
 
 

 

  

Abstract — A Nonlinear Generalized Minimum Variance control 

law is derived for systems represented by an input-output state 

dependent nonlinear subsystem that may be open-loop unstable.  

The solution is obtained using a model for the multivariable 

discrete-time process that includes a state-dependent (nonlinear 

and possibly unstable) model that links the output and any 

unstructured nonlinear input subsystem. The input subsystem 

can involve an operator of very general nonlinear form, but this 

has to be assumed to be stable. This is the first NGMV control 

solution that is suitable for systems containing an unstable 

nonlinear sub-system contained in a state-dependent model. 

I. INTRODUCTION 

 A control law is proposed based on an extension of the 
well known Minimum Variance (MV) controller for 
nonlinear multivariable systems. The nonlinear (NL) system 
model includes several possible sub-systems that provide 
alternative ways of modeling the linear/non-linear system. 
The new innovation is the addition of a state dependent 
model sub-system. The MV controller was derived by 
Åström [1], assuming the plant was linear and minimum-
phase, and was later derived for processes that could be non-
minimum phase. Hastings-James [2] and later Clarke and 
Hastings-James [3] modified the first of these control laws 
by adding a control signal costing term. This was termed a 
Generalized Minimum Variance (GMV) control law and 
enabled non-minimum phase processes to be stabilized.  
 A family of so-called Nonlinear Generalized Minimum 
Variance (NGMV) controllers was derived recently for 
nonlinear model based multivariable systems. The 
assumption was made that the plant model could be 
decomposed into a set of delay terms, a very general input 
nonlinear subsystem that had to be stable and a linear 
subsystem that could be represented in polynomial matrix or 
state equation form and include unstable modes. This 
problem was analyzed by Grimble ([4], [5]) and Grimble 
and Majecki ([6], [7]). The major contribution here, over the 
basic NGMV control law in Grimble [8] involves the 
introduction of a more general model structure, where the 
nonlinearities may be associated with either inputs or 
outputs and include open-loop unstable elements. The 
solution of the NGMV control problem for a system with 
linear state-space models has been considered previously 
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[11] but the use of a state-dependent model that may be 
open loop unstable is new. 

II. NONLINEAR OPERATOR AND STATE-DEPENDENT MODELS 

 The system is shown in Fig. 1, including the nonlinear 
plant models and the linear reference/disturbance models. 
The output of the unstructured nonlinear system is denoted 

1( )t ku − and this acts as an input to the state-dependent 

block. The first plant sub-system is of a very general 
nonlinear operator form: 1(.,.),W  where the model without 

explicit delay terms:
1 (.,.)
k

W
 

and
 1 1( ) ( )( )ku t u t= W . The 

second is of a state-dependent nonlinear equation form that 
may be given the input-output representation: 0(.,.)W , or 

without delay: 0 (.,.)kW . The total output of the system y(t) 

depends upon the state-dependent block. Let the total output 
including the disturbance model signal ( )d t  be expressed 

as: 0 1( ) ( ) ( )( ).y t d t u t= + W
.
The zero-mean white noise is 

denoted { ( )}v t  and it has a covariance matrix
fR . There is 

no loss of generality in assuming the zero-mean, white noise 
signals:{ ( )}tω  and { }0 ( )tξ  that feed reference and 

disturbance models have identity covariance matrices and a 
Gaussian distribution. Signals shown in Fig. 1 follow.  
 

Error signal:      ( ) ( ) ( )e t r t y t= −                    (1) 

 
Plant output:     ( )( ) ( ) ( )y t d t u t= + W

    
 (2) 

 
where the total linear and nonlinear plant input/output 

model: ( ) ( )0 1( ) ( ).ku t u t=
� � �
W W W

 
 

Reference signal:    ( ) ( )rr t W tω=  (3) 

 
Observations signal:    ( ) ( ) ( )z t y t v t= +

     
 (4) 

 
Noisy error signal: 

 0 ( ) ( ) ( )e t r t z t= − ( )( ) ( ) ( ) ( )r t d t v t u t= − − − W
 

 (5) 

 
Linear Sub-System Models: The linear state-space system 
models may now be introduced. The reference and the error 
weighting models are assumed to be linear. The state-space 
system models, for the ( r m× ) multivariable system, shown 
in Fig. 1, may be listed as follows:  
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Fig. 1:  Nonlinear Unstructured and State-Dependent Plant Model Including Disturbance and Reference 
 

 

Reference model: 

( 1) ( ) ( ),r r r rx t A x t D tω+ = +
 

( ) rn
rx t R∈    (6) 

 
( ) ( )r rr t C x t= and 1 1( ) ( )r r r rW z C zI A D− −= −    (7) 

 
Also introduce the dynamic error weighting

 
that is used in 

the cost-index ( )1( ) ( ) ( ) ( )p cy t P z r t y t−= − defined later. 

