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Abstract— In this paper camera pose control for optimizing
multiview distributed video coding is considered. The scenario
considered is that multiple agents with monocular cameras
observe a common scene in a three dimensional world. To get a
good video reconstruction under a transmission rate constraint,
the camera closest to the center of the camera array is chosen
as the reference camera. The poses of all other cameras are
controlled and designed such that their images are maximally
similar under a constraint on their separation. Based on the
rigid motion allowed for the cameras, two cases are considered.
For the case where the rigid motion only involves translation,
translation control is designed. For the case where it involves
both translation and rotation, both controls are constructed.
Some simulated results are given to show the efficiency of the
designed controllers.

I. INTRODUCTION

Recently multiview imaging has attracted much attention

due to the decreasing camera cost and its increasingly wide

range of applications, such as in entertainment, security

surveillance, and industry inspection. However, obtaining a

good video reconstruction from multiview data is not always

straightforward. First, the different internal parameters of

cameras such as focal length, principal point and aspect ratio,

and different external camera parameters such as position

and orientation, lead to significantly different images, which

makes it difficult to synthesize a virtual view. Second, the

vast raw bit rate of multiview video requires efficient data

compression, which may result in a high level of distortion.

Fortunately, because the video data originate from the same

scene, the inherent similarities of the multiview images can

be exploited in their encoding. The similarities include in-

terview similarities between images of adjacent cameras and

temporal similarities between temporally successive images

of each camera. An extensive literature exists in the area

of multiview video compression, e.g., [9], [12], [3]. For

an overview we refer to [4] and the references therein.

The common idea of the existing results is to exploit the

similarities (i.e., the correlations) between adjacent views

in addition to the temporal and spatial similarities within

a single view.

Distributed video coding is a relatively new paradigm for

video compression that is based on information-theoretic

results of Slepian and Wolf for the lossless case [18] and
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Wyner and Ziv for the lossy case [24] -[27]. In distributed

source coding, side information is considered to be available

at the decoder but not at the encoder. Thus, the method

exploits the source statistics in the decoder rather than in the

encoder. As a result, The encoder has a low computational

complexity, while the decoder has a high computational

complexity. The input data is divided into cosets at the

encoder and it transmits the index(i.e., the syndrome) of

the coset. The receiver decodes by selecting the codeword

in that coset that is most likely given the side information

known to it. Therefore, the more similar the encoded data

and the side information are, the better the reconstruction

results under the constraint of transmission rate. Many results

on distributed video coding exist see, e.g., [17], [13], the

overview [5] and the references therein.

Due to the high data rate required for the transmission

and storage at the encoder in multiview video, distributed

video coding has been applied to lighten this burden [30],

[23], [6], [10]. Multiview distributed video coding provides

a technique for efficient multiview video compression. It

requires only a low-complexity encoder at each camera.

In addition to the cited work on compression algorithms

for video data, work on visual motion estimation is relevant

to our problem considered in this paper. We can classify this

work into point-based [20], line-based [22], [28], and curve-

based or model based [1], [2], [21]. Furthermore, observers

have been designed [14], [8] for the nonlinear dynamical

model given in [20]. However, in contrast to our work, the

model used in the latter papers is continuous time.

Lots of camera arrays has been also built for multiview

imaging. For instance, Naemura et al. constructed a camera

array system consisting of 16 cameras [16], while Zhang

and Chen proposed a self-reconfigurable camera array with

48 cameras [29]. However, all existing results on designing

camera array system only give system configurations, but not

show how to control the camera by servo controllers.

This paper addresses the problem of control design for the

camera pose(e.g., location and orientation) for the purpose of

multiview distributed video coding. To the best knowledge

of the authors, no earlier studies have been performed on

this topic. Based on the nonlinear discrete-time dynamical

model given in [20], we design a camera pose control that

makes the images of all cameras maximally similar under

a minimum distance constraint. The increased similarity of

the images leads to better reconstruction results under the

constraint of transmission rate.

The remainder of this paper is organized as follows.

Section II presents the problem statement and Section III
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gives some preliminaries. Section IV designs the camera

pose controls. Based on the type of motion allowed for the

camera, two cases are considered. One case is that the camera

motion involves only translation, and the other is that its

motion involves both translation and rotation. To validate the

designed controllers, some simulations are given in Section

V. Section VI provides the conclusion.

II. PROBLEM STATEMENT
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Fig. 1. System description.

In this paper we consider the control of multiple agents

with monocular cameras observing a common scene in a

three-dimensional(3D) world to form a stereo view. We as-

sume that all cameras have the same internal parameters. The

best view reconstruction is possible when the observations

of the cameras are maximally similar, as measured by an

appropriate measure. However, due to the difference in the

poses of the cameras, the images formed by them may be

quite different. This leads to high distortion between the

reconstruction and the original image under the constraint of

transmission rate. To make their images maximally similar

under the constraint that the distance between any two cam-

eras is subject to a minimum distance constraint, we choose

the camera that is closest to the center of the camera array,

as the reference camera. The locations and/or orientations

of all but the reference camera are corrected, by means of

commands from the reference camera.

Without loss of generality, we can consider a communica-

tion system with two cameras, respectively attached to two

agents, one of them being the reference camera. As depicted

in Fig. 1, Camera 1 and Camera 2 are attached to Agent 1

and Agent 2, respectively. They observe a common scene X

in a 3D world, and are connected by a wireless connection.

