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Abstract— A constructive algorithm for designing an ob-
server for a class of nonlinear systems is presented. We follow
the invariant manifold based approach which allows to shape
the dynamics of the estimation error. However, this shaping
relies on the solution of a PDE which becomes difficult for
multi-output systems. In this paper we remove this restriction
by adding to the reduced-order observer an output filter and
a single dynamic scaling parameter. We show that this method
can be applied to systems with unknown parameters, leading
to a new class of adaptive controllers. As an application, we
consider two examples: an induction motor with unknown load
and a longitudinal controller for an aircraft with unknown
aerodynamic properties.

I. INTRODUCTION

A general methodology for designing observers for non-

linear systems, introduced in [1], [2], is based on the

construction of a manifold with specific properties, namely

invariance and attractivity. This approach was first developed

for systems that are affine in the unmeasured states in [3].

Invariant and attractive manifolds in observer design have

been introduced in the work of Luenberger [4] for linear

systems and have been recently exploited for nonlinear

systems in [5], [6], [7] and [8].

In the approach of [1], [2], a parameterised description

of a manifold in the extended state space is given and

the observer dynamics are selected to render this manifold

invariant. The crucial issue is therefore the attractivity of

the manifold, which has to be achieved by solving a partial

differential equation (PDE). For systems that are linear in

the unmeasured states [3] this PDE takes the form

∂β

∂y
= B(y), (1)

where β(y) is a vector function of dimension equal to the

number of unmeasured states, and B(y) is a given matrix

that depends on the system. When the dimension of y is

larger than one, this PDE is solvable only if B(y) is a

Jacobian matrix, which occurs only under certain (restrictive)

conditions.

In this paper we remove this restriction by introducing

a dynamic scaling factor in the estimator dynamics and

by adding an output filter. It must be noted that dynamic

scaling has been widely used in the framework of high-gain

observers, see e.g. [9], [10], [11], [12], but is used in the

present work in a different context.

The authors are with the Department of Electrical and Electronic Engi-
neering, Imperial College London, SW7 2AZ, United Kingdom. (E-mail:
d.karagiannis@imperial.ac.uk, a.astolfi@imperial.ac.uk). A. Astolfi is also
with the Dipartimento di Informatica, Sistemi e Produzione, Università di
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The paper is organised as follows. In Section II we revisit

the reduced-order observer design introduced in [3] and

in Section III we describe the proposed algorithm. As an

example, we design an observer for an induction motor with

unknown load. Section IV shows that the proposed approach

can be applied to the design of adaptive controllers for

linearly parameterised systems and in the case of systems

in feedback form it provides an alternative to the classical

adaptive backstepping design. As an example, we consider

the longitudinal control problem for an aircraft with unknown

aerodynamic parameters. Section V concludes the paper with

some summarising remarks and suggestions for future work.

II. REDUCED-ORDER OBSERVER DESIGN

Consider a class of nonlinear systems described by equa-

tions of the form

ẏ = f(y, u) + Φ(y)η,
η̇ = h(y, u) + A(y)η,

(2)

where y ∈ R
m is the measured part of the state and η ∈ R

n

is the unmeasured part (which may also include unknown

parameters, i.e. equations of the form η̇i = 0).

Following the approach of [3] we define the observer error

z = η̂ − η = ξ + β(y) − η,

where ξ ∈ R
n is the observer state and β(·) : R

m → R
n is

a mapping to be determined. Defining the observer as

ξ̇ = h(y, u) + A(y)η̂ −
∂β

∂y
(f(y, u) + Φ(y)η̂)

yields the error dynamics

ż =

[

A(y) −
∂β

∂y
Φ(y)

]

z.

To complete the design it is necessary to assign the function

β(y) so that the above system has a uniformly (asymptot-

ically, if convergence of the estimation error is required)

stable equilibrium at zero.

Note that, if the system (2) is detectable, we expect

to be able to find an output injection matrix B(y) such

that the system ż = [A(y) − B(y)Φ(y)] z has a uniformly

(asymptotically) stable equilibrium at zero. However, if the

dimension of y is larger than one, it may not be possible

to find a β(y) such that (1) holds, i.e. B(y) may not be a

Jacobian matrix. (Obviously, if y has dimension one, we can

simply select β(y) to be the integral of B(y).)
To overcome this obstacle in the following section we

propose a dynamic extension to the reduced-order observer

which consists of an output filter (of order m) and a single
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dynamic scaling factor (i.e. the proposed observer is of order

n+m+1). The idea is to employ the output filter to ensure

that
∂β

∂y
= Ψ(y, ŷ), (3)

where ŷ is the filtered output and Ψ(·) is such that Ψ(y, y) =
B(y), and then use dynamic scaling to compensate for the

mismatch between y and ŷ. The obvious gain from this

modification is that Ψ(·) can be chosen so that (3), in contrast

with (1), is easily solvable.