 
This has the following state-space representation: 

( )( 1) ( ) ( ) ( ) ,p p p px t A x t B r t y t+ = + −        ( ) pn

px t R∈   (8) 

 
( )( ) ( ) ( ) ( )p p p py t C x t E r t y t= + −

   
   (9) 

A. Nonlinear Sub-Systems 

 The non-linear system models, defining the system 
output: ( ) ( )( )( )y t d t u t= + W and the input non-linear 

operator model are explained further below. Let 
 

( )( ) ( )( )k
ku t z u t−=W W  (10)  

 

where k denotes the magnitude of the common delay 
elements in the output signal paths. The delay free model 
may be written: ( )( ) ( )0 1 ( )k k ku t u t=

� � �
W W W  and the total 

forward path NL plant model: 
 

( ) ( ) ( )0 1 0 1( ) ( ) ( )k
k k ku t u t z u t−= =

�� � �
W W W W W    (11) 

 
The signal input to the linear and NL state-dependent 
dynamics is denoted:

1 1( ) ( )(.,.)ku t u t=W . The subsystem: 

1kW  is assumed finite gain stable but the NL state-

dependent model may be unstable.  

B. Total Linear Sub-System State Equation Model 

Combining the linear equations for the sub-systems in 
§2.2 obtain the augmented state equations for the total 
linear part of the system, by augmenting the state vector 

as: 1 ( ) ( ) ( ) .
TT T

r px t x t x t =    Noting equations (6) and 

(8), the augmented state, output and observations: 
 

1 1 1 1 1 1( 1) ( ) ( ) ( )x t A x t B y t D tξ+ = + +                            (12) 

where 1 1 1

0 0
, ,

0
r r

p r p p

A D
A B D

B C A B

     
= = =     −         

(13)

 

Note the resolvent: 1 1
1 1( ) ( )z zI A− −Φ = − .

       C. State-Dependent Dynamics 

The second NL system model is represented in the so-
called linear state-dependent (LSD) state-space form. 
This has been used for state-dependent Riccati equation 
optimal control solutions [9] and involves matrices that 
are time-varying since they are allowed to depend upon 
the system states. A slight extension of this idea is to 
allow these matrices to be functions of the model input at 
time t - k. The NL model is therefore assumed to have 
the following state-dependent form ([10], [11]): 

 

0 0 0 1 0 0 0 1 1 0 0 1 0( 1) ( , ) ( ) ( , ) ( ) ( , ) ( )x t x u x t x u u t k x u tξ+ = + − +A B D
   

(14) 

0 0 1 0 0 0 1 1( ) ( , ) ( ) ( , ) ( )y t x u x t x u u t k= + −C E     (15) 

where 0 ( )x t is a vector of sub-system states, 1( )u t is a 

vector of the LSD sub-system inputs and ( )y t
 
is a vector 

+ 

C  
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e0
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of output signals. To simplify the notation in (14), (15) write 

0( )tA  0 0 1( ( ), ( ))x t u t k= −A  and similarly for the matrices: 

0 0,B C  and 0E . The error weighting term ( )py t
 

( )cP e t=
 
that is needed in the cost expression may therefore 

be written in a more concise form, using (12) and (15). 
Thence, substituting from (15) into (12): 

                                       
1 1 1 1 0 1 0 1 1 10( 1) ( ) ( ) ( ) ( )x t A x t B x t B u t k D tξ+ = + + − +C E

 
(16) 

 
The weighted output in equation (9) may now be written: 
 

( )( ) ( ) ( ) ( )p p p p r ry t C x t E C x t y t= + −
  

0 1 1 10 ( ) ( ) ( )( )pp x t C x t u t kφ= + + −C E
   

(17) 

 

where 0 0pp E= −C C
 

and
 1p p r pC E C C =    and the 

through term 
0.pEφ = −E E

     
   (18) 

D. Combined Linear and Nonlinear Models 

 Let the total combined vector of linear and state-
dependent sub-system model states be defined to have the 
form: 0 1( ) [ ( ) ( ) ]T T Tx t x t x t= . Thence, the combined state 

vector for the linear and nonlinear sub-systems and the 
related disturbance vector inputs become: 
 

1( 1) ( ) ( ) ( )x t x t u t k tξ+ = + − +A B D   (19) 

 

1( ) ( ) ( )y t x t u t k= + −C E                 (20) 

 

1( ) ( ) ( )( )p py t x t u t kφ= + −C E                      (21) 

 
Clearly from equations: (12), (14) to (17) the combined 
state-dependent system models have the form:  

0

1 10

0
,

B A

 
=  
 

A
A

C

   

0

1 0

,
B

 
=  
 

B
B

E

    

0

1

0
=

0 D

 
 
 

