kalman filter (IUKF), which is a

simplified version of CIUKF, is a two-step estimator whose

forecast step is given by (5.1)-(5.7), (3.3), (5.8)-(5.9), (3.6)-

(3.7), and (5.14)-(5.16) and whose data-assimilation step is
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given by (3.11)-(3.13). That is, its forecast equations are

equal to the forecast equations of CIUKF, which uses ICUT,

and its data-assimilation equations are equal to the data-

assimilation equations of UKF. However, unlike in SIUKF

and CIUKF, (4.1) is not enforced during data assimilation

by IUKF.

E. Truncated Unscented Kalman Filter

Let x̂k|k given by (3.12) and P xx
k|k given by (3.13) be,

respectively, the pseudo mean and pseudo covariance of

ρ(xk|(y1, . . . , yk)) obtained from UKF; see Section III. We

want to truncate ρ(xk|(y1, . . . , yk)) at the n constraint edges

given by the rows of (4.1) such that the pseudo mean x̂t
k|k

of the truncated PDF is an interval-constrained state estimate

with truncated error covariance P xxt
k|k . This procedure is

called PDF truncation [8].

For example, consider the case where, even though x̂k|k =

[ 1 1 ]
T

satisfies the interval constraint (4.1) with parame-

ters dk = [ 0 − 1 ]
T

and ek = [ 3 1.75 ]
T

, P xx
k|k = I2×2

has significant area outside (4.1); as shown in the solid line

of Figure 2. Therefore, x̂t
k|k = [ 1.23 0.67 ]

T

is obtained

by shifting x̂k|k towards the centroid of the truncated PDF

and P xxt
k|k = diag(0.52, 0.45) is obtained by truncating P xx

k|k
due the prior knowledge provided by (4.1).
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variance P
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We present the truncated unscented Kalman filter (TUKF)

as the unscented-based nonlinear extension of the truncated

Kalman filter (PKF) described in [8, 10], which consid-

ers inequality-constrained linear systems, to the interval-

constrained nonlinear state-estimation problem. TUKF is

obtained by appending the PDF truncation procedure to the

UKF equations by feedback recursion. TUKF is a three-step

algorithm whose forecast step is given by (3.1) and

Xk−1|k−1 = x̂
t
k−1|k−111×(2n+1) +

√

n + λ
[

0n×1 (P
xxt
k−1|k−1)

1/2 − (P
xxt
k−1|k−1)

1/2
]

,(5.17)

together with (3.3)-(3.10), whose data-assimilation step is

given by (3.11)-(3.13), and whose truncation step is reviewed

in [8, p. 218–222] and [10, p. 101–105]. For brevity, we do

not present the truncation equations.

TUKF has two advantages. First, unlike SIUKF, CIUKF,

CUKF, and PUKF, it avoids the explicit online solution of a

constrained optimization problem at each time step. Second,

it assimilates the interval-constraint information in both the

state estimate x̂t
k|k and the error covariance P xxt

k|k .

F. Truncated Interval Unscented Kalman Filter

We present now the truncated interval unscented Kalman

filter (TIUKF) obtained from the combination of IUKF,

which uses ICUT, and the PDF truncation approach of

TUKF.

TIUKF is a three-step estimator whose forecast step is

given by (5.1)-(5.7), where x̂t
k−1|k−1 replaces x̂k−1|k−1,

together with (3.3), (5.8)-(5.9), (3.6)-(3.7), (5.14)-(5.16),

whose data-assimilation step is given by (3.11)-(3.13), and

whose truncation step is equal to the truncation step of

TUKF; see Section V-E. Note that TIUKF enforces (4.1)

during both the forecast step (in both x̂k|k−1 and P xx
k|k−1)

and truncation step (in both x̂t
k|k and P xxt

k|k ).

G. Projected Unscented Kalman Filter

The projected unscented Kalman filter (PUKF) is the

unscented-based nonlinear extension of the projected Kalman

filter (PKF) [8, 9], which considers inequality-constrained

linear systems.

Let Wk ∈ R
n×n be a positive-definite weighting matrix.

PUKF is obtained by appending to UKF the projection

equation

x̂
p
k|k =

arg min J3(xk),
{xk : dk ≤ xk ≤ ek} (5.18)

where J3(xk)
△
= (xk−x̂k|k)

T

W−1
k (xk−x̂k|k). If the estimate

x̂k|k given by (3.12) does not satisfy (4.1), then it is projected

onto the boundary of (4.1). Similar to [9], we set Wk = P xx
k|k,

where P xx
k|k is given by (3.13).

Thus, PUKF is a three-step algorithm whose forecast step

is given by (3.1)-(3.10), whose data-assimilation step is given

by (3.11)-(3.13), and whose projection step is given by

(5.18). Note that, unlike the aforementioned algorithms, the

constrained estimate x̂
p
k|k is not recursively fed back in the

forecast step at k + 1; see (3.2).