Camera 1 is assumed to be the reference camera. We define

Y
1 = {Y 1

k }∞k=1, Y
2 = {Y 2

k }∞k=1, U
2 = {U2

k}∞k=1, (1)

where Y 1
k and Y 2

k are the images formed respectively by

Camera 1 and Camera 2 at time instance k, and U2
k is a

command to Agent 2 to correct the position and/or orienta-

tion of Camera 2, given by the Agent 1 at time instance k.

For simplicity, we assume Agent 2 sends the image formed

by Camera 2 to Agent 1, and the distortion between the

image sent by Agent 2 and its corresponding reconstructed

image by Agent 1 is negligible, and the rate for transmission

of control information from Agent 1 to Agent 2 is negligible

as well.

For the sake of simplicity, we restrict our attention to

the case where the common scene is static and Camera 2

moves rigidly to change its location and/or orientation after

receiving commands from Camera 1. Then the object of the

static scene moves rigidly relative to Camera 2. Although the

existing methods for the motion estimation, as mentioned in

the previous section, may be classified as point-based, line-

based, and curve-based or model based, Levoy and Whitted

have pointed out that a discrete array of points arbitrarily

displayed in space using a tabular array of perturbations can

be rendered as a continuous three-dimensional surface, and

proved that a wide class of geometrically defined objects,

including both flat and curved surface, can be converted

into points [11]. Therefore, here it is reasonable for us

to study the case where the common scene is represented

by N feature points. We assume the feature points in the

images are available and their correspondences are known.

To characterize the image of static scene in a 3D world,

the camera model is crucial. Here we consider the most

commonly used camera model, the pinhole(i.e., perspective

projection) camera model.

In summary, the goal of this paper is to solve the following

problem:

Problem P. Use the available data Y
1 and Y

2 to design

U
2 such that Y

2 is maximally similar to Y
1 under the

constraint that the corrected location of Camera 2 is at least

a minimum length d21 away from Camera 1.

III. PRELIMINARIES

In this section, we first revisit the pinhole camera model

and recall some relevant results on visual motion estimation

based on this camera model. Then we reduce Problem P

stated in the previous section to a control design problem

for a nonlinear control system.
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Fig. 2. Pinhole camera model of Camera 2.

The pinhole camera model is a nonlinear mapping from

3D world coordinates to 2D image coordinates. It gives an

idealized mathematical framework, which is quite accurate

for high quality camera systems [7]. Figure 2 depicts the

pinhole model of Camera 2, where all coordinate frames

are assumed to be right-handed orthogonal frames. The

projection center is the origin OC2 of Camera 2 frame. The

image plane of Camera 2, Y 2
1 Y 2

2 , is parallel to the X2
1X2

2

plane(the axes Y 2
1 and Y 2

2 are parallel to the axes X2
1 and

X2
2 respectively), and it is displaced with the distance f (focal

length) from OC2 along X2
3 -axis. The X2

3 -axis is also called
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the optical axis, or the principal axis, and the intersection of

the image plane of Camera 2 and the optical axis(here it is

X2
3 -axis), is called the principal point(in the image plane of

Camera 2) oc2(Y
2
10, Y 2

20).
For ease of notation, we first denote the set of natural

numbers(positive integers) by N, and the common Euclidean

norm by ‖ · ‖ for a vector or a matrix, and | · | for a scalar.

I indicates the identity matrix of three dimensions. For a

square matrix A, exp(A) denotes the exponential function

of A.

Let V 2
k = [V 2

1,k V 2
2,k V 2

3,k]T indicate the translational ve-

locity of the origin of Camera 2 frame at time instance k with

respect to time instance k+1, and W 2
k = [W 2

1,k W 2
2,k W 2

3,k]T

denote the rotational velocity of Camera 2 frame at time

instance k with respect to time instance k +1. Moreover, let

Ω2
k =





0 −W 2
3,k W 2

2,k

W 2
3,k 0 −W 2

1,k

−W 2
2,k W 2

1,k 0



 . (2)

Then the rotation matrix R2
k of Camera 2 frame at time

instance k with respect to time instance k + 1, and the

translation vector T 2
k of Camera 2 frame at time instance

k with respect to time instance k + 1, can be defined,

respectively, as follows:

1) if ‖Ω2
k‖ 6= 0, define

R2
k := exp(Ω2

k), T 2
k := T 2(Ω2

k)V 2
k , (3)

where T 2(Ω2
k) := 1

‖Ω2
k
‖ [(I − R2

k)Ω2
k + W 2

k (W 2
k )T ];

2) if ‖Ω2
k‖ = 0, define

R2
k := I, T 2

k := V 2
k . (4)

We note that each rotation matrix R2
k is an orthogonal

matrix with determinant 1.