III. MAIN RESULT

We now present the proposed algorithm for constructing

an observer (of order n+m+1) for the class of systems (2),

under the following detectability-like assumption.

Assumption 1: There exist a continuously differentiable

n × m matrix function B(·), a scalar function ρ(·) ≥ 0 and

a constant γ > 0 such that

1
2

(

[A(y) − B(y)Φ(y)]
⊤

+ [A(y) − B(y)Φ(y)]
)

≤ −ρ(y)I − γΦ(y)⊤Φ(y).

Remark 1: The foregoing assumption simply implies that

the system ż = [A(y) − B(y)Φ(y)] z has a uniformly glob-

ally stable equilibrium at zero and Φ(y(t))z(t) is square-

integrable. If, in addition, ρ(·) is strictly positive, then the

observer error z converges to zero. (However, this last

property is often not required.)

Note that, when A(y) ≡ 0, Assumption 1 is trivially

satisfied (with ρ(y) ≡ 0) by selecting B(y) = γΦ(y)⊤. This

is the case, for instance, in adaptive control, where η is a

vector of unknown parameters (see Section IV for details).

Consider the scaled observer error

z =
η̂ − η

r
=

ξ + β(y, ŷ) − η

r
,

where β(y, ŷ) = [β1(y, ŷ), . . . , βn(y, ŷ)]⊤ are functions to

be specified and the auxiliary state ŷ is obtained from the

filter

˙̂y = f(y, u) + Φ(y)η̂ − K(y, r, ŷ − y)(ŷ − y), (4)

where K(·) is a positive-definite matrix function. Defining

the observer as

ξ̇ = h(y, u) + A(y)η̂ −
∂β

∂y
(f(y, u) + Φ(y)η̂) −

∂β

∂ŷ
˙̂y (5)

yields the error dynamics

ż =

[

A(y) −
∂β

∂y
Φ(y)

]

z −
ṙ

r
z. (6)

The observer design problem is now reduced to the problem

of finding a function β(y, ŷ) and a dynamic scaling ṙ such

that the system (6) has a uniformly globally (asymptotically)

stable equilibrium at the origin.

Let the desired output injection matrix, satisfying Assump-

tion 1, be given by

B(y) =
[

B1(y) · · · Bm(y)
]

=







b11(y) · · · b1m(y)
...

...

bn1(y) · · · bnm(y)







and consider the function

β(y, ŷ) =

∫

B1(y1, ŷ2, . . . , ŷm)dy1

+ · · · +

∫

Bm(ŷ1, . . . , ŷm−1, ym)dym, (7)

which is such that

∂β

∂y
=

[

B1(y1, ŷ2, . . . , ŷm) · · · Bm(ŷ1, . . . , ŷm−1, ym)
]

.

Let e = ŷ − y and note that, since B(·) is continuously

differentiable, we can write

B1(y1, ŷ2, . . . , ŷm) = B1(y) −

m
∑

j=1

ejδ1j(y, e),

...

Bm(ŷ1, . . . , ŷm−1, ym) = Bm(y) −

m
∑

j=1

ejδmj(y, e),

for some functions δij(·) ∈ R
n with δii(y, e) ≡ 0. Substitut-

ing the above equations into (6) yields

ż = [A(y) − B(y)Φ(y)] z+

m
∑

j=1

ej∆j(y, e)Φ(y)z−
ṙ

r
z, (8)

where ∆j(y, e) = [δ1j(y, e), . . . , δmj(y, e)], while the dy-

namics of e are given by

ė = −K(y, r, e)e + rΦ(y)z. (9)

The system (8)-(9) has an equilibrium at zero and this can be

rendered uniformly globally stable by selecting the dynamics

of the scaling factor r and the matrix K(·) appropriately, as

described in the following lemma.