D
D

           
0 0=   C C ,             0=E E ,        10pp pC =  C C

 

where  ( ) 0

1

( )
,

( )

x t
x t

x t

 
=  
 

   0

1

( )
( )

( )

t
t

t

ξ
ξ

ξ

 
=  
 

     (22) 

For later use define the resolvent operator for the total state-
dependent augmented system as: 

1 1 1 1( ( )) ( ( 1) )zI t I t z zΦ − − − −= − = − −A A  (23) 

E. Future Plant Outputs and States 

 Assume for the present that the future values of the control 
signal are known, so that the future values of the system 
matrices may be estimated. Then the future values of the 
states and outputs may be obtained as:     

1( 1) ( ) ( ) ( ) ( ) ( ) ( )x t t x t t u t k t tξ+ = + − +A B D   (24) 

The expression for the 0k steps-ahead state-vector, where 

0k k≥ , may be obtained by generalizing the above result. 

These equations may be simplified letting: 

( ) ( ) ( 1)... ( )
k

j m
a t j a t k a t k a t m

=
+ = + + − +�

 
and

 
writing 

0 1

0 00
( ) ( 1) ( 2)... ( )

k

j
t j t k t k t

−

=
+ = + − + −� A A A A

 
and 

so on. The 0k -steps prediction of the state and output 

signals will therefore be defined from the relationships:  
0 1

0 0
ˆ ˆ( | ) ( ) ( | )

k

j
x t k t t j x t t

−

=
+ = +� A

0 1

11
( ) ( ) ( ) ...

k

j
t j t u t k

−

=
+ + − +� A B  

 0

0

1

1 01
.... ( ) ( 1) ( 2)

k

j k
t j t j u t k k

−

= −
+ + + − + − −� A B   

0 1 0( 1) ( 1)t k u t k k+ + − + − −B                                   (25) 

 
0 0 0 0 1 0ˆ ˆ( | ) ( ) ( | ) ( ) ( )y t k t t x t t t u t k+ = + −C E                   (26)  

 
Simplifying using a finite pulse response model,  
 

01
0 1

1
( , ) ( ) ( ) ...k

j

k
k z t j t z

−− −

=
= + +�T A B    

0 0 0

0

1 2 1
01

( ) ( 1) ( 1)
k k k k k

j k
t j t j z t k z

− − − − −

= −
+ + + − + + −� A B B

                                                                                   (27) 
and introducing the following notation:  

00
1

0 00
( ) ( 1) ( 2)... ( )

kk

j
t j t k t k t

−

=
= + = + − + −�A A A A A (28) 

 
0 1

0 0 1ˆ ˆ( | ) ( | ) ( , ) ( )kx t k t x t t k z u t−+ = +A T                (29) 

 
0

0 0ˆ ˆ( | ) ( ) ( | )ky t k t t k x t t+ = +C A                       

( )01
0 0 0 1( ) ( , ) ( ) ( )k kt k k z t k z u t−−+ + + +C T E             (30) 

where                          
1

0 0 0( , ) ( 1) ( 2).... ( 1) ( ) ...kk z t k t k t t z− −= + − + − + +T A A A B

 
0 02 1

0 0 0... ( 1) ( 2) ( 1)k k k kt k t k z t k z− − − −+ + − + − + + −A B B    

(31) 
The total vector of state-estimates can be written as: 

( )
( )
( )

0

1

ˆ |
ˆ | for 1

ˆ |

x t j t
x t j t j

x t j t

 + 
+ = ≥ 

+ 
.                       (32) 

III. KALMAN PREDICTOR  

The Kalman filter equations introduced below are well 
known [12]. The result below is extended in an obvious 
way to accommodate the delays on input channels, 
through terms and bias signals. Recall the total system 
may be represented in the following state-dependent 
form that is similar to a known time-varying linear 
system if the past values of states are assumed known. 
 

1( 1) ( ) ( ) ( )x t x t u t k tξ+ = + − +A B D
                      

(33) 

= + −C E
1

( ) ( ) ( )y t x t u t k
                                       

 (34) 

1( ) ( ) ( ) ( ) ( ) ( )z t y t v t x t u t k v t= + = + − +C E
             

(35) 
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( )0 1( ) ( ) ( ) ( ) ( ) ( ) ( )e t r t z t r t x t u t k v t= − = − + − +C E

1( ) ( ) ( )e x t u t k v t= − − −C E
    

(36) 

 
where ( ) nx t R∈ and [ ]0 0re C= −C C  denotes the output 

map taken from the total system states to the error channel 
and the resolvent operator: 1( ( ))zI tΦ −= −A . 