Without loss of generality, we assume the focal length of

Camera 2 is 1, its origin of image plane is its principal point,

and its aspect ratio(i.e. the scaling in Y 2
2 direction divided by

the scaling in the Y 2
1 direction) is 1. Then the positions of

N feature points of the static scene with respect to Camera

2 frame and the projections of the feature points onto the

image plane of Camera 2 can be expressed respectively as

the following nonlinear dynamic system [19], [20]:










X2,i
k+1 = R2

kX2,i
k + T 2

k ,

Y 2,i
k = [X2,i

1,k/X2,i
3,k X2,i

2,k/X2,i
3,k]T + Z2,i

k ,

X2,i
3,k 6= 0, i = 1, . . . , N, ∀k ∈ N,

(5)

where the state X2,i
k = [X2,i

1,k X2,i
2,k X2,i

3,k]T ∈ R
3(X2,i

3,k is

called the depth of Point i at time instance k) denotes the

position of Point i of the static scene, expressed in Camera

2 body-fixed frame at time instance k, the measurement

output Y 2,i
k = [Y 2,i

1,k Y 2,i
2,k ]T ∈ R

2(i.e., the images of Point

i observed by Camera 2 at time instance k) indicates the

position of Point i of the static scene, expressed in the

image frame of Camera 2 at time instance k, and Z2,i
k =

[Z2,i
1,k Z2,i

2,k]T ∈ R
2 are measurement noises of Point i,

measured by Camera 2 at time instance k, which is assumed

to be white, zero-mean, (δ2,i
k )2-variance, and Gaussian. The

initial depth X2,i
3,1 of each point i is assumed to be known.

Since all internal parameters of the cameras are assumed to

be the identical, the positions of N feature points of the static

scene with respect to Camera 1 frame and the projections of

the feature points onto the image frame of Camera 1 can be

expressed respectively as










X1,i
k+1 = R1

kX1,i
k + T 1

k ,

Y 1,i
k = [X1,i

1,k/X1,i
3,k X1,i

2,k/X1,i
3,k]T + Z1,i

k ,

X1,i
3,k 6= 0, i = 1, . . . , N, ∀k ∈ N.

(6)

As Camera 1 is the reference camera, we can assume:

Assumption A1 The rigid motion of Camera 1 is known,

that is, R1
k and T 1

k , ∀k ∈ N, are known.

We also make the following two assumptions:

Assumption A2 The initial depth X1,i
3,1 and initial image

Y 1,i
1 , ∀i ∈ {1, 2, . . . , N}, are known.

Assumption A3 The measurement noises, Z1,i
k ,

i = 1, 2, . . . , N , ∀k ∈ N, are white, zero-mean,

(δ1,i
k )2-variance, and Gaussian, and independent of

[X1,i
1,k/X1,i

3,k X1,i
2,k/X1,i

3,k]T .

Since the common scene is described by N feature points,

their images formed by Camera 1 and Camera 2 at time

instance k can be respectively expressed as Y 1
k = {Y 1,i

k }N
i=1,

and Y 2
k = {Y 2,i

k }N
i=1, ∀k ∈ N. Denote Y 1n = {Y 1

k }n
k=1

and Y 2n = {Y 2
k }n

k=1, ∀n ∈ N. Then, to make Y
1 and Y

2

maximally similar under the distance constraint, is equivalent

to choosing a proper conditional probability density function

f
Y

2,i

k
|Y 1,i

k

of Y 2,i
k given Y 1,i

k such that

E[D(Y 1n, Y 2n)] =
∑n

k=1

∑N
i=1

∫

R2

∫

R2 [(y
1,i
1,k − y2,i

1,k)2

+(y1,i
2,k − y2,i

2,k)2]f
Y

2,i

k
|Y 1,i

k

(y2,i
k |y1,i

k )f
Y

1,i

k

(y1,i
k )dy1,i

k dy2,i
k

(7)

is minimum. Here E is the expectation operator, D(·, ·)
is the squared error distortion function, and yj,i

k =
[yj,i

1,k yj,i
2,k]T , j = 1, 2, are realizations (i.e., particular values)

of random variables Y j,i
k .

Note that under Assumptions A1, A2, and A3, from

system (6), the probability density function f
Y

1,i

k+1

, ∀i ∈
{1, 2, . . . , N}, ∀k ∈ N, of the image Y 1,i

k+1 of Camera 1, is

zero-mean, (δ1,i
1 )2 + (δ1,i

k+1)
2-variance, and Gaussian, while

f
Y

1,i

1

is the Dirac delta function as Y 1,i
1 is known. Then it is

easy to see that to minimize the expression of Equation (7),

f
Y

2,i

k+1
|Y 1,i

k+1

, k ∈ N, should be

f
Y

2,i

k+1
|Y 1,i

k+1

(y2,i
k+1|y

1,i
k+1) = δ(y1,i

k+1 − y2,i
k+1), (8)

where δ(·) denotes the Dirac delta function. Hence,

Y 1,i
k+1 = Y 2,i

k+1, i = 1, . . . , N, ∀k ∈ N. (9)

Equation (9) shows that the position of each Point i of

the static scene in the image frame of Camera 1 is the

same as in the image frame of Camera 2. It is obvious that

if Camera 2 is controlled to the same position and same

orientation as those of Camera 1, then (9) holds naturally. In

the following, we will design a proper controller such that
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Camera 2 is controlled to a different location from Camera

1, and the distance between them(i.e., the distance between

the origin of Camera 1 frame and the origin of Camera 2

frame) is no less than a given positive constant d21. Note that

at some time instance k, one translation vector T 2
k and one

rotational velocity W 2
k control N feature points, and none of

translation vectors and rotational velocities may satisfy (9)

for the N points under the distance constraint. However, at

each time instance k+1, we can always choose a translation

vector and/or a rotational velocity such that the squared error

distortion

D(Y 1
k+1, Y

2
k+1)

=
N
∑

i=1

{

(Y 1,i
1,k+1 − Y 2,i

1,k+1)
2 + (Y 1,i

2,k+1 − Y 2,i
2,k+1)

2
}

(10)

between Y 1
k+1 and Y 2

k+1 is minimized.

