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Abstract— This paper concerns studying dissipativity of a
system with supply rates that depend on one or more param-
eters. We show that suitable choice of supply rate turns out to
make dissipativity equivalent to traditional gain/phase margin
conditions for stability. Further, the well-known circle criterion
corresponds to a different supply rate, and here optimizing
the supply rate is nothing but finding the largest circle such
that circle criterion implies absolute stability for time-varying
nonlinearities. £ -control is another example of dissipativity
with respect to a relevant supply rate, and here we show that,
in fact, improper L -controllers are easily dealt with using
our approach (unlike the standard state space methods). We
formulate and prove necessary and sufficient conditions for
L oo -control, and then conclude that optimal controllers always
exist (under suboptimal solvability conditions).

Keywords: Dissipative systems, behaviors, optimal control,
circle criterion, £ . -control.

I. INTRODUCTION AND NOTATION

Analysis and design of control systems based on dissi-
pativity has been an active field of research. The theory of
dissipativity formalizes the concept of dissipation of energy
and gives a firm footing for analysis of systems from energy
absorption view-point. Among many others, dissipativity
with respect to a quadratic supply function plays a key role
because a number of important control theoretic concepts
can be generalized into dissipativity with quadratic supply
functions, for example, the LQR/LQG control, H{, problem,
circle and Popov criteria, and synthesis of passive systems
(see [14], [16], [6]). In this paper we relate dissipativity to
some system theoretic properties and consider extremizing
supply rates to get the optimal such rate. In section III, we
bring out a strong relation between dissipativity and the well-
known system theoretic ideas of gain and phase margins. In
the context of circle criterion, we show how dissipativity
concepts can be used in order to find the ‘largest’ circle
satisfying this criterion thus assuring absolute stability for
sector-bound time varying nonlinearities (see IV). Next we

S. Sinha is with Systems and Control Engineering, Indian Institute of
Technology Bombay, Mumbai 400 076, India.

D. Pal, M.N. Belur and H.K. Pillai are with the Department of Electrical
Engineering, Indian Institute of Technology Bombay, Mumbai 400 076,
India. Corresponding author email: debpal@ee.iitb.ac.in.

The research was supported in part by SERC division, Department of
Science and Technology, India.

978-1-4244-3124-3/08/$25.00 ©2008 IEEE

address the issue of improper controllers for the L., subop-
timal control problem in section V. We present necessary
and sufficient conditions for the solvability of the sub-
optimal problem without making the restrictive assumptions
typically assumed in state space control theory (see [10]). A
remarkable aspect of our main result for this section is that
it can be related to well-known system theoretic concepts
of invariant zeros, though without an apriori input/output
partition of the control variables. Finally we show how the
result in this section can be used in the following section
to infer the solvability of the L, optimal control problem
(section VI). Here we show that due to nonrequirement of
properness of the controller, the optimal controller always
exists (assuming suboptimal solvability is possible). This
result is among the main results of the paper.

Before we begin with some preliminaries in the following
section, we devote a few words about the notation used
in this paper. The set €°(R,R") means the space of in-
finitely often differentiable maps from R to R". The subset
of €*°(R,R¥) with functions having compact support is
denoted by D (R, R¥). Sometimes we will drop the argument
when it is clear from the context, and write just ©, for
example. Also, in order to identify the number of components
in a vector w, we simply use w, for example, w € € (R, R¥).
Finally, within text, we often require to stack vectors or
matrices into a column: col(Ry, Ry) denotes [RT RT]T.

