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Abstract— A novel nonparametric paradigm to model identi-
fication has been recently proposed where, in place of postulat-
ing finite-dimensional models of the system transfer function,
the system impulse response is searched for within an infinite-
dimensional space. In this paper, we extend such nonparametric
approach to the design of optimal predictors by interpreting
the predictor coefficients as realizations of Gaussian processes.
Numerical experiments, where data are generated by ARMAX
models, are used to show advantages of the new approach in
terms of both predictive capability on new data and accuracy in
reconstruction of predictor coefficients. In a companion paper,
it is also shown how this new approach to predictor design
may greatly enhance performance of subspace identification
methods.

Index Terms— linear system identification; predictor estima-
tion; kernel-based methods; Bayesian estimation; regulariza-
tion; Gaussian processes

I. INTRODUCTION

The most widespread approach to optimal prediction of

discrete-time systems relies on Prediction Error Methods

(PEM) for which a large corpus of theoretical results is

available [1], [2]. Within this paradigm, a key point is the

selection of the most adequate model structure, which is

usually carried out by resorting to complexity measures such

as FPE and AIC criteria [1], [2].

Recently, an alternative paradigm to model identification

has been proposed which relies on nonparametric estimation

of impulse responses [3]. Rather than postulating finite-

dimensional structures for the system transfer function, e.g.

ARX, ARMAX or Laguerre [4], [5], the system impulse

response is searched for within an infinite-dimensional space.

In order to circumvent the intrinsical ill-posed nature of

the problem, regularization methods, admitting a Bayesian

interpretation, are employed [6], [7], [8]. Within this non-

parametric paradigm, a breakthrough has been the design of

a prior distribution on the impulse response such that the

realizations are almost surely BIBO stable [3]. This method

has been shown to compare very favorably with respect to

established parametric approaches.

Along this line, it is of interest to extend the nonparametric

paradigm to the design of optimal predictors. By the way,

predictor estimation, beyond being of interest on its own,

is the preliminary step of subspace identification methods

[9], [10], [11], [12]. Therefore, improving predictor design

may enhance performance of subspace identification methods

G. Pillonetto (giapi@dei.unipd.it) is with Dipartimento di Ingegneria
dell’Informazione, University of Padova, Padova, Italy.

A. Chiuso (chiuso@dei.unipd.it) is with Dipartimento di Tecnica e
Gestione dei Sistemi Industriali, University of Padova, Vicenza, Italy.

G. De Nicolao (giuseppe.denicolao@unipv.it) is with Dipartimento di
Informatica e Sistemistica, University of Pavia, Pavia, Italy.

as well. As a matter of fact, this topic is investigated in

a companion paper [13]. In this paper, without loss of

generality, analysis will be restricted to SISO systems.

In the nonparametric approach to predictor estimation, the

main point is to see the predictor as a system with two

inputs (past outputs and inputs) and one output (output pre-

dictions). Therefore, predictor design amounts to estimating

two impulse responses. In the proposed method, the impulse

responses are assumed to be the realizations of a Gaussian

process [14], [15]. In particular, they are the convolution of

an infinite-dimensional nonparametric component and a low-

order finite-dimensional one. The latter is used to capture

high-frequency oscillations, e.g. poles with negative real part.

The overall scheme for predictor estimation relies on an

empirical Bayesian paradigm. First, the vector of unknown

hyperparameters characterizing the priors is estimated via

marginal likelihood maximization. In the second and final

step the hyperparameters are set to their estimates and

minimum variance estimates of the impulse responses are

computed. Numerical experiments, with data generated by

ARMAX models of different order, show that the proposed

approach provides substantial improvement over existing

methods in terms of both predictive capability on new data

and accuracy in the reconstruction of predictor coefficients.

Further elements in favor of this new technique will be found

in the companion paper [13], where benefits for subspace

identification of state-space models will be demonstrated.

The paper is organized as follows. In Section II, the statement

of the problem is provided. In Section III, a new Gaussian

prior for predictor estimation is proposed by introducing

suitable autocovariances (kernels). In Section IV, a numerical

algorithm which determines both the unknown hyperpa-

rameters present in the prior and the predictor structure is

worked out. Further, expressions of estimates of predictor

impulse responses are obtained by resorting to the theory of

Reproducing Kernel Hilbert Spaces (RKHS). In Section V,

simulated data are used to demonstrate the effectiveness of

the proposed approach. Conclusions end the paper.