From [15], the position vector of the origin of Camera 1

frame from the origin of Camera 2 frame at time instance

k + 1 is

q21
k+1 = X2,i

k+1 − R21
k+1X

1,i
k+1, ∀i ∈ {1, 2, . . . , N}, ∀k ∈ N,

(11)

where R21
k+1 denotes the rotation matrix of Camera 1 frame

relative to Camera 2 frame at time k+1. Controlling Camera

2 to the position where it is d21 units away from Camera 1

means that ‖q21
k+1‖ ≥ d21, ∀k ∈ N. To achieve this goal,

we first denote by Rwj
k , j = 1, 2, ∀k ∈ N, the rotation

matrices of Camera j frame relative to the world frame at

time instance k. Then it is reasonable to assume:

Assumption A4 The initial rotation matrices Rw1
1 and

Rw2
1 are known.

From [15], it follows that

R21
k+1 = R2w

k+1R
w1
k+1 = (Rw2

1 )−1

[

k
∏

l=1

R2
l

] [

k
∏

m=1
R1

m

]−1

Rw1
1 .

(12)

From (5) and (6), we get

Xj,i
k+1 = (

k
∏

v=1
Rj

k+1−v)Xj,i
1 +

k−1
∑

v=1
(

k
∏

l=v+1

Rj
k+1+v−l)T

j
v + T j

k ,

i = 1, 2, . . . , N, j = 1, 2,
(13)

where X2,i
1 = [Y 2,i

1,1 X2,i
3,1 Y 2,i

2,1 X2,i
3,1 X2,i

3,1]
T , provided that

Z2,i
k = 0, ∀k ∈ N.

Since the noise is not measurable, in this paper we will

only foucs on the control design in Problem P for the nominal

case where measurement noises of Camera 2 are set to zero.

Although one can combine some existing filter such as an

EKF with the control design that we present here, in general

convergence is not guaranteed. It is our plan to study the

stability issue in a separate paper.

Note that without loss of generality, in (11) we can choose

Point i = 1. Then the goal of this paper is reduced to solving

the following problem:

Problem P′. Under Assumptions A1, A2, A3, and A4,

using system (5) with known initial depth X2,i
3,1 of each

point i and Z2,i
k = 0(i = 1, 2, . . . , N, ∀k ∈ N), and the

available information Y 1,i
k and Y 2,i

1 to design appropriate

translation vector T 2
k , ∀k ∈ N, and/or rotation matrix R2

k

(or equivalently, W 2
k = [W 2

1,k, W 2
2,k, W 2

1,k]T ), ∀k ∈ N, in

order to minimize the squared error distortion (10), under

the minimum distance constraint

‖q21
k+1‖ = ‖X2,1

k+1 − R21
k+1X

1,1
k+1‖ ≥ d21, ∀k ∈ N, (14)

where R21
k+1 is of form of (12) and

Xj,1
k+1 = (

∏k
v=1 Rj

k+1−v)Xj,1
1

+
∑k−1

v=1(
∏k

l=v+1 Rj
k+1+v−l)T

j
v + T j

k , j = 1, 2
(15)

with X2,i
1 = [Y 2,i

1,1 X2,i
3,1 Y 2,i

2,1 X2,i
3,1 X2,i

3,1]
T .

IV. POSE CONTROL DESIGN

In this section we solve Problem P′. In terms of the rigid

motion allowed for the camera, here we consider two cases.

One is that the rigid motion of Camera 2 only involves

translation, which is referred to as Case 1 for ease of

statement. The other is that it involves both translation and

rotation about X2
1 -axis on X2

2X2
3 plane, as depicted in Fig.

2, which is referred to as Case 2, similarly. For Case 1, the

rotational velocity is identically zero, then according to the

definition of rotation matrix in previous section, R2
k ≡ I ,

∀k ∈ N, while for Case 2, the rotational velocity of Camera

2 at time instance k with respect to time instance k + 1, is

W 2
k = [W 2

1,k 0 0]T , then

R2
k =





1 0 0
0 cos W 2

1,k − sinW 2
1,k

0 sinW 2
1,k cos W 2

1,k



 , ∀k ∈ N. (16)

It is seen that Case 1 is a special one of Case 2. In

the following, we only give a detailed construction of the

controller for Case 1, while directly follow a formula of the

controller for Case 1 from Case 2.

For Case 2, from (16), system (5) without noise becomes

the following nonlinear control system:






























X2,i
1,k+1 = X2,i

1,k + T 2
1,k,

X2,i
2,k+1 = X2,i

2,k cos W 2
1,k − X2,i

3,k sinW 2
1,k + T 2

2,k,

X2,i
3,k+1 = X2,i

2,k sinW 2
1,k + X2,i

3,k cos W 2
1,k + T 2

3,k,

Y 2,i
k = [X2,i

1,k/X2,i
3,k X2,i

2,k/X2,i
3,k]T ,

X2,i
3,k 6= 0, i = 1, . . . , N, ∀k ∈ N

(17)

where the control input is (T 2
1,k, T 2

2,k, T 2
3,k, W 2

1,k), and the

initial depth X2,i
3,1 of each point i is known.