Lemma 1: Consider the system (2) and suppose that As-

sumption 1 holds. Let

ṙ = −
ρ(y)

2
(r−1)+cr

m
∑

j=1

e2
j‖∆j(y, e)‖2, r(0) = 1, (10)

with c ≥ m/(2γ), where ‖ · ‖ denotes the induced 2-norm,

and

K(y, r, e) = kr2I + ǫcr2diag(‖∆j(y, e)‖2), (11)

with k > 0 and ǫ > 0 constants. Then the system (8)-(9)-(10)

has a uniformly globally stable manifold of equilibria defined

by Ω = { (z, r, e) | z = e = 0 }. Moreover, z(t), r(t), e(t) ∈
L∞ and e(t),Φ(y(t))z(t) ∈ L2. If, in addition, ρ(·) > 0,

then z(t) converges to zero.

Proof: Consider the positive-definite and proper func-

tion V (z) = 1
2 |z|

2, whose time-derivative along the trajec-

tories of (8) satisfies

V̇ ≤ −
ρ(y)

2
|z|2 − γ|Φ(y)z|2

+
1

2

m
∑

j=1

ejz
⊤

[

∆j(y, e)Φ(y) + Φ(y)⊤∆j(y, e)⊤
]

z

−c
m

∑

j=1

e2
j‖∆j(y, e)‖2|z|2 ≤ −

ρ(y)

2
|z|2 −

γ

2
|Φ(y)z|2.
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As a result, the system (8) has a uniformly globally stable

equilibrium at the origin, z(t) ∈ L∞ and Φ(y(t))z(t) ∈ L2

(the latter is obtained by integrating the last inequality).

Moreover, the above holds true independently of the be-

haviour of y(t) and e(t).

Consider now the function W (e, z) = 1
2 |e|

2 + 1
kγ

V (z),
whose time-derivative along the trajectories of (8)-(9) satis-

fies Ẇ ≤ −kr2|e|2 + re⊤Φ(y)z − 1
2k
|Φ(y)z|2 ≤ −k

2 r2|e|2,
from which we conclude that the system (8)-(9) has a

uniformly globally stable equilibrium at (z, e) = (0, 0),
hence the manifold Ω is uniformly globally stable, and

e(t) ∈ L2 ∩ L∞.

It remains to show that r is bounded. To this end, consider

the combined Lyapunov function U(e, z, r) = W (e, z)+ ǫ
2r2,

whose time-derivative along the trajectories of (8)-(9)-(10)

satisfies U̇ ≤ −k
2 r2|e|2 − ǫcr2e⊤diag(‖∆j(y, e)‖2)e +

ǫcr2
∑m

j=1 e2
j‖∆j(y, e)‖2. Note that the last two terms can-

cel out, hence r(t) ∈ L∞ and limt→∞ e(t) = 0, which

concludes the proof.

Remark 2: The term −ρ(y)
2 (r−1) appearing in (10) is not

needed to prove stability (note that ρ(y) may be zero), but it

has been introduced to ensure that, when ρ(y) > 0, r stays

bounded in the presence of noise (and eventually converges

to its initial value). Note also that, from (10), we have that

r(t) ≥ 1, for all t ≥ 0.

Summarising, the proposed observer is described by the

equations (4), (5), (7), (10) and (11) with η̂ = ξ + β(y, ŷ).

Example 1 (Induction motor): The two-phase equivalent

model of an induction motor in the stator reference frame

is described by the equations [13]

ẏ =





−a0y1 + a2u1

−a0y2 + a2u2

0



 +





a1µ a1y3 0
−a1y3 a1µ 0

a3y2 −a3y1 −1



 η

η̇ =





a4y1

a4y2

0



 +





−µ −y3 0
y3 −µ 0
0 0 0



 η,

(12)

where y = [ia, ib, npω]
⊤

, η = [λa, λb, npτL/Jm]
⊤

, ia, ib
are the stator currents, λa, λb are the rotor fluxes, ω is the

rotor speed, u1, u2 are the stator voltages, np is the number

of pole pairs, Jm is the rotor moment of inertia, τL is the

unknown load torque, and a0, a1, a2, a3, a4 and µ are positive

constants, see [13] for details.

The system (12) is of the form (2) with

Φ(y) =





a1µ a1y3 0
−a1y3 a1µ 0

a3y2 −a3y1 −1



 , A(y) =





−µ −y3 0
y3 −µ 0
0 0 0



 .