A. Predictor Corrector Estimator Form 

The standard discrete-time Kalman filter equations for a 
time-varying linear state-space model in predictor corrector 
form, assuming the exogenous signals have known means 
[12] are given as: 

 

1ˆ ˆ( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )x t t A t x t t B t u t k D t tξ+ = + − +
  

(37) 

 
( )0 0ˆ ˆ ˆ( 1 | 1) ( 1 | ) ( 1) ( 1) ( 1 | )fx t t x t t K t e t e t t+ + = + + + + − +

 
(38) 

 

where 0 1ˆ ˆ( 1| ) ( 1) ( 1| ) ( 1) ( 1 ) ( )ee t t C t x t t E t u t k v t+ = + + − + + − −
 

    
(39) 

 
The Kalman filter gain and Ricatti equations for a system 
with process and noise covariance’s Q and R: 

1( 1) ( 1 | ) ( 1)[ ( 1) ( 1 | ) ( 1) ( 1)]T T
e e eK t P t t C t C t P t t C t R t −+ = + + + + + + +

    
(40) 

A priori covariance:  

( 1 | ) ( ) ( | ) ( ) ( ) ( ) ( )T TP t t A t P t t A t D t Q t D t+ = +     (41) 

 

A posteriori covariance: 

( 1| 1) ( 1| ) ( 1| ) ( 1) ( 1| )eP t t P t t K t t C t P t t+ + = + − + + +
 

                                                                                   
(42) 

Initial conditions: 0ˆ(0 | 0)x m=  and  0(0 | 0)P P=  

Bias terms: ( ) { ( )}t E tξ ξ=  and ( ) { ( )}v t E v t=  

It is possible to apply the above time-varying Kalman filter 
equations to the combined model for the linear and state-
dependent sub-systems in equations (33) and (34). Recall 
that the plant includes a pure transport delay term and that 
the previous control actions are known. Assume that the 
states that affect the state-dependent matrices are not 
affected by the white noise disturbance input then the system 
matrices are computable for all times up to time t.  
 

IV. NLGMV CONTROL PROBLEM 

The cost-minimization problem may now be introduced 
for the system which is shown in Fig. 2. The optimal NGMV 
control problem involves the minimization of the variance of 
the signal 

0
{ ( )}tφ  in Fig. 2. The signal to be minimized in a 

variance sense,  

( ) ( )( ) ( ) ( )0 ( ) c c ct P e t x t u tφ = + +Z F     (43) 

Thence, the cost-index to be minimized:   
 

0 0 0 0{ ( ) ( )} { { ( ) ( )}}T TJ E t t E trace t tφ φ φ φ= =
  

  (44) 

where { }E ⋅  denotes the unconditional expectation. The 

fictitious signal { }0 ( )tφ  that is minimized includes a 

dynamic cost-function weighting: 1( )cP z− , discussed in 

(9), that acts on the error signal. This weighting is 
represented by a linear state-space sub-system, as 
described in §2, with weighted output: ( )( )p cy t P e t= . 

That is, if the linear states 
1( )x t  are augmented with the 

weighting 1( )cP z− dynamics, then the first component of 

0 ( )tφ  can be represented by (21) as: 

( ) ( )p py t x t= C 1( )( )u t k+ −φE , through the definition of 

appropriate output maps in (17). The signal { }0 ( )tφ  also 

includes the state weighting term: ( )( )( )z cy t x t= Z  that 

can be nonlinear, and it enables a cost-weighting to be 
introduced on all the states. 

If the state-dependent and linear state weightings are 
denoted 

0zC  
and 1zC , then the state weighting:  

 
( ) 0 0 1 1( ) ( ) ( ) ( ) ( )z c z z zy t x t x t C x t x t= = + =Z C C           (45) 

Combined weighted error and state equation model:   

( )( )( ) ( ) ( ) ( )c p z c cy t y t y t P e t x tZ= + = +                  (46) 

In terms of the total state vector:   
 ( ) ( )( ) 1( ) ( ) ( )c c cy t P e t x t x t u t kφ φ= + = + −Z C E

       
(47) 

where 0 1 0 0 1 1( ) ( )p z p zC C Cφ φ φ
  = = + +     C C C C

  
 (48) 
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Fig. 2:  Single Degree of Freedom Closed-Loop Control 

System 
 

 
The final term in the criterion is the nonlinear 

dynamic control signal costing operator term: ( )( )c .u tF  

If the smallest delay in each output channel of the plant 
is of magnitude 0k  steps this implies the control at time t 

affects the output at least 0k steps later and the control 

signal costing is defined to have the form:    

( )( ) ( ) ( )0
c c

k
ku t z u t−=F F    (49) 

where 0k k=
 
if the state models include through terms, 

or
 0 1k k= + if the through terms are null and one 

additional explicit step delay is therefore present in the 
plant model. The importance of this distinction arises 
because the state models may often be found using NL 
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system identification which often does not introduce a 
through term.  
 