II. PRELIMINARIES

In this paper, by a linear differential behavior ‘B, we
mean a subset of €>°(R,R¥) such that elements w € B
satisfy a system of ordinary linear differential equations
with constant coefficients. This amounts to existence of a
polynomial matrix R(§) € R**¥[¢] such that B := {w €
¢®(R,R¥) | R($)w = 0}. We denote the set of all such
linear differential behaviors with w number of variables by
L£¥. This representation is known as a kernel representation
of 8. Though there are many possible kernel representations
(corresponding to elementary operations on the equations
describing ‘B), the number of inputs and outputs of the
system does not depend on the particular representation. We
denote the number of inputs and the number of outputs in the
system by m(8) and p(B) respectively. A behavior B € £¥
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is said to be controllable if for every w',w” € B, there
exists a w € B and a 7 > 0 such that w(t) = w'(¢) for all
t <0 and w(t) = w”(t) for all t > 7. We denote the set of
all controllable behaviors with w variables as £F_ .. It was
shown in [13], [9] that B = kerR(%) is controllable if and
only if R(X) does not lose rank for any A € C. Controllable
behaviors are precisely the behaviors that admit an image
representation: there exists an M(§) € R¥*"[¢] such that
B = {w | I € €°(R,R") such that w = M ()¢}, For
the purpose of this paper, we need the image representation
to have the property that ¢ can be deduced from w € B;
this is called observability. The image representation above
is said to be observable if M () has full column rank for
all A € C. It turns out that image representations can be
assumed to be observable without loss of generality.
Sometimes, a full behavior By is associated with B that
has a latent variable representation by taking the latent vari-
ables as manifest variables, that is By, C € (R, R¥ ™) is
given by: B = {(w, ) | such that R(:{)w = M ()0}
Another important concept required for this paper is the
notion of a quadratic differential form (QDF). (See [15] for
a detailed exposition.) A QDF Q¢ induced by a two-variable
polynomial matrix with real constant coefficients, (¢, n) :=
i @arCin® € R¥¥C,n], where ®;, € R¥X¥, is a map
Qo : €X(R,R¥) — €X(R,R) defined as Qo(w) =
Z@k(%)T@iﬂ%) When dealing with quadratic forms
in w and its derivatives, we can assume, without loss of
®T(n,¢); such a ®(¢,n) is
called symmetric and the set of all such symmetric two-

generality, that ®((,n) =

variable polynomial matrices is denoted by R¥*¥[¢, n]. We
often require the one-variable polynomial matrix ®(—¢,¢&)
obtained from ®((,n): define 0P () := ®(—&,¢).

This paper concerns optimizing the dissipativity property
of a controllable behavior 8. We call a controllable behavior
B ¢ £, dissipative on R with respect to a symmetric two-
variable polynomial matrix ®(¢,n) if

/ Qa(w)dt > 0 )
R

for all w € BND. We will make use of the following result
from [15], which relates the dissipativity of a behavior to
the non-negativity of a certain para-Hermitian matrix on the
imaginary axis.

Proposition 1: Consider 8 = imM (%) and & €
R¥*¥[¢,n]. Then B is dissipative with respect to ®(¢,n)
on R if and only if

MT(—iw)0®(iw)M (iw) >0 forall w € R, (2)
For the purpose of this paper! 9B is said to be strictly

I'There are other more stringent definitions of strict dissipativity; see [15].
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dissipative if the integral in inequality (1) satisfies a strict
inequality for all nonzero w € 8 ND. One can check that
strict dissipativity is equivalent to 9®(iw) > 0 for almost all
w.

The notion of orthogonal complement of a behavior is
related to dissipativity, and we require it in this paper.
Consider B € £¥

" ¢ having kernel representation R(-$-)w =

0. The orthogonal complement B~ of the behavior B is

defined as B+ := {w € €°(R,R¥) | [, wlvdt = 0 for all

v € BND}. It turns out that B+ € £ . and, in fact, has
d

image representation w = RT(,E) /.

III. GAIN/PHASE MARGINS AND DISSIPATIVITY

Concepts of gain margin and phase margin (abbreviated
here as GM and PM respectively) have been important in
frequency domain methods of design of control systems.
They nicely capture the essence of certain properties like
relative stability and robustness which are desirable for a
control system. In this section we relate these concepts with
dissipativity. It is well-known that GM and PM are related to
small gain and passivity respectively, which again are only
special cases of dissipativity. Our main result in this section
shows that, the GM and PM conditions are equivalent to
dissipativity with respect to a supply rate ®({,n) obtained as

1
a combination of the small gain matrix ¥ := 0 01
.. . 0 ¢
and the passivity matrix ¥, 1= L
n

The small gain matrix Y4, and the passivity matrix X,
are such that they are supply rates with respect to which the
unity feedback path is ‘least dissipative’: in our case ‘least
dissipative’ means that inequality (1) is satisfied with an
equality. (See figure 1 for the unity feedback interconnection;
the ¢ in the figure is equal to 1.) The passivity matrix ¥,

is adapted from the more commonly used matrix 0

due to the same reason: to ensure that the unity feedbac
path of our case is least dissipative.