Assumption 1 is satisfied (with ρ(y) ≡ 0) by selecting the

output injection matrix

B(y) = γΦ(y)⊤ = γ





a1µ −a1y3 a3y2

a1y3 a1µ −a3y1

0 0 −1



 .

Consider now the function

β(y) = γ





a1µy1 − a1ŷ3y2 + a3ŷ2y3

a1ŷ3y1 + a1µy2 − a3ŷ1y3

−y3



 ,

which is such that

∂β

∂y
= B(y) −





0 a1e3 −a3e2

−a1e3 0 a3e1

0 0 0



 .

From the last matrix we have

∆1 =





0 0 0
0 0 a3

0 0 0



, ∆2 =





0 0 −a3

0 0 0
0 0 0



, ∆3 =





0 a1 0
−a1 0 0
0 0 0



,

hence from (10) and (11) the dynamic scaling and the gain

matrix K(·) are selected, respectively, as

ṙ =
3

2γ
r
(

a2
3e

2
1 + a2

3e
2
2 + a2

1e
2
3

)

and K(r) = kr2I + 3ǫ
2γ

r2diag(a2
3, a

2
3, a

2
1).

Remark 3: Assuming that y1 and y2 are bounded, the

system ż = [A(y) − B(y)Φ(y)] z can also be stabilised

(uniformly in y) by selecting the output injection matrix

B(y) = γ





0 0 0
0 0 0
0 0 −1



 ,

which is the Jacobian of β(y) = [0, 0,−γy3], thus obviating

the need for the output filter and the scaling. However,

this solution has two significant drawbacks. First, the con-

vergence rate of z1, z2 depends only on µ and cannot be

assigned. This is due to the fact that the observer for η1 and

η2 (the rotor fluxes) is open-loop (and hence non-robust).

Second, the dynamics of z3 are strongly coupled with y1

and y2, and this may adversely affect performance.

IV. ADAPTIVE CONTROL DESIGN

In this section we consider a special case of the class

of systems (2), where the vector η consists solely of un-

known constant parameters, and we provide conditions for

constructing an adaptive control law using the observer of

Section III. The algorithm is then applied to the longitudinal

control problem for an aircraft with unknown aerodynamic

coefficients.

We consider linearly parameterised systems of the form

ẋ = f(x, u) + Φ(x)θ, (13)

with state x ∈ R
n and input u ∈ R

m, where θ ∈ R
p is

an unknown constant vector and each element of the vector

Φ(x)θ has the form ϕi(x)⊤θi, with θi ∈ R
pi . The control

problem is to find a continuous adaptive state feedback

control law such that all trajectories of the closed-loop

system are bounded and

lim
t→∞

x(t) = x∗, (14)

where x∗ is a desired set point (the extension to tracking is

trivial and is not considered here).
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Remark 4: A special subclass of (13) is the so-called

parametric strict feedback form which is given by

ẋi = xi+1 + ϕi(x1, . . . , xi)
⊤θi, (15)

with states xi ∈ R, i = 1, . . . , n and control input u ,

xn+1. This class of systems can be stabilised using adaptive

backstepping, see [14] and related works. The drawback of

this approach is that the resulting closed-loop system dy-

namics depend strongly on the estimation error which is only

guaranteed to be bounded. This can have a detrimental effect

on performance. To counteract this problem, an alternative

method has been developed in [15], see also [16], which is

based on the reduced-order observer design of Section II and

which effectively recovers the performance of the known-

parameters controller by imposing a closed-loop cascaded

structure. However, the application of this method relies on

a rather restrictive structural assumption (see Assumption 1

in [15]). The result in this section can therefore be used to

remove this assumption.

Remark 5: The result in Lemma 1 is directly applicable

to (13). However, in this section we design a separate

observer for each vector θi to facilitate the control design

(for example, to enable a step-by-step construction of the

control law, which is necessary when dealing with systems

in feedback form). See [17], [18] for an alternative approach

utilising scaling, which is not based on parameter estimation.

A. Estimator design

We first show how an estimator for θi can be constructed

using the observer design of Section III. We then give

conditions under which the estimator can be combined with

a certainty equivalence control law to obtain an adaptive

controller.