A. Solution of the NGMV Control Problem 

The solution of the optimal control problem is 
straightforward and follows a minimum variance strategy 
working in the time-domain. It is obtained by introducing a 
prediction equation and by expanding the resulting 
expression for the signal that enters the cost-function. This 
signal may be referred to as a minimized output 

0
{ ( )}tφ , 

since it is not a signal that exists physically. Recall signal,  
 

( ) ( )( ) ( )( )
0
( ) c c ct P e t x t u tφ = + +Z F

  
(50) 

From (47) the minimized output, may be written as: 

0 1( ) ( ) ( ) ( )( )ct x t u t k u tφ φφ = + − +C E F
 

 (51) 

 
The signal: 1 1( ) ( )ku t u t=W

 
and the control weighting was 

defined: ( )( )cu tF  0 ( )( )k
ckz u t−= F , so (51) becomes:  

0
0 1( ) ( ) (( ) )( )k k

k ckt x t z u t kφ φφ − += + + −C E W F    (52) 

B. The Prediction Equations 

The prediction equation was obtained using equation (29) 
with the finite impulse response term, as: 

0 1
0 0 1ˆ ˆ( | ) ( | ) ( , ) ( )kx t k t x t t k z u t−+ = +A T  

 

(53)

 
where from (22) and (28): 0

21 1

0

A

 
=  
 

A
A

A
 

and

  
00

1

0 00
( ) ( 1) ( 2)... ( )

kk

j
t j t k t k t

−

=
= + = + − + −�A A A A A

  
(54) 

The predicted values of the state related terms in equation 
(52) may therefore be written as:  

0
0 0 0ˆ ˆ( ) ( | ) ( ) ( | )kt k x t k t t k x t tφ φ+ + = +C C A  

1
0 0 1( ) ( , ) ( )t k k z u tφ

−+ +C T    (55) 

where 1
0( , )k z−

T  was defined by (27). The k  steps-ahead 

prediction of the signals: ( )cy t  and 
0
( )tφ  follow from (46), 

(52) and (55), as follows:
   

    

0 0 0 0 1 0ˆ ˆ( | ) ( ) ( | ) ( ( ) )( )c ky t k t t k x t k t t k u t k kφ φ+ = + + + + + −C E W
    

0
0 0 0 1ˆ( ) ( | ) ( ) ( )k k

kt k x t k t t k z u tφ φ
−= + + + +C E W

 
Note that when the through term in the plant model is null 
there is one more delay and 0 1k k= + , and from (47) in this 

case 0( )t kφ +E will also be null. Thus, the term
 

0
0 1( ) k k

kt k zφ
−+E W can be replaced: 0 1( ) kt kφ +E W  giving:

 
0ˆ ( | )cy t k t+ 0 0 0 1ˆ( ) ( | ) ( ) ( )kt k x t k t t k u tφ φ= + + + +C E W

 

 
0

0 ˆ( ) ( | )kt k x t tφ= +C A   
1

0 0 0 1(( ( ) ( , ) ( )) ) ( )kt k k z t k u tφ φ
−+ + + +C T E W  (56) 

0 00
ˆ ˆ( | ) ( | ) ( )( )c ckt k t y t k t u tφ + = + + F

 
0

0 ˆ( ) ( | )kt k x t tφ= +C A
 

1
0 0 0 1(( ( ) ( , ) ( )) ) ( )k ckt k k z t k u tφ φ

−+ + + + +C T E W F
        

(57)  

C.  Solution of the NGMV Control Problem 

The cost-function involves the minimization of the 
variance: 0 0 0 0{ ( ) ( )}TJ E t k t kφ φ= + + that

 
may be 

written in terms of the prediction 0 0
ˆ ( | )t k tφ +

 
and the 

prediction error: 0 0( )t + k | tφ� , noting these signals are 

orthogonal: 

0 0 0 0
ˆ ˆ{ ( | ) ( | )}TJ E t k t t k tφ φ= + +

0 0 0 0{ ( | ) ( | )}TE t k t t k tφ φ+ + +� �                                   (58) 

The prediction error 0 0( | )t k tφ +�  does not depend upon 

control action and hence the cost is clearly minimized by 

setting the predicted values of the signal:
0
( )tφ , for 0k  

steps-ahead, to zero. Setting the predicted values of (57) 
to zero provides 2 possible expressions for the control. 
 
Theorem 4.1:  NGMV Control Law 

Let the operator 0N  represent the mapping from the 

signal 1( )u t  to the signal 
0
( )tφ to be minimized 

1 0 0 10 00( )( ) (( ( ) ( )) )( )c ck k
u t P t k t k u t= + − +�N W Z W

  
(59) 

 
Assume that the weighting operators ,c cP Z  and cF  

are 

chosen so that the NL operator: 0 1( )ckk −N FW  has a 

finite-gain 2m  stable causal inverse, to ensure the 

system is closed-loop stable. The NGMV optimal 
controller to minimize the variance of the weighted 
error, states and control signals may then be computed 
as follows.    