II. STATEMENT OF THE PROBLEM

In the sequel, B denotes the Banach space of impulse

responses { fk}
+∞
k=0 of BIBO stable discrete-time causal sys-

tems. In addition, N is the set of natural numbers.

We are given a finite set of noisy output data {yk} from a

discrete-time linear dynamic system fed with a known input
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{uk}. The measurements model is

yt =
∞

∑
k=1

qkut−k +
∞

∑
k=0

wkvt−k (1)

{qk},{wk} ∈ B

where {vk} is white Gaussian noise. Our problem is to

estimate the one-step-ahead predictor for (1) starting from

{uk} and the output data available from {yk}.

III. DEFINING THE PRIOR FOR PREDICTOR COEFFICIENTS

In the sequel, let ŷ(t) denote the one-step-ahead predic-

tion for (1) at instant t. A classical approach to estimate

predictor coefficients considers ŷ(t) parametrized by a finite-

dimensional vector θ ∈ ℜp:

ŷ(t;θ) =
∞

∑
k=1

ak(θ)yt−k +
∞

∑
k=1

bk(θ)ut−k (2)

where a : ℜp 7→ B and b : ℜp 7→ B while ak(·) and bk(·)
denote the impulse responses defining the predictor evaluated

at instant k. In contrast with (2), we let the predictor impulse

responses belong to infinite-dimensional function spaces.

Moreover, a Bayesian paradigm is adopted so that statistical

priors on the predictor coefficients are introduced. To be

more specific, the predictor now takes the form

ŷ(t;ζ ) =
∞

∑
k=1

Fk(ζ )yt−k +
∞

∑
k=1

Gk(ζ )ut−k (3)

where

Ft(ζ ) =
∞

∑
k=1

ak(ζ ) ft−k Gt(ζ ) =
∞

∑
k=1

bk(ζ )gt−k (4)

and ζ is a vector of unknown hyperparameters to be bet-

ter specified in the following. In (4), f = { fk}
∞
k=1 and

g = {gk}
∞
k=1 indicate zero-mean Gaussian processes, mu-

tually independent and independent of {vk}. Their auto-

covariances (kernels) are denoted by cov( fi, f j) = λ 2
1 K1(i, j)

and cov(gi,g j) = λ 2
2 K2(i, j), where K1 and K2 map N×N into

ℜ, while {λi} are unknown hyperparameters contained in ζ .

Further, a(ζ ) and b(ζ ) represent finite-dimensional compo-

nents of the model. Their choice, together with the choice

of the kernels, is discussed in the next two subsections.

A. Choice of the kernels

As far as the choice of K1 and K2 is concerned, we

will formulate a prior on N incorporating the BIBO-stability

constraint and information on the regularity of f and g. To

this aim, it is useful to recall that the most popular approach

to model a continuous-time signal h which is just known to

be smooth consists of describing it as an integrated Wiener

process. Assuming zero initial condition at time zero, the

autocovariance of the integrated Wiener process is (see e.g.

[16])

W (s,τ) = cov(h(s),h(τ)) =

{

s2

2

(

τ − s
3

)

s ≤ τ
τ2

2

(

s− τ
3

)

s > τ
(5)

However, this autocovariance does not include information

on BIBO-stablity because the variance of the process in-

creases over time. Following [3], BIBO stability can be guar-

anteed by performing an exponential time-transformation

τ = e−β t t ∈ ℜ+

which maps the unit interval S of the real line into the

positive real axis, and defining the new kernel

K(s, t;β ) = W (e−β s,e−β t) (s, t) ∈ ℜ+ ×ℜ+ (6)

We model the discrete-time functions f and g in (4) by

exploiting the sampled versions of the kernel (6), i.e.

cov( fk, f j) = λ 2
1 K(k, j;β1) (7)

cov(gk,g j) = λ 2
2 K(k, j;β2) (8)

cov( fk,g j) = 0, ∀k, j ∈ N (9)

Notice that additional hyperparameters {βi} are included in

the prior. They represent the asymptotic exponential decay

rates of the variance of { fk} and {gk} which will be tuned

from data together with the scale factors {λi}.