If some system is dissipative with respect to just X, this
would mean that the unity feedback results in asymptotic
stability, using the small gain theorem. While the intercon-
nection of two passive systems (at least one being strictly
passive) results in closed loop asymptotic stability: this is
captured by the ¥, matrix.

However, gain and phase margin conditions (assuming
open loop system is stable) being positive also assure us of
closed loop stability. The following theorem, our main result
of this section, says that the gain and phase margin conditions
are closely related to a suitable polynomial combination of
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Fig. 1. Feedback Interconnection

these two special supply rates X4, and X,,. We skip the
proof for page limt constraints; see [7] for the same.

Theorem 2: Consider a SISO LTI system given by the

transfer function G(§) = % (or equivalently, (u,y) €
UL

B = im YEddt; ). Then the following two statements
dt

are equivalent:

1) there exist p, ¢ € R[€] such that 9B is strictly dissipative

with respect to ®(¢, ) := p(¢) Esgp (1) +4(¢) Xpagq(n),

2) for almost all w € R, either | G(iw) ||< 1, or

wIm(G(iw)) < 0, or both.

Remark 3: Condition 2) in above theorem formalizes the
well-known condition that, assuming transfer function G has
positive DC gain, if the open loop system is stable then the
gain and phase margins being positive guarantees closed loop
stability. The above theorem relates this to strict dissipativity
with respect to a suitable supply rate.

IV. CIRCLE CRITERION: COMPUTATION OF THE LARGEST
SECTOR

In this section we develop a systematic approach to
calculate the largest sector that a sector-nonlinearity can
belong to, keeping an inter-connection stable. Consider the
interconnection of the linear system (with transfer function
() and the sector nonlinearity ¢ in the feedback path as
shown in figure 1. Let ¢ belong to the sector [a, 8] with
a < B and B > 0. The sector condition on ¢ can be
expressed as ay? < y-¢(t,y) < By?, which in matrix form

T
y —af  « y
[ o(t.y) ] [ g -1 1 [ o(t.y) ] 20 o

for all ¢ and for all y € £2(R,R) (where £ denotes the
space of functions that are square integrable over its domain).

Let G(§) = ig where U(£),Y(¢) € R[¢]. The well-

known circle criteria can be rewritten using the Integral
Quadratic Constraints (IQC) formulation of [6] as follows.
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If G satisfies the following inequality strictly?

2ap  (a+p) y(t)
(@+B) 2 [uu)]dt”
4

V u € £2[0,00), then we have absolute stability for all
nonlinearities, possibly time-varying, ¢ in the sector [«, 3].

Suppose ( happens to be a gain that stabilizes the transfer
function G, i.e., p(t,y) := By results in closed loop stability,
then the question arises as to the minimum value of « that
results in absolute stability. This brings us to the problem
addressed in this section: the question of optimizing the
208 (a+p)
(a+0) 2
Problem Statement: Consider an LTI system having transfer

supply rate

function G(&) in the forward path with a nonlinearity ¢ in
the feedback path as shown in figure 1. Suppose (3 is such
that 14 5G(€) has all its zeros in the left half complex plane.
Find the smallest « such that we have absolute stability due
to circle criterion for ¢ in the sector [«, 3].

The following lemma answers the above problem and is
easily convertible into an algorithm. Its proof is straightfor-
ward and is hence skipped.

Lemma 4: Let G(§) € R(§) and let S > 0 be such that
1 + 6G(&) has all its zeros in the left half complex plane.
The minimum « such that we have absolute stability due to
circle criterion for all ¢ in the sector [a, 3] is the least «
that satisfies the inequality:

G(iw)
1

2aB  (a+p)
(a+P) 2

is satisfied for all w € R.