H. Algorithms: Summary of Characteristics

In this section, we compare the structure of the UKF,

SIUKF, CUKF, CIUKF, IUKF, TUKF, TIUKF, and PUKF

algorithms. Table I lists each algorithm with relation to

the specific approaches used for the forecast and data-

assimilation steps. Actually, TUKF, TIUKF, and PUKF are

three-step algorithms that employ the classical KF update

during the data-assimilation step and use a third step (trun-

cation or projection) to enforce the interval constraint.

Moreover, Table II indicates, for each algorithm, whether

or not the state estimates, as well as the pseudo error

covariance, are affected by the interval constraint in each

step of the estimator. Also, we account for the number of

constrained optimization problems that must be explicitly

solved at each time step to enforce the (4.1).

It is important to mention that SIUKF, CUKF, and CIUKF

can handle nonlinear inequality and/or equality constraints
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forecast DA truncation/projection #

Alg. Sec. x̂k|k−1 P
xx
k|k−1 x̂k|k P

xx
k|k x̂

t
k|k or x̂

p

k|k P
xxt
k|k or P

xxp

k|k COP

UKF [3] III no no no no – – 0
SIUKF [14] V-A yes yes yes yes – – 2n + 1

CUKF V-B no no yes no – – 1
CIUKF V-C yes yes yes no – – 1
IUKF V-D yes yes no no – – 0
TUKF V-E no no no no yes yes 0
TIUKF V-F yes yes no no yes yes 0
PUKF V-G no no no no yes – 1

II. Summary of characteristics
of state-estimation algorithms
(Alg.) for interval-constrained
nonlinear systems. It is shown
whether or not the state estimates
and the pseudo error covariance
assimilate the interval constraint
information in each step of
the estimator. Also, it is
indicated how many constrained
optimization problems (COP) are
solved at each time step.

in addition to (4.1) during the data-assimilation step. Like-

wise, PUKF is able to enforce such constraints during the

projection step, while TUKF and TIUKF can enforce linear

equality constraints during the truncation step.

VI. NUMERICAL EXAMPLE:

CONTINUOUSLY STIRRED TANK REACTOR [1]

We consider the gas-phase, reversible reactions

A
k1
⇋
k2

B + C, (6.1)

2B
k3
⇋
k4

B + C, (6.2)

with reaction-rate proportions k1 = 0.5, k2 =
0.05, k3 = 0.2, k4 = 0.01, stoichiometric ma-

trix S =

[

−1 1 1
0 −2 1

]

, and reaction rates r(t) =
[

k1x1(t) − k2x2(t)x3(t)
k3x

2
2(t) − k4x3(t)

]

. Let the state vector x(t) ∈ R
3
+

be given by the concentrations of A, B, and C in mol/l.

We assume that these reactions take place in a well-mixed,

isothermal continuously stirred tank reactor (CSTR), whose

dynamics are given by

ẋ(t) =
1

3

(

S
T

r(t) +
1

VR

([

cf −x(t)
]

u(t)
)

)

, (6.3)

where VR = 100 l is the reactor volume, cf =
[

0.5 0.05 0
]
T

mol/l denotes inlet concentrations,

u(t) =
[

qf qo

]
T

is the input vector, and qf ≥ 0 and

qo ≥ 0 are the volumetric inlet and effluent flow rates. We

set x(0) =
[

0.5 0.05 0
]
T

and qf = qo = 1
To perform state estimation using UKF, SIUKF, CUKF,

CIUKF, IUKF, TUKF, TIUKF, and PUKF, we integrate the

process model (6.3) with Ts = 0.25 s using the 4th-order

Runge-Kutta algorithm such that xk
△
= x(kTs). To help

convergence using UKF with x̂0|0 = x0, we set Qk−1 =
10−6 I3×3. For uniformity, this value is used in the remaining

cases. Also, we assume that we measure the total pressure

yk =
[

R R R
]

xk + vk, (6.4)

where R = 32.84 atm×l/mol is a constant, and Rk = 0.252

is the variance of vk ∈ R. We want to enforce the interval

constraint (4.1), where dk = 03×1 and ek = ∞3×1. First, we

set a poor initialization given by x̂0|0 =
[

0 0 3.5
]
T

and

P xx
0|0 = 4 I3×3 and we refer to it as case 1. Case 1 is investi-

gated in [1]. We also investigate a second case (case 2) with

good initialization given by x̂0|0 =
[

0.6 0.1 0.05
]
T

and P xx
0|0 = 0.5 I3×3. Whenever a constrained optimization

problem is solved, since the measurement model is linear, we

use the function quadprog of Matlab, which implements

a subspace trust region optimization method for quadratic

programming.

Table III presents a performance comparison among the

aforementioned algorithms for a 100-run Monte Carlo sim-

ulation, regarding the root-mean-square error of the each

state RMSEj =
√

1
N

∑N
k=1(xj,k − x̂j,k|k)2, j = 1, . . . , n,

where N is the final time, and the mean CPU processing

time per time step. When applicable, we replace x̂k|k by

either x̂t
k|k or x̂

p
k|k. Figure 3 shows the state estimate for

x3,k for a given simulation. For case 1, UKF does not

converge for kTs < 180 s and yields estimates violating

(4.1) for kTs < 80 s; see Figure 3a. Note also that, although

CUKF and PUKF slightly improve convergence, they still

result in large error. On the other hand, SIUKF and the

truncation-based algorithms TUKF and TIUKF yield the

smallest RMSE indices; see Table III. CIUKF and IUKF

also provide a good performance, although slightly inferior

compared to SIUKF, TUKF, and TIUKF.