For system (17), the squared error distortion (10) becomes

d(Y 1
k+1, Y

2
k+1)

= [T 2
1,k]2

N
∑

i=1

1

(X2,i

3,k+1
)2

+ 2T 2
1,k

N
∑

i=1

1

(X2,i

3,k+1
)2

·[X2,i
1,k − X2,i

3,k+1Y
1,i
1,k+1] + [T 2

2,k]2
N
∑

i=1

1

(X2,i

3,k+1
)2

+2T 2
2,k

N
∑

i=1

1

(X2,i

3,k+1
)2

[X2,i
2,k cos W 2

1,k − X2,i
3,k sinW 2

1,k

−X2,i
3,k+1Y

1,i
2,k+1] +

N
∑

i=1

1

(X2,i

3,k+1
)2

{

[X2,i
1,k − X2,i

3,k+1Y
1,i
1,k+1]

2

+[X2,i
2,k cos W 2

1,k − X2,i
3,k sinW 2

1,k − X2,i
3,k+1Y

1,i
2,k+1]

2
}

.

(18)
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Note that T 2
3,k is relative to X2,i

3,k+1 with the form of the

third equation in (17). So the distortion function in (18) is

nonlinear with respect to the variable T 2
3,k. Obviously, it is

also nonlinear with respect to the variable W 2
1,k. Hence, the

problem of minimizing (18) becomes quite difficult under

the distance constraint (14) and constraint X2,i
3,k+1 6= 0,

∀i ∈ {1, 2, . . . , N}, and in general there is no analytic

optimal solution for this constrained nonlinear optimization

problem. However, it is easy to see that if the optimal T 2
3,k

and W 2
1,k, ∀k ∈ N, are obtained(i.e., the optimal X2,i

3,k+1,

∀i ∈ {1, 2, . . . , N} is known), then from (18), it is not

difficult to get the optimal T 2
1,k and T 2

2,k, ∀k ∈ N, under

the distance constraint (14) and constraint X2,i
3,k+1 6= 0(∀i ∈

{1, 2, . . . , N}, ∀k ∈ N). Hence, to deal with this constrained

nonlinear optimization problem, we solve it in three steps as

follows.

Step 1. Get the optimal T 2
3,k, ∀k ∈ N, under the

distance constraint (14) and the constraint X2,i
3,k+1 6= 0,

∀i ∈ {1, 2, . . . , N}, ∀k ∈ N, when Camera 2 only translates

along X2
3 -axis, using a linearization approach.

Step 2. Get the optimal W 2
1,k, ∀k ∈ N, under the constraint

X2,i
3,k+1 6= 0, ∀i ∈ {1, 2, . . . , N}, ∀k ∈ N, based on the

obtained optimal T 2
3,k in Step 1, when Camera 2 only rotates

about X2
1 -axis, using the linearization approach as well.

Step 3. Get the optimal T 2
1,k, and 2

2,k, ∀k ∈ N, under the

distance constraint (14), based on the obtained optimal T 2
3,k

in Step 1 and the optimal W 2
1,k in Step 2.

Here the linearization approach means: for an objective

function

N
∑

i=1

{

[ai − fi(x, y)]2 + [bi − gi(x, y)]2
}

, (19)

where the analytic functions fi(x, y) and gi(x, y) are nonlin-

ear with respect to the variable x, we replace the nonlinear

functions fi(x, y) and gi(x, y) respectively by their first

approximate linearizations

fi(0, y) + x∂fi

∂x
|x=0 := fi(0, y) + f ′

x(0, y)x,

gi(0, y) + x∂gi

∂x
|x=0 := gi(0, y) + g′x(0, y)x,

then the objective function (19) are approximately equal to

N
∑

i=1

{

[ai − f(0, y) − f ′
x(0, y)x]2 + [bi − gi(0, y) − g′x(0, y)x]2

}

.

(20)

Clearly, getting the optimal xopt is not difficult from the

objective function (20) under the distance constraint (14) and

the constraint X2,i
3,k+1 6= 0(∀i ∈ {1, 2, . . . , N}, ∀k ∈ N. But

this xopt may be a suboptimal solution for optimizing the

objective function (19). The error between the xopt and the

actual optimal solution depends on the solution approach. In

the next section, we will strive to get a better suboptimal

solution and make the error smaller.

In the following, we will deal with the three steps one by

one. First, we strive to solve Step 1.

When Camera 2 only translates along X2
3 -axis, but not

rotate about any axes, the system (5) without measurement

noise becomes






























X2,i
1,k+1 = X2,i

1,1,

X2,i
2,k+1 = X2,i

2,1,

X2,i
3,k+1 = X2,i

3,k + T 2
3,k,

Y 2,i
k = [X2,i

1,k/X2,i
3,k X2,i

2,k/X2,i
3,k]T ,

X2,i
3,k 6= 0, i = 1, . . . , N, ∀k ∈ N,

(21)

For ease of statement, we denote

X̄21
k+1 = [X̄21

1,k+1 X̄21
2,k+1 X̄21

3,k+1]
T := R21

k+1X
1,1
k+1 (22)

with R21
k+1 in the form of (12) and X1,1

k+1 in the form

of (13) as i = 1 and j = 1. Note that in this case

R2
k ≡ I , ∀k ∈ N. Then from (12), it yields R21

k+1 =

[Rw2
1 ]−1[

∏k
m=1 R1

m]−1Rw1
1 . Hence according to the assump-

tions, the probability density function of X̄21
k+1, which is of

the form of (22), is known. Then the distance constraint (14)

becomes

(d21)
2 ≤ [X2,1

1,1 − X̄21
1,k+1]