Consider the system (13) and let

zi =
θ̂i − θi

ri

=
ξi + βi(xi, x̂) − θi

ri

,

for i = 1, . . . , n, where ξi are the estimator states, ri are

scaling factors, βi(·) are functions to be specified, and the

auxiliary states x̂i are obtained from the filters

˙̂xi = fi(x, u) + ϕi(x)⊤θ̂i − ki(x, r, x̂ − x)(x̂i − xi), (16)

for i = 1, . . . , n, where ki(·) are positive functions. Using

the above definitions and the update laws

ξ̇i = −
∂βi

∂xi

(

fi(x, u) + ϕi(x)⊤θ̂i

)

−
n

∑

j=1

∂βi

∂x̂j

˙̂xj (17)

yields the error dynamics

żi = −
∂βi

∂xi

ϕi(x)⊤zi −
ṙi

ri

zi. (18)

Note that the system (18), for i = 1, . . . , n, can be re-

garded as a linear time-varying system with a block diagonal

dynamic matrix. In order to render the diagonal blocks

negative-semidefinite, we select the functions βi(·) as

βi(xi, x̂) = γi

∫

ϕi(x̂1, . . . , x̂i−1, xi, x̂i+1, . . . , x̂n)dxi,

(19)

where γi are positive constants.

Let ei = x̂i−xi and note that, since ϕi(·) is continuously

differentiable, we can write

ϕi(x̂1, . . . , x̂i−1, xi, x̂i+1, . . . , x̂n) = ϕi(x)−

n
∑

j=1

ejδij(x, e),

for some functions δij(·), with δii(x, e) ≡ 0. Using the

above equation and substituting (19) into (18) yields the error

dynamics

żi = −γiϕi(x)ϕi(x)⊤zi+γi

n
∑

j=1

ejδij(x, e)ϕi(x)⊤zi−
ṙi

ri

zi,

(20)

while, from (13) and (16), the dynamics of ei = x̂i − xi are

given by

ėi = −ki(x, r, e)ei + riϕi(x)⊤zi. (21)

The system (20)-(21) has an equilibrium at zero and this

can be rendered uniformly globally stable by selecting the

dynamics of the scaling factors ri and the functions ki(·) as

described in the following lemma.

Lemma 2: Consider the system (13) and let

ṙi = ciri

n
∑

j=1

e2
j |δij(x, e)|2, ri(0) = 1, (22)

for i = 1, . . . , n, with ci ≥ γin/2, where | · | denotes the

2-norm, and

ki(x, r, e) = λir
2
i + ǫ

n
∑

ℓ=1

cℓr
2
ℓ |δℓi(x, e)|2, (23)

where λi > 0 and ǫ > 0 are constants. Then the sys-

tem (20)-(21)-(22) has a uniformly globally stable manifold

of equilibria defined by Ω = { (z, r, e) | z = e = 0 }.
Moreover, zi(t) ∈ L∞, ri(t) ∈ L∞, ei(t) ∈ L2 ∩ L∞, and

ϕi(x(t))⊤zi(t) ∈ L2, for all i = 1, . . . , n. If, in addition,

ϕi(x(t)) and its time-derivative are bounded, then the signals

ϕi(x(t))⊤zi(t) converge to zero.

Proof: Consider the positive-definite and proper func-

tion Vi(zi) = 1
2γi

|zi|
2, whose time-derivative along the

trajectories of (20)-(22) satisfies

V̇i ≤ −
(

ϕi(x)⊤zi

)2
+

n
∑

j=1

[ 1

2n

(

ϕi(x)⊤zi

)2
+

n

2
e2
j

(

δ⊤ijzi

)2
]

−
ṙi

γiri

|zi|
2 ≤ −

1

2

(

ϕi(x)⊤zi

)2
.

As a result, the system (20) has a uniformly globally stable

equilibrium at the origin, zi(t) ∈ L∞ and ϕi(x(t))⊤zi(t) ∈
L2, for all i = 1, . . . , n.

Consider now the function Wi(ei, zi) = 1
2 |ei|

2+ 1
λi

Vi(zi),
whose time-derivative along the trajectories of (20)-(21)
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satisfies Ẇi ≤ −ki(x, r, e)e2
i + λi

2 r2
i e2

i ≤ −λi

2 r2
i e2

i , for any

λi > 0, from which we conclude that the system (20)-(21)

has a uniformly globally stable equilibrium at (zi, ei) =
(0, 0), hence the manifold Ω is uniformly globally stable,

and ei(t) ∈ L2 ∩ L∞.