( )
11

0 0 0 1( ) ( ( ) ( , ) ( ))ck ku t t k k z t kφ φ

−−= + + + +F C T E W    

0
0 ˆ( ( ) ( | ) )kt k x t tφ× − +C A                                        (60) 

 
or equivalently (as shown in Fig. 3):    

Reference 

+ 

+ u - 

Controller structure 

0e  
0 ˆ ( | )k x t tφC A  

1
0( , )k z φφ

− +C T E  

1
ck

−
F  

1kW
Plant 

- 
 W  

Observations 
and noise 

z + 
- 

r 

Disturbance 
and noise 

Fig. 3:  Control Signal Generation and Control Modules 
 

01
0 ˆ( ) ( ( ) ( | )k

cku t t k x t tφ
−= − +F C A

 
1

0 0 0 1( ( ) ( , ) ( ))( )( ))kt k k z t k u tφ φ
−+ + + +C T E W

          
 (61) 

where 0 0pp E= −C C , 1 ,p p r pC E C C =    0pEφ = −E E
 

and  0 0 1 1( ) ( )p z p zC Cφ
 = + + C C C .                             ● 

Proof:  The proof of optimality involves collecting the 
above results, subject to the assumptions. The proof that 
the controller obtained is stabilizing follows. 
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V. IMPLEMENTATION ISSUES AND STABILITY  

The controller involves a time-varying Kalman filter with 
predictor stage and this may be illustrated in the more 
physically intuitive structure of the controller shown in Fig. 
4. To justify this structure recall (61). For linear systems it is 
well known that stability is ensured when the combination of 
a control weighting and an error weighted plant model is 
strictly minimum-phase [7]. For NL systems a related 
operator equation must have a stable inverse. First write: 

1 1
1 0 2 1ˆ( | ) ( ) ( ) ( ) ( )f fx t t T z e t T z u t k− −= + −

   
(62) 

To identify these operators and for the stability analysis 
neglect the input bias and all stochastic inputs other than the 
reference. Note from (38) and (39) for the system of interest:  

  
( )0 1ˆ ˆ( | ) ( ( ) ( )) ( | 1) ( ) ( ) ( ) ( )f fex t t I K t t x t t K t e t t u t k= − − + + −C E

but from (37), 

1ˆ ˆ( | 1) ( 1) ( 1 | 1) ( 1) ( 1)x t t t x t t t u t k− = − − − + − − −A B  

Thence, 

( )
11

0ˆ( | ) ( ( ) ( )) ( ) ( ) ( )[f fex t t I I K t t z t K t e t
−−= − − C A

 

( )1
1( ( ) ( )) ( 1) ( ) ( ) ( )]f feI K t t t z K t t u t k−+ − − + −C B E   (63) 

 
Follows the above linear operators in (62) have the form: 
 

( )
11 1

1 ( ) ( ( ) ( )) ( ) ( )f f feT z I I K t t z t K t
−− −= − − C A

 
 (64)  

( )
11 1

2 ( ) ( ( ) ( )) ( )f f eT z I I K t t z t
−

− −= − − C A
 
 

( )1( ( ) ( )) ( 1) ( ) ( )f feI K t t t z K t t−− − +C B E
   

(65) 

 
Following expression is required based on these results, 

1 1
2 1 0( ) ( ) ( )f f kT z T z Φ t− −− =W B    (66) 

A. Minimized Output 

For the stability analysis an expression is required for the 
control action in terms of the closed-loop operators with 
input reference signal. Recall from equation (57): 

0
00

ˆ ˆ( | ) ( | )kt k t x t tφφ + = C A

1
0 1(( ( , ) ) ) ( )k ckk z u tφ φ

−+ + +C T E W F
 

Substituting from (62) and letting:  
1 1

2 1 0
( ) ( ) ( )f f k

T z Φ t T z− −= +
�

WB , 

0 1
0 1 0 00

ˆ ( | ) ( ) (( ( , )k
ft k t T e t k zφ φφ −+ = +C A C T

 
0

2 1) ) ( )k k
f k ckT z u tφ φ

−+ + +E C A W F
  

(67)
 

0 1
1 0( ) ( ( , )(k

fT r t k zφ φ
−= +C A C T

   
0

1 1( ) ) ) ( )k k
k k ckΦ t z u tφ

−+ + +A B W E W F
  

(68) 

A second operator relationship required obtained similarly: 
0 01

0 0 0( ) ( ) ( , ) ( ) ( )k k k kt k t k z k z t t zΦ Φ− − −+ + = +B T A B
  

(69) 