2 + [X2,1
2,1 − X̄21

2,k+1]
2

+[X2,1
3,k + T 2

3,k − X̄21
3,k+1]

2.
(23)

Define

dk+1 := (d21)
2−[X2,1

1,1 −X̄21
1,k+1]

2−[X2,1
2,1 −X̄21

2,k+1]
2 (24)

with X2,1
1,1 = X2,1

3,1Y 2,1
1,1 and X2,1

2,1 = X2,1
3,1Y 2,1

2,1 . Then solving

Inequality (23) yields:

1) if dk+1 ≤ 0, then any T 2
3,k ∈ R satisfies (23);

2) if dk+1 > 0, then

T 2
3,k ≥

√

dk+1 + X̄21
3,k+1 − X2,1

3,k := Lk. (25)

Denote

a2,i
1,k =

X
2,i

1,k+1

X
2,i

3,k+1

|T 2
3,k

=0, a2,i
2,k =

X
2,i

2,k+1

X
2,i

3,k+1

|T 2
3,k

=0,

b2,i
1,k =

∂

[

X
2,i
1,k+1

X
2,i
3,k+1

]

∂T 2
3,k

|T 2
3,k

=0, b2,i
2,k =

∂

[

X
2,i
2,k+1

X
2,i
3,k+1

]

∂T 2
3,k

|T 2
3,k

=0,

(26)

where X2,i
1,k+1, X2,i

2,k+1 and X2,i
3,k+1 are of the forms of (21).

It is noticeable that a2,i
1,k, a2,i

2,k, b2,i
1,k and b2,i

2,k defined in (26)

are only relative to X2,i
1,1, X2,i

2,1, X2,i
3,1, and T 2

3,1, . . . , T
2
3,k−1,

which are the variables before time instance k.

Define

λ2
3,k = 1

N
∑

i=1

{[b2,i

1,k
]2+[b2,i

2,k
]2}

N
∑

i=1

{

(b2,i
1,k [Y 1,i

1,k+1 − a2,i
1,k]

+ b2,i
2,k[Y 1,i

2,k+1 − a2,i
2,k]

}

, ∀k ∈ N.

(27)

By the linearization approach described before, we can get

the optimal T 2
3,k, ∀k ∈ N, under the constraint X2,i

3,k+1 6= 0,

∀i ∈ {1, 2, . . . , N}, using the following algorithm.

Algorithm 1. For any k ∈ N,

1) if dk+1 ≤ 0, then

a) if |λ2
3,k| ≤ 1, then T 2

3,k = λ2
3,k,

b) if λ2
3,k > 1, then T 2

3,k = 1,

c) if λ2
3,k < −1, then T 2

3,k = −1;
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2) if dk+1 > 0, then

a) if Lk ≥ −1, then T 2
3,k = max{Lk, λ2

3,k},

b) if Lk < −1, then

i) if |λ2
3,k| ≤ 1, then T 2

3,k = λ2
3,k,

ii) if λ2
3,k > 1, then T 2

3,k = 1,

iii) if λ2
3,k < −1, then T 2

3,k = −1;

if X2,i
3,1 +

k−1
∑

j=1

T 2
3,j + T 2

3,k = 0 for some i ∈ {1, 2, . . . , N},

there must exist some constant 0 < ck < 1 such that X2,i
3,1 +

k−1
∑

j=1

T 2
3,j + T̄ 2

3,k 6= 0 for any i ∈ {1, 2, . . . , N}, with

T̄ 2
3,k = T 2

3,k + min{|1 − λ2
3,k|, |1 + λ2

3,k|, ck}, (28)

then we take T 2
3,k = T̄ 2

3,k as the optimal solution instead.

Now we deal with Step 2. Since we try to get the optimal

W 2
1,k, based on the optimal T 2

3,k(the optimal T 2
1,k and T 2

2,k

have not obtained yet) in Step 2, we use the control system

with T 2
1,k = T 2

2,k ≡ 0, ∀k ∈ N, and the obtained optimal

T 2
3,k in Step 1. Thus we consider the following system:































X2,i
1,k+1 = X2,i

1,k,

X2,i
2,k+1 = X2,i

2,k cos W 2
1,k − X2,i

3,k sinW 2
1,k,

X2,i
3,k+1 = X2,i

2,k sinW 2
1,k + X2,i

3,k cos W 2
1,k + T 2

3,k,

Y 2,i
k = [X2,i

1,k/X2,i
3,k X2,i

2,k/X2,i
3,k]T ,

X2,i
3,k 6= 0, i = 1, . . . , N, ∀k ∈ N,

(29)

where T 2
3,k is the optimal translation along X2

3 -axis obtained

in Step 1, and W 2
1,k is the control input.

Denote

h2,i
1,k =

X
2,i

1,k+1

X
2,i

3,k+1

|W 2
1,k

=0, h2,i
2,k =

X
2,i

2,k+1

X
2,i

3,k+1

|W 2
1,k

=0,

g2,i
1,k =

∂

[

X
2,i
1,k+1

X
2,i
3,k+1

]

∂W 2
1,k

|W 2
1,k

=0, g2,i
2,k =

∂

[

X
2,i
2,k+1

X
2,i
3,k+1

]

∂W 2
1,k

|W 2
1,k

=0,

(30)

where X2,i
1,k+1, X2,i

2,k+1 and X2,i
3,k+1 are in forms of (29).