To show that the ri’s are bounded consider the com-

bined Lyapunov function U(e, z, r) =
∑n

i=1

[

Wi(ei, zi) +
ǫ
2r2

i

]

, whose time-derivative along the trajectories of (20)-

(22)-(21) satisfies U̇ ≤ −
∑n

i=1

(

ki(x, r, e) − λi

2 r2
i

)

e2
i +

ǫ
∑n

i=1

[

cir
2
i

∑n
j=1 e2

j |δij(x, e)|2
]

. Note now that the last

term is equal to ǫ
∑n

i=1

∑n
ℓ=1 cℓr

2
ℓ |δℓi(x, e)|2e2

i , hence se-

lecting ki(·) from (23) ensures U̇ ≤ −
∑n

i=1
λi

2 e2
i , which

proves that ri(t) ∈ L∞ and limt→∞ ei(t) = 0. Finally, when

ϕi(x(t)) and its time-derivative are bounded, it follows from

Barbalat’s Lemma that ϕi(x(t))⊤zi(t) converge to zero.

Remark 6: In the special case in which ϕi(·) is a function

of xi only, the auxiliary states (16) are not used in the

adaptive law and δij(x, e) ≡ 0 which implies that ṙi = 0,

hence we can simply fix the scaling factors ri to be equal to

one. The same simplification occurs when only one of the

functions ϕi(·) in nonzero.

B. Certainty equivalence control

A possible way of exploiting the estimator properties given

in Lemma 2 to design an adaptive control law based on

certainty equivalence is given in the following theorem.

Theorem 1: Consider the system (13) and suppose that

there exists a control law u = υ(x, θ + z) such that, for all

trajectories of the closed-loop system,

(a) ϕi(x(t))⊤zi(t) ∈ L2 =⇒ x(t) ∈ L∞, and

(b) limt→∞ ϕi(x(t))⊤zi(t) = 0 =⇒ limt→∞ x(t) = x∗.

Then there exists an adaptive state feedback control law such

that all closed-loop signals are bounded and (14) holds.

The proof follows directly from Lemma 2 and conditions

(a) and (b), hence it is omitted.

Finally, it is possible to derive a counterpart of the result

in [15] with the dynamic scaling-based estimator replacing

the estimator in [15], as the following corollary shows.

Corollary 1: Consider the system (15) with input u ,

xn+1, where φi : R
i → R

pi are Cn−i mappings. Then

there exists an adaptive state feedback control law such that

all trajectories of the closed-loop system are bounded and

limt→∞ [x1(t) − x∗
1(t)] = 0, where x∗

1(t) is a bounded Cn

reference signal.

Example 2 (Aircraft longitudinal control): The longitudi-

nal motion of an aircraft can be described by the equations

V̇ = −g sin(ϑ − α) +
Tx

m
cos(α) −

D

m
,

α̇ = q +
1

V

(

g cos(α − ϑ) −
Tx

m
sin(α) −

L

m

)

ϑ̇ = q, q̇ =
M

Iy

,

where V is the total airspeed, α is the incidence angle,

ϑ is the pitch angle, q is the pitch rate, Tx is the thrust

(along the x body axis), m is the aircraft mass, g is the

gravitational acceleration, Iy is the moment of inertia, M
is the pitching moment, and D and L are the aerodynamic

forces corresponding to drag and lift, respectively, see [19]

for more details.

For the purposes of this example we consider a simple

model for the drag and lift given by the parameterised

functions

D =
1

2
ρV 2S

(

CD0 + CDαα2
)

, L =
1

2
ρV 2SCLαα,

where ρ is the air density, S is the wing area and CD0, CDα,

CLα are constant coefficients. To simplify the control design

we also assume that the pitch rate can be directly controlled

and concentrate on the first two equations. (Note, however,

that the proposed control law can be modified to take

into account the dynamics of the pitch rate, including the

uncertainty in the pitching moment.)

Define the states x1 = V , x2 = α, the control inputs

u1 = Tx/m, u2 = q, and the unknown parameters

θ1 = −
ρS

2m

[

CD0

CDα

]

, θ2 = −
ρS

2m
CLα,

and note that the system can be rewritten in the form (13),

namely

ẋ1 = −g sin(ϑ − x2) + u1 cos(x2) + ϕ1(x)⊤θ1,

ẋ2 = u2 +
g

x1
cos(x2 − ϑ) −

u1

x1
sin(x2) + ϕ2(x)⊤θ2,

(24)

where ϕ1(x) =
[

x2
1, x2

1x
2
2

]⊤
and ϕ2(x) = x1x2.