Using coprime polynomials U(£) and Y (§) such that
G() = Y(&)/U(&) we can rewrite the above rational
inequality as a polynomial inequality by replacing [G (iw) 1]
by [Y(iw) U(iw)]. In fact, for a fixed (3, the L.H.S. of
inequality (5) is a polynomial in w and «. Considered as a

G (iw)

1 =0 (5

polynomial in w with coefficients from R[], this polynomial
is even in w:

Pa(W)ag(@) + az(a)w? + ... + azp(@)w®™* >0 (6)

with a; € Rla]. We now elaborate on how one can find the
minimum « such that inequality (5) is satisfied for all w € R.

The minimum « for which p,(w) is non-negative results
in po(w) and g4 (w) := % to lose coprimeness. Using
a Sylvester resultant condition on these two polynomials
(with coefficients that are polynomials in «), one can get

all real candidates a’s (< ) that cause loss of coprimeness

2In this section, we do not dwell on the precise form of the strictness of
the inequalities since the focus is on computing the largest sector.
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of p, and ¢, and for these finitely many candidates checking
non-negativity of inequality of p,(w) gives us the required
minimum value of «.

Remark 5: Notice that the above method works even
when G(&) is not stable, unlike the IQC result. The analogue
of the above method for optimizing a slightly different
supply rate gives rise to another method to compute the
Hoo norm of a transfer matrix. This has been dealt in [2].
Another important point to note is that we have addressed
the optimization of the sector with respect to the circle
criterion. We do not address the issue that for certain cases,
the circle criterion can itself be unnecessarily conservative;
for example, if non-quadratic storage is allowed (see [3],
[4]). We thank Prof. Jan C. Willems for his useful inputs.

The following example shows how the minimum « com-
puted by the above method gives rise to the circle that
touches the Nyquist plot of the unstable transfer function
G(s), and is encircled twice anti-clockwise by the Nyquist
plot (due to two unstable poles of G(s)).

Example 6: Consider G(s) = (=52 +195+6)

2(s—1)(s—2)
Nyquist plot is shown in figure 2. Let 8 = 5/3, which

whose

happens to result in closed loop stability (for the gain ().
In this case we have Y (s) = (—s% + 19s + 6) and U(s) =
(252 — 65 +4). Inequality (5) gives (4 — 2a)w* + (2998 —
1100)w? + (504a + 336) > 0 for all w € R. In this case,
we get a = 0.34 as the required minimum « corresponding
to 3 = 5/3; the circle corresponding to this pair (o, 3) is
shown in Figure 2. (The other value of o obtained by the
above method corresponds to a non-real frequency w, and
hence is ignored.)

V. IMPROPER CONTROLLERS FOR L, CONTROL

In this section we will address the solvability of the L,
(or H,o) control problem when the restrictive regularity
assumptions on the “feed-through” terms of the plant are
relaxed. The regularity assumptions are required in order
to have the controller in the conventional observer-state-
feedback structure, which is equivalent to the properness
of the controller transfer function. These assumptions are
restrictive in the sense that even when they are violated,
which can make the £, optimal control problem unsolvable
with a proper controller, an improper controller might still
exist that succeeds in making the controlled system achieve
the optimal L, norm. Our main result provides necessary
and sufficient conditions for the solvability of the L, control
problem without making any assumptions implying proper-
ness of the controller transfer function. However, before we
state our main result we give a simple motivating example
to show that situations where the controller has improper
transfer function comes quite naturally in linear systems.

1 Nyquist Diagram
T
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Fig. 2. Nyquist Plot

Example 7: Consider the state-space description of the
plant

)= 1AL

with to-be-regulated variables z; and zo satisfying z; = 2

U+

and zo = u, and the measurement y satisfying y = x;. It
can be checked that a state-space controller cannot restrict
this plant to a controlled behavior whose J{,, norm is at
most one. However, a controller of the form w :Z;, which is
improper, solves the problem.