The minimized output (68) may therefore be written, writing 

0 0t t k= +  as: 
0

0 10
ˆ ( | ) ( )k

ft k t T r tφφ + =C A 0
0 0 0( ( ) ( ) ( )[ k kt t t zφ Φ −+ C B    

0 1( )) ( )]k ckt u tφ+ +E W F                                                
(70) 

and 

( ) ( ) ( )0 0c cx t k P y t k+ − +Z     

( )0
0 0 0 0 1( ) ( ) ( ) ( ) ( )k k

kt k t k t k z t k u tφ φΦ −= + + + + +C B E W

( )0 0 10 0
( ) ( ) ( )c c kk k
t k P t k u t= + − +�Z W W W

 
where 0k

�W  
is operator between 1 ( )u t k− and states and 

0
0 0 0 0 0 00 0

( ) ( ) ( ) ( ) ( ) ( )k k
c ck k

t t t z t t P tφ φΦ − + = −�C B E ZW W
           

(71)
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Fig. 4:  NGMV Optimal Controller in Kalman Form 

 
Define: 0 00 00 ( ( ) ( ))c ck k

P t k t k= + − +�N W Z W       (72) 

which
 
represents the transfer between the signal 1u  and 

the output to be minimized:
0

{ ( )}tφ . Then, (70) becomes: 

( )0 1
0 0 1 0 0 10 0

ˆ ( | ) ( ) ( ) ( ( ) ( )) ( )k
f c c k ckk k

t k t T z r t t P t u tφφ −+ = + − +�C A ZW W W F

  
0 1

1 12( ) ( ) ( ) ( )k
f k ckT z r t u tφ

−= + − +C A N W F
    

 (73) 

B. Stability Analysis 

To simplify the stability analysis recall that the external 
inputs, except the reference signal r(t), were assumed 
null in the previous section. Using (73) the condition for 
optimality 

0
ˆ ( | ) 0t k tφ + =

 
leads to the optimal control: 

( )01 1
1 12( ) ( ) ( ) ( )( )k

ck f ku t T z r t u tφ
− −= − +C WF A N

  
(74) 

Rearranging, the desired expressions become:  

( ) 0
1 1

112( ) ( ) ( )k
ck fku t T z r tφ

− −= −N F C AW
          

(75) 

( )( ) ( ) 0
1 1

112 ( ) ( )k
ck fku t T z r tφ

− −= −W N F C AW W         (76) 

where the delay-free plant model: 0 1k kk =W W W  
and

 

0k
�W  

denotes the transfer-operator between 

 1 ( )u t k− and the states of the state-dependent sub-

system. To show that the system is stable, recall that the 

series connection of two finite gain 2m  stable systems is 

2m  stable. The assumption stated in the theorem was 

that the cost-weightings are chosen, so that the operator: 
1

2 1( )ckk
−−N FW  is finite gain stable. The state 

weighting term will often be omitted from the cost. In 
this case the requirement is for the 

operator: ( )
1

0( )( c ckkP t k
−

+ −W F to be finite gain stable. 
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Also observe that the internal feedback loop in the controller 
in Fig. 3 does not contain any subsystem that is unstable. It 
only contains 1kW which is assumed finite gain stable and 

the consequence is that the inverse dynamics will not attempt 
to cancel any unstable parts of the plant model. 
 

VI. EXAMPLE 

In this section, we illustrate the NGMV control theory 
presented in this paper with simulations of a simple chemical 
process. The process is an irreversible exothermic first order 
reaction, which takes place in a continuous stirred tank 
reactor (CSTR), as shown in Fig. 5.  

 

 
Fig. 5:  CSTR Process (input variable is cooling jacket 

temperature Tc and output is the concentration Ca)  
It is assumed that the liquid in the reactor is perfectly 

mixed and the feed flow is equal to the product outflow. The 
cooling jacket temperature Tc is regarded as an input to the 
process and the product concentration Ca is regarded as the 
output. Similar types of processes have been extensively 
studied in the literature as they present very interesting and 
challenging control problems. The CSTR processes exhibit 
some rich non-linear behavior, involving multiple steady-
state solutions and both stable and unstable equilibrium 
points, and show clearly non-linear dynamic responses. 
Consider a normalized dimensionless model given in [13], 
where the values of the parameters are listed in Table 1: 

Table 1: CSTR model parameters 

Parameter Meaning Value 

Da Damköhler number 0.072 
ϕ dimensionless activation energy 20.0 
B heat of reaction coefficient 8.0 
β heat transfer coefficient 0.3 

( )1 1 1 2 2(1 ) exp (1 )ax x D x x x ϕ= − + − +�  

( )2 2 1 2 2 2(1 ) exp (1 ) ( )ax x BD x x x u xϕ β= − + − + + −�  

1.y x=   

By defining a new scaled input: ( 4) / 8su u= + , both the 

input and output signals are contained in the range (0,1). A 
polynomial ARMA model was identified from simulation 
data in [13], followed by a sigmoid function. Such a 
structure with output nonlinearity is not suitable for the state-
dependent NGMV theory, and thus we identified a new 
nonlinear ARMAX model, using the tools provided with the 