The following result provides information on the trajectories

of the processes { fk} and {gk}. For the proof, the reader is

referred to [3] where a spectral characterization of the kernel

(6) can also be found.

Proposition 1: Assuming that { fk} and {gk} are Gaussian

processes with autocovariances specified by (7), (8) and (9),

their realizations belong to B almost surely.

B. Choice of the finite-dimensional components

Maps a and b in (4) represent the finite-dimensional

components of F(ζ ) and G(ζ ) which can be used to

enhance flexibility of the predictor. In particular, they can

be exploited to capture dynamics that are hardly represented

by the smooth processes f and g, e.g. high-frequency

oscillating poles. A significant example, also discussed in

the numerical experiments section, is provided by ARMAX

models, in which case it is convenient to set ak(ζ ) = bk(ζ ),
∀ζ ,k, and let this part of the model describe poles with

negative real part.

IV. ESTIMATING HYPER-PARAMETERS AND PREDICTOR

COEFFICIENTS

In real applications, the parameters {βi}, {λi} and those

entering in a and b, as well as the variance σ2 of the

innovation, have to be estimated from data together with the

predictor coefficients. In addition, the complexity of a and

b, e.g. the number of negative poles to be introduced in the

prior, may not be known in advance. For these reasons, it

is useful to introduce the vector ζ M which gathers all the

unknown parameters of the nonparametric estimator once a

certain structure M for a and b is postulated.
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A. Estimates of the predictor coefficients given ζ M

We start considering a situation where ζ M is perfectly

known. To simplify the notation, dependencies on ζ M are

often omitted. In addition, let A∈ℜn×∞ and B∈ℜn×∞ where

[A] ji =
∞

∑
k=1

aky j−k−i+1,

[B] ji =
∞

∑
k=1

bku j−k−i+1, j = 1,2, . . . ,n i ∈ N

In the sequel, notation of ordinary finite-dimensional algebra

is used to handle infinite-dimensional objects. In particular,

A and B will represent operators mapping B into ℜn, e.g.

the j-th element of A f is given by ∑∞
i=1[A] ji fi. So, in view

of (3) and (4), it holds that

y = A(y,y-) f +B(u)g+ e (10)

where u is the input sequence while

y = [y1 y2 . . .yn]
T

y- = [y0 y−1 . . .]T

e = [e1 e2 . . .en]
T

with {ek} being the sequence of innovations having variance

σ2. In practice y- is not (at least completely) known. A solu-

tion is to set its unknown components to zero, introducing an

error which goes to zero as n increases, see e.g. Section 3.2

in [1]. Letting y-
a denote the available (observed) components

of y-, in the sequel perfect knowledge of A(y,y-) is assumed,

i.e. A(y,y-) = A(y,y-
a). Further, the following approximation

for the joint density of y, f and g is assumed to hold

p(y, f ,g) ≈ p(y|y-
a, f ,g)p( f )p(g) (11)

so that components of y-
a are interpreted just as known pa-

rameters A depends on. To simplify the notation, dependence

on y-
a is omitted in the sequel as well as the dependence of

A and B on y and u.

Recall from [17], that given a symmetric and positive-definite

kernel defined on a metric space X , the RKHS associated

with K is the Hilbert spaces of functions on X which are

the completion of the manifolds given by all the finite linear

combinations
l

∑
i=1

miK(·, ti) (12)

for all choices of l, {mi} and {ti}, with the inner product

being defined by

< ∑
i

miK(·, ti),∑
j

n jK(·,s j) >= ∑
i, j

min jK(ti,s j) (13)

In the sequel, let H1 and H2 be the RKHS on N associated

with K1 and K2 with norms denoted by ‖ · ‖H1
and ‖ · ‖H2

,

respectively.

Assumption 2: The linear operators A : H1 7→ ℜn and B :

H2 7→ ℜn are continuous in the topologies of H1 and H2,

respectively.

¥

For a given model structure M , let f MV denote the

minimum variance estimate of f , i.e. f MV = E[ f |y,ζ M ]. The

minimum variance estimate gMV is defined in the same way.

The following result exploits the correspondence between

Gaussian processes and RKHS [18].

Proposition 3: Consider (10), where f and g are Gaussian

processes with distribution as specified in Section III. If the

approximation (11) holds, we have