For case 2, all constrained algorithms yield more accurate

estimates for x2 and x3 than UKF. However, among the

interval-constrained methods, CUKF and PUKF present the

worst results. In sum, we observe that methods that assimilate

the interval-constraint information in both the state estimate

and pseudo error covariance, namely, CIUKF, SIUKF, TUKF,

TIUKF, and IUKF, provide an improved performance com-

pared to UKF. Similar results are presented in [10] for a

batch reactor [14].

Regarding computational cost, IUKF, TIUKF, and TUKF

are competitive with UKF. Furthermore, CUKF, CIUKF, and

PUKF are three to five times slower than UKF, whereas

SIUKF is thirteen to twenty times slower than UKF.

VII. CONCLUDING REMARKS

We have addressed the interval-constrained state-

estimation problem for nonlinear systems. We have

investigated how combinations of one of two candidate

unscented approaches for forecast and one of five candidate

methods for data assimilation (see Table I) can be used.

In doing so, we reviewed UKF and SIUKF and introduced

CUKF, CIUKF, IUKF, TUKF, TIUKF, and PUKF. These

methods were compared with relation to whether or not the
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UKF IUKF SIUKF TUKF TIUKF CUKF CIUKF PUKF

Average of RMSE (mol/l)

x1,k 0.131 (8) 0.050 (4) 0.027 (1) 0.048 (3) 0.045 (2) 0.082 (6) 0.058 (5) 0.083 (7)
0.014 (6) 0.008 (1) 0.012 (5) 0.018 (8) 0.018 (7) 0.011 (3) 0.009 (2) 0.011 (4)

x2,k 0.554 (8) 0.044 (4) 0.012 (2) 0.010 (1) 0.020 (3) 0.204 (6) 0.059 (5) 0.206 (7)
0.079 (8) 0.005 (1) 0.010 (4) 0.009 (3) 0.010 (5) 0.055 (6) 0.007 (2) 0.055 (7)

x3,k 0.628 (8) 0.152 (4) 0.132 (1) 0.136 (2) 0.137 (3) 0.263 (6) 0.163 (5) 0.267 (7)
0.081 (8) 0.006 (1) 0.013 (3) 0.015 (4) 0.016 (5) 0.056 (6) 0.008 (2) 0.056 (7)

CPU Processing Time per Iteration (ms)

9.6 (3) 6.0 (1) 189.6 (8) 11.1 (4) 8.8 (2) 38.0 (6) 33.4 (5) 38.5 (7)
6.3 (2) 5.7 (1) 192.5 (8) 9.1 (4) 8.8 (3) 33.2 (5) 33.5 (6) 33.7 (7)

III. Average of RMSE and mean
CPU processing time per iteration
for a 100-run Monte Carlo sim-
ulation for the CSTR system us-
ing UKF, SIUKF, CUKF, CIUKF,
IUKF, TUKF, TIUKF, and PUKF.
Case-2 results are in italic. In each
row, the numbers inside parenthe-
ses sort the performance indices in
increasing order.
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Fig. 3. Estimate of x3,k for the poor initialization case using (a) UKF, PUKF, CUKF, and CIUKF, and (b) SIUKF, IUKF, TUKF, and TIUKF.

state estimates, as well as the pseudo error covariance, are

affected by the interval constraint in each step; see Table II.

We discussed an illustrative example, whose state es-

timates are constrained to be nonnegative. Whenever an

interval-constrained algorithm was used, more accurate state

estimates were obtained compared to UKF. We observed

that, for a good initialization, the performance indices of all

constrained algorithms were competitive, except for CUKF

and PUKF. However, when a poor initialization was set,

the UKF estimates violated the interval constraint. In this

case, only a slight improvement over UKF was observed

using CUKF and PUKF. On the other hand, SIUKF and the

truncation-based algorithms TUKF and TIUKF provided the

best performance. CIUKF and IUKF also provided a good

performance, although slightly inferior compared to SIUKF,

TUKF, and TIUKF.

Since the methods investigated in this study are approxi-

mate, it is not clear to point out which one is the best method.

Instead, it seems that the choice of a method depends

on the application. However, for the example investigated,

considering the tradeoff between accuracy and computational

cost, TIUKF and TUKF seem to be promising algorithms to

enforce interval constraints in nonlinear systems.
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and D. S. Bernstein. State Estimation for Equality-Constrained Linear
Systems. In Proc. of the 46th IEEE Conference on Decision and

Control, p. 6220–6225, New Orleans, USA, December 2007.
[12] B. O. S. Teixeira, J. Chandrasekar, L. A. B. Tôrres, L. A. Aguirre, and
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