We also define

ω2
1,k = 1

N
∑

i=1

{[g2,i

1,k
]2+[g2,i

2,k
]2}

N
∑

i=1

{

g2,i
1,k[Y 1,i

1,k+1 − h2,i
1,k]

+g2,i
2,k[Y 1,i

2,k+1 − h2,i
2,k]

}

, k ∈ N.

(31)

Then similar to Case 1, we can get the optimal W 2
1,k by the

algorithm below.

Algorithm 2. For any k ∈ N, if W 2
1,k = ω2

1,k and the

designed T 2
3,k in Algorithm 1 make X2,i

3,k+1 = 0 for some i ∈
{1, 2 . . . , N}, with X2,i

3,k+1 in the form of the third equation

of system (29), then there must exist some constant 0 < wk <
0.01 such that X2,i

3,k+1 6= 0 for any i ∈ {1, 2 . . . , N} when

W 2
1,k = α2

1,k instead, with α2
1,k = ω2

1,k + wk. In this case

we choose W 2
1,k = α2

1,k as the optimal rotational velocity.

Otherwise, we select W 2
1,k = ω2

1,k as the optimal one.

Finally, we deal with Step 3. From the squared error distor-

tion function (18), it is easy to see that getting the optimal

T 2
1,k and T 2

2,k is a optimization problem of minimizing a

quadratic function outsides a circle. To solve it, we first give

the following Lemma, which is straightforward.

Lemma 1. Let function F (x, y) = ax2+bx+ay2+cy with

a > 0. Then under the constraint (x − x0)
2 + (y − y0)

2 ≥
(d0)

2 with d0 > 0, the minimum point (xmin, ymin) that

minimizes the function F is expressed as follows.

1) If (x0 + b
2a

)2 + (y0 + c
2a

)2 ≥ (d0)
2, then

(xmin, ymin) = (− b
2a

,− c
2a

).
2) If (x0 + b

2a
)2 + (y0 + c

2a
)2 < (d0)

2, then

a) if x0 = − b
2a

, and y0 = − c
2a

, then any (x, y) ∈
S := {(x, y)|(x−x0)

2 +(y− y0)
2 = (d0)

2} can

be chosen as (xmin, ymin);
b) if x0 = − b

2a
, and y0 6= − c

2a
, then xmin = x0,

and

i) if y0 > − c
2a

, then ymin = y0 − d0,

ii) if y0 < − c
2a

, then ymin = y0 + d0;

c) if x0 6= − b
2a

, and y0 = − c
2a

, then ymin = y0,

and

i) if x0 > − b
2a

, then xmin = x0 − d0,

ii) if x0 < − b
2a

, then xmin = x0 + d0;

d) if x0 6= − b
2a

, and y0 6= − c
2a

, then

i) if x0 > − b
2a

, then xmin = x0 − d0/
√

1 + s2

with s = (2ay0 + c)/(2ax0 + b),
ii) if x0 < − b

2a
, then xmin = x0 + d0/

√
1 + s2,

iii) if y0 > − c
2a

, then ymin = y0 −
|s|d0/

√
1 + s2,

iv) if y0 < − c
2a

, then ymin = y0 +

|s|d0/
√

1 + s2.

In the function F , we set



























































x = T 2
1,k, y = T 2

2,k, a =
N
∑

i=1

1

(X2,i

3,k+1
)2

,

b = 2
N
∑

i=1

X
2,i

1,k
−X

2,i

3,k+1
Y

1,i

1,k+1

(X2,i

3,k+1
)2

,

c = 2
N
∑

i=1

X
2,i

2,k
cos W 2

1,k−X
2,i

3,k
sin W 2

1,k−X
2,i

3,k+1
Y

1,i

2,k+1

(X2,i

3,k+1
)2

,

x0 = X2,1
1,k − X̄21

1,k+1,

y0 = X2,1
2,k cos W 2

1,k − X2,i
3,k sinW 2

1,k − X̄21
2,k+1,

d0 = (d21)
2 − (X2,1

3,k+1 − X̄21
3,k+1)

2.
(32)

Note that in this case the variables X2,i
1,k, X2,i

2,k, X2,i
3,k+1 in

(32) are of forms of (17) with the obtained optimal T 2
3,k in

Step 1 and the optimal W 2
1,k in Step 2.

Hence, we get the following result.

Proposition 1. The controller designed Algorithms 1, 2,

and Lemma 1 with (32) and (17) solves Problem P′ when

Camera 2 can rotate about X2
1 -axis and translate as well.

Based on the results for Case 2, in the following, we

directly follow the results for Case 1.

As mentioned before, in Case 1, W 2
1,k ≡ 0 and R2

k ≡ 0,

∀k ∈ N. Then in Case 1, system (5) without noise becomes

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC06.6

3377



the following nonlinear control system:






























X2,i
1,k = X2,i

1,k + T 2
1,k,

X2,i
2,k = X2,i

2,k + T 2
2,k,

X2,i
3,k = X2,i

3,k + T 2
3,k,

Y 2,i
k = [X2,i

1,k/X2,i
3,k, X2,i

2,k/X2,i
3,k]T ,

X2,i
3,k 6= 0, i = 1, 2, . . . , N, k ∈ N,

(33)

where (T 2
1,k, T 2

2,k, T 2
3,k) is the control input, and the initial

depth X2,i
3,1 of each point i is assumed to be known.