Note that due to the physical constraints x1 ≥ Vmin > 0
and |x2| ≤ αmax < π/2, the system (24) is well-defined and

controllable. The control objective is to drive the airspeed

x1 and incidence angle x2 to their respective set-points x∗
1

and x∗
2, despite the lack of information on the drag and lift

coefficients.

Following the construction of Section IV-A, the output

filter is defined as

˙̂x1 = −g sin(ϑ − x2) + u1 cos(x2) + ϕ1(x)⊤θ̂1 − k1e1,

˙̂x2 = u2 +
g

x1
cos(x2 − ϑ) −

u1

x1
sin(x2) + ϕ2(x)⊤θ̂2

−k2e2,

and the estimator dynamics are given by the equations

ξ̇1 = −
∂β1

∂x1

(

˙̂x1 + k1e1

)

−
∂β1

∂x̂2

˙̂x2,

ξ̇2 = −
∂β2

∂x2

(

˙̂x2 + k2e2

)

−
∂β2

∂x̂1

˙̂x1,

where the functions βi(·) are obtained from (19), namely

β1(x1, x̂2) = γ1
x3

1

3

[

1
x̂2

2

]

, β2(x2, x̂1) = γ2x̂1
x2

2

2
,

with γ1 > 0 and γ2 > 0. Note now that

∂β1

∂x1
= γ1ϕ1(x) − γ1

[

0
−x2

1(2x2 + e2)

]

e2,

∂β2

∂x2
= γ2ϕ2(x) − γ2 [−x2] e1,
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Fig. 1. Responses during set-point changes. Dash-dotted line: Ideal
controller. Dashed line: Adaptive controller with γ1 = 10

−6, γ2 = 0.5.
Solid line: Adaptive controller with γ1 = 10

−5, γ2 = 5.

where the terms in brackets correspond to the functions δ12(·)
and δ21(·). Hence, from (22) and (23), the dynamic scaling

parameters ri and the gains ki are given by

ṙ1 =
γ1

2
x4

1(2x2 + e2)
2e2

2, ṙ2 =
γ2

2
x2

2e
2
1,

and

k1 = λ1r
2
1 + ǫ

γ2

2
r2
2x

2
2, k2 = λ2r

2
2 + ǫ

γ1

2
r2
1x

4
1(2x2 + e2)

2,

respectively, where λ1 > 0, λ2 > 0 and ǫ > 0 are constants.

Finally, a control law for the system (24) that satisfies the

conditions of Theorem 1 is given by

u1 =
1

cos(x2)

(

g sin(ϑ − x2) − ϕ1(x)⊤θ̂1 − µ1(x1 − x∗

1)
)

,

u2 = −
g

x1
cos(x2 − ϑ) +

u1

x1
sin(x2) − ϕ2(x)⊤θ̂2

−µ2(x2 − x∗

2),

where µ1 > 0 and µ2 > 0 are constants.

The closed-loop system has been simulated using the

parameters θ1 = [−0.00063,−0.0358]
⊤

and θ2 = −0.092,

which correspond to an Eclipse-type unmanned aerial vehi-

cle. We consider two set-point step changes: at time t = 1 s,

the airspeed reference x∗
1 changes from 30 m/s to 35 m/s,

and at time t = 2 s, the incidence angle reference x∗
2 changes

from 0.1 rad to 0.2 rad. Figure 1 shows the responses for

the ideal (known-parameters) controller, and for the proposed

adaptive controller for two different sets of gains γ1, γ2. We

see that by increasing these gains we recover the performance

of the ideal controller. Moreover, the scaling factors r1, r2

remain relatively small.

V. CONCLUSIONS

We have presented a constructive algorithm for designing

an observer for a class of nonlinear systems that are affine

in the unmeasured states. We have shown that this algorithm

can also be applied to systems with unknown parameters,

leading to a new class of adaptive controllers, and have

provided two illustrative examples. Although we follow the

invariant manifold based approach introduced in [1], [3], the

contribution of the paper is to remove the restrictions deriv-

ing from solvability of PDEs by using a dynamic extension

that consists of an output filter and a single dynamic scaling

parameter. An area for future work is to extend these tools to

the wider class of nonlinear systems considered in [1], [2].
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