System Identification Toolbox for Matlab. The 
dimensionless sample time of 0.5 units was used to 
generate the data for identification. A particular feature 
of the CSTR model is the presence of two stable regions 
at the two ends of the output range, separated by an 
unstable region, from which the system is repelled. The 
effort was made to include the whole operating range in 
the estimation data. The following model was found to 
provide a good balance between accuracy and 
complexity: 

0 1 2 3 4

2
5 6 7

3 2
8 9 10

( ) ( 1) ( 2) ( 1) ( 2)

( 1) ( 1) ( 2) ( 1) ( 1)

( 1) ( 2) ( 1) ( 1) ( 2)

s s

s

s

y t y t y t u t u t

y t y t y t y t u t

y t u t y t y t y t

θ θ θ θ θ

θ θ θ

θ θ θ

= + − + − + − + −

+ − + − − + − −

+ − − + − + − −

 

with the estimated parameter values: 

0 1 2 30.0129, 0.0390, 0.5112, 0.0219,θ θ θ θ= = − = =

4 5 6 70.0290, 7.8027, 6.5853, 0.1232,θ θ θ θ= = = − =

8 9 100.0877, 7.9623, 7.0073θ θ θ= = − =  

The model verification is shown in Fig. 6 and a good 
match is confirmed between the plant and model 
responses for both the estimation and validation data. 
For the purpose of the NGMV control, the above 
polynomial NARMAX model can be converted to a state-
dependent representation by defining the following 
states: 1 2 3( ) ( ), ( ) ( 1), ( ) ( 1)sx t y t x t y t x t u t= = − = − . 

The state-dependent model follows then as: 
2 2

1 1 11 1 1 1 1

2 2

3 3

4 4

( 1) ( ) 11 1 1 1

( 1) ( ) 01 0 0 0
( )

( 1) ( ) 10 0 0 0

( 1) ( ) 00 0 0 1

s

x t x t xx x x x x

x t x t
u t

x t x t

x t x t

+ + + + + + +     
      +       = +
      +
      

+        

1( ) ( )y t x t=  

A. Control design and simulation results 

The major challenge is to control the system around an 
unstable equilibrium point, i.e. for middle concentration 
values. As the nominal unstable operating point we 
choose the point corresponding to the control input of 

( ) 0.5su t = . Based on the model equation, the 

corresponding output steady-state values: 01 0.1437y = , 

02 0.3652y =  and 03 0.7658y = . Out of these 3 

solutions, y02 is the unstable equilibrium and the control 
objective will consist of regulating the system around 
this value. The NGMV controller was designed for this 
problem using the following design parameters: 
Reference:  1 1( ) 0.05 (1 0.95 )rW z z− −= −  

Error:      1 1 2 1 2( ) (1 0.1 ) (1 0.97 )cP z z z− − −= − −  

Control:    1 1 2 1 2( ) 0.55 (1 0.3 ) (1 0.9 )ckF z z z− − −= ⋅ − −  

The goal of the simulation was to move the process from 
the stable equilibrium 01 0.1437y =  to the unstable one: 

02 0.3652y = , and keep it there under a step output 

disturbance. The results of the simulation are shown in 
Fig. 7 and despite a rather oscillatory controller response 
to the disturbance these objectives are in fact achieved. 

q, T0, Ca0 

q, T, Ca 

Tc 

T, Ca 

A → B + heat 
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Fig. 6: NARX model validation: plant (solid), model 

(dashed) 
(The estimation data used for identification: up to time 200) 
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Fig. 7:  NGMV output tracking and regulation around an 

unstable operating point. Upper plot: output (solid), set-point 
(dotted) 

     The final test consisted of tracking the concentration set-
point across the operating range. Since the dynamics and 
nonlinearity of the system vary wildly for different operating 
conditions, the approach used was to define a separate set of 
the control weighting parameters for each operating regime 
(four of them were specified) and use a simple switching 
scheme when moving from one to another. 

In particular, the control weighting was parameterized as: 

( )1 1 2 1 2( ) (1 ) (1 )ckF z z zρ β α− − −= ⋅ − −  and the parameters ρ, 

β and α were tuned separately for each region corresponding 
to a single step change (the switching variable was the output 
concentration). The values were then collected in the look-up 
tables and switched by what can be considered as a gain-
scheduled type of control law. The result of one such 
simulation is shown in Fig. 8 and again good tracking is 
achieved across the operating range. 

 
VII  CONCLUDING REMARKS 

 
A relatively simple controller for nonlinear multivariable 
systems was introduced that extends the family of NGMV 

controllers to much more general systems. The inclusion 
of the state-dependent sub-system model provides the 
main innovation and this has the advantage that it may 
be used to represent open-loop unstable plants with input 
or output nonlinearities. 
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Fig. 8:  NGMV control: output tracking across the 

operating range with a gain-scheduled control weighting  
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