In (32), we set W 2
1,k ≡ 0, ∀k ∈ N. Then together with

Lemma 1 and (33), we can get the optimal T 2
1,k, T 2

2,k, ∀k ∈ N

for Case 1. Therefore, we have the following result.

Proposition 2. The controller designed in Algorithm 1,

and Lemma 1 with (33) and (32), where W 2
1,k ≡ 0, ∀k ∈ N,

solves Problem P′ when Camera 2 can only translate.

Remark 1. The above designed controllers for the two

cases are recursive expressions at time instance k(∀k ∈ N),

based on the depths and images of two cameras at initial

time instance k = 1, and the images of Camera 1 from time

instance k = 1 to k + 1. If the images formed by Camera 2

are required to transmit to Camera 1 as a feedback at time

instance k0, we can reset the initial time instance is k = k0,

then using the above designed controller we get a control

formula at any time instance k ≥ k0.

Remark 2. For M cameras, we can control them one by

one to assure that the distance between any two cameras

is no less than a certain selected distance. Without loss of

generality, we assume Camera 1 is the reference camera.

First we control Camera 2 to a location where is d21 units

away from Camera 1. For Camera 3, we select appropriate

minimum distances d31 and d32, and replace Inequality (14)

by ‖q31
k+1‖ ≥ d31 and ‖q32

k+1‖ ≥ d32. For Camera j, 4 ≤
j ≤ M , we choose proper minimum distances djj1 , 1 ≤
j1 ≤ j − 1, and replace Inequality (14) by ‖qjj1

k+1‖ ≥ djj1 .

Thus, all M cameras are controlled to different locations

and the distance between any two cameras is subject to a

minimum distance constraint. The most straightforward case

is where all the constraint minimum distances are identical.

V. SIMULATED RESULTS

In this section, due to limited space, we only give some

simulations for Case 2 to show the efficiency of our designed

controllers.

As in the previous sections, we assume Camera 1 is

the reference camera, while Camera 2 is a controlled one.

All measurement noises of two cameras are assumed to be

negligible. We consider the case when Camera 1 remains

static with respect to the world frame.

Using the notations introduced in Section III, we use as

minimum distance constraint d21 = 14 and the initial time

instance is k = 1. Moreover, we select the initial rotation

matrices of Camera 1 frame and Camera 2 frame with respect

to the world frame respectively are

Rw1
1 =







1 0 0

0
√

3
2 − 1

2

0 1
2

√
3

2






, Rw2

1 =





3
5

4
5 0

− 4
5

3
5 0

0 0 1



 . (34)

We consider the case where the static scene is represented

by three feature points P1, P2, P3. Their images are denoted

by
⊙

,
⊕

,
⊗

for Camera 1, and •, + , × for Camera

2, respectively. Moreover, their initial depths in the frames

of Cameras 1 and 2, respectively are X1,1
3,1 = 1, X1,2

3,1 =

−4, X1,3
3,1 = 5

√
3+1, and X2,1

3,1 = 1, X2,2
3,1 = 1, X2,3

3,1 = 11.
Then straightforward computations show that ‖q21

1 ‖ = 30.
Thus it is seen that the positions and orientations of two

cameras differ significantly.

The initial images of the three points P1, P2, P3 are

Y 1,1
1 =

[

−20
0

]

, Y 1,2
1 =

[ 15
2

− 5
√

3
4

]

, Y 1,3
1 =

[ −30
5
√

3+1
5

5
√

3+1

]

,

for Camera 1, and

Y 2,1
1 = [6 8]T , Y 2,2

1 = [−8 6]T , Y 2,3
1 = [0 0]T ,

for Camera 2. They are shown in Fig. 3. It is seen that they

are different due to the different positions and orientations

of the two cameras, as stated above.

Using the previously designed controllers, we get the

squared error distortions and controlled images for Case 2,

which are shown respectively in Fig. 4 and Fig. 5.

Fig. 4 shows that the distortion between the initial images

is high, but it decreases significantly after Camera 2 is

controlled and always decreases as Camera 2 is controlled

persistently, while it decreases slightly after the third time

instance. However, due to the distance constraint between

two cameras, there is still lower distortion between two

cameras’ images even if Camera 2 has been controlled nine

times.

−20 −15 −10 −5 0 5 10
−4

−2

0

2

4

6

8

10

y1

y
2

Fig. 3. Images at initial time instance k = 1.

VI. CONCLUSION

We considered control for multiview distributed video

coding with a rate constraint. The reconstruction accuracy

improves if the images of adjacent cameras are more similar.

So it is important for multiview distributed video coding to

have the images of all cameras maximally similar under the

constraint that any camera is at least at a minimum distance

away from the others. In this paper we developed the control

design for camera pose to make the images of all cameras

maximally similar under the distance constraint. Using rigid
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Fig. 4. Squared error distortion for Case 2.
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Fig. 5. Images at time instance k = 10 for Case 2.

motion of the camera, two cases were considered. One is

that the rigid motion of the camera only involves translation.

The other is that its rigid motion involves both translation and

rotation. For both cases, we gave an appropriate controller

that minimizes the squared error distortion. Some simulated

results were provided to validate our designed controllers.
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