It is important to note that the closed loop system and
the open loop system are both of dynamic order two.
This was possible only because the transfer function from
disturbance d to the measurements y was strictly proper.
Of course, from Theorem 10 of [16, part II], it is expected
that this transfer function’s strict properness is necessary for
controller’s improperness.

Through this observation we notice that more general
conditions are expected to be necessary and sufficient for
solvability.

It is well-known that, in state space L., optimal con-
trol, invariant zeros of the system plays an important role
in determining the solvability of the problem. It almost
always remains as a standing assumption that the system
has no invariant zeros on the imaginary axis (see [12]).
Interestingly our main result is very much reminiscent of the
invariant zeros condition. It turns out that these conditions
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are related quite expectedly to certain stabilizability and de-
tectability conditions (see remark 11). However, note that no
input/output partitions are assumed on the control variables,
and as shown by the above example, improper controllers are
pretty easily accommodated by L, (and hence eventually
Ho) controllers.

Our description of the plants is similar to that in [16]. The
system variables are partitioned into exogenous disturbance
d, to be regulated output z and control variable c. The full-
behavior of the plant is denoted here by Pp,y € £3+7Fe.
The associated plant behavior P is obtained by eliminat-
ing ¢ from Py, which is defined as: P := {(d,z) €
€>®(R,R¥*2) | 3¢ € €>°(R,R°) such that (d, z,c) € Pean }-
The control objective is to restrict this plant behavior to a
sub-behavior X to meet the control specifications. In such a
formulation of the control problem the controller is allowed
to put in restrictions on the control variable ¢ only. In I,
control, the specification is given in terms of the dissipativity
on R_ of the controlled behavior with respect to a real
constant matrix

25, 0
S, = [ 70“ L ] 7

and m(X) = 0. (X,) (see [16] for a detailed formulation of
the problem). It is shown in [16] that a controlled behavior,
X with the controller putting restrictions only on the control
variables exists if and only if N C K C P, where N, called
the ‘hidden behavior’ is given by,

N:={(d,z) € €°(R,R*"®) | (d, 2,0) € P }. 8

If we relax the condition of dissipativity on R_ to that on R,
we get the corresponding L, control problem. In this section
we restrict ourselves to the case of L, control only. The L,
problem is said to be solvable for a plant if there exists a
controlled behavior X as above and some positive real -y such
that X is X, dissipative on R and m(X) = o (X,). We now
state a portion of Theorem 7.2.1 from [1], which we will
utilize to prove our claims. We state this as a proposition
below.

Proposition 8: The L, control problem is solvable if and
only if

e Nis 3, dissipative on R and

o PLis —¥ ! dissipative on R.

We are now in a position to state our main result of this
section, which gives necessary and sufficient conditions for
the L, control problem to be solvable, purely in terms of
the kernel representation of the plant behavior devoid of
any explicit dissipativity conditions. An interesting feature
of the following result is that it can be related to well-known
systems theoretic concepts of stabilizability and detectability,
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but it assumes no conditions implying controller properness.
Let the full plant behavior Pgy); be given by the following
kernel representation:

Pran:={(d, z,¢) | Ra(L)d+R,(L)z+Re(L)e=0}. (9

The following is a kernel representation of the plant behavior
P C €°(R,R¥"2) associated with this full behavior.

P:={(d,2) | Rae(2)d+ R,e(L)z =0} (10)

The theorem below is the main result of this section.

Theorem 9: Consider the kernel representation of the full
plant behavior as in equation (9). The associated plant behav-
ior P be given by equation (10). Suppose the hidden behavior
N and the plant behavior P are controllable. Then the L,
control problem is solvable if and only if the following four
conditions below are true.

1) R,(\) has full column rank for all A € (R.

2) There exists a partitioning of d into (dy,ds) such
that d; is input and (dz, z) is output for N and the
corresponding transfer function from d; to (ds,2) is
proper.

3) Rye(A) is full row rank for every A € iR.

4) There exists a partitioning of z into (z1,2z2) such
that (d, z1) is input and 2o is output for P and the
corresponding transfer function from (d,z1) to zy is
proper.

See [7] for proof, which we skip due to page limit
constraints. However, we state the following lemma about
polynomial matrices, which plays a crucial role in our proof
of Theorem 9. See [7] for a proof of the lemma. We need
the notion of column zeros of a polynomial matrix R() €
RP*4[¢]: define colzeros(R(§)) :={ e C|I0#v e C?
such that R(A\)v = 0}. In case R(§) is not full column rank,
colzeros(R(€)) turns out naturally to be the whole of C.
Otherwise, it is a finite set.

Lemma 10: Consider R(¢) i= | Ri(§) Ra(&) |, with
Ri(¢) € ROEFT2=UX4[¢] and Ry(¢) € REF2-1XZ[¢] Let
M(E) = J\Z\? ()

2(¢)
R=*1[¢] be such that R(&)M () = 0 and M (A) full column
rank for all A € C. Then,
1) colzeros(M;(§)) C colzeros(Rz(&)).
2) In particular, if Ry(§) is full column rank then so is
M (8).
3) Further, if R(\) has full row rank for all A € C, then
colzeros(R2(§)) = colzeros(Mi (€)).

Remark 11: Condition 1) of the above theorem says that

, with M, (€) € RE*1[¢] and My () €

L control is solvable only if R, is full column rank on
the imaginary axis. This is equivalent to the to-be-regulated
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Fig. 3. Standard control problem

variable z being detectable from the rest of the system
variables (see [9] for detectability) on the imaginary axis.
On the other hand condition 3) states that for the L.
control problem to be solvable, it is also necessary that z
be stabilizable on the imaginary axis through the control
the variable c. This is nothing but the stabilizability on the
imaginary axis of just the z variables through the control
variable ¢, of the unforced plant defined as: Peui1 unforced :=
{(z,¢) € €°(R,R*t°) | (0,2,¢) € Ppun}-

VI. L, OPTIMAL CONTROL

In this section we address the problem of solving an L,
optimal control problem, i.e., find a controller that minimizes
the L., norm of the closed loop system in the following
configuration. The results of the previous section allow us
to conclude, as shown below, that if the (suboptimal) L,
control problem is solvable for some <, then, in fact, the
optimal control problem too is solvable.

Recall the definition of ¥, from equation (7). Like the
supply rate for sector nonlinearities (in section IV) where
there was a parameter o to be extremized, we have here
the parameter v to be minimized. The key issue here is
that if a behavior B € £ . is dissipative with respect
to X, for some v > 0, then one can find the minimum
~ such that this dissipativity holds. In order to compute
this =, one uses the method described in [2]. Define
N =min,eg, {N is ¥, dissipative }, as the minimum ~y
for which N is ¥, dissipative. Similarly, define vyp as the
minimum « such that P+ is —(X,)~! dissipative. (The
minima exist and are finite if the corresponding conditions
in Theorem 9 are satisfied.) Using these values, one can in
fact solve the optimal L., control problem, as stated in the
following theorem. The proof is skipped since it follows from
the main theorem of the previous section, suitably combined
with the algorithm to compute the minimum + values; see
[2] for the algorithm.

Theorem 12: Consider N and P € £7

cont>

the hidden
and the plant behaviors of a system. Suppose the L.,
control problem is solvable for some v > 0, equivalently,
the necessary and sufficient conditions listed in Theorem 9
are satisfied. Then the L,-optimal control problem is also
solvable. The optimal ~ value is opt = max(yn, yp)

One of the important consequences of the above theorem
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is that the optimal controller always exists. This is possible
essentially because, for a state space way of addressing
such optimal control problems, the issue of nonproperness
at optimality is not addressable.

VII. CONCLUDING REMARKS

We first proved how gain and phase margin conditions
for stability are nothing but dissipativity with respect to a
convex-like combination of two important supply rates that
arise from small-gain theorem and the passivity theorem.
We then showed that the sector for circle criterion can
be improved to its largest using our proposed systematic
method. We stated necessary and sufficient conditions for
L -control, which turn out to relax properness conditions on
the controller (had an apriori input/output partition been fixed
for the control variables). As an important consequence of
this, we concluded that optimal L .,-control problem admits
a solution whenever the suboptimal case admits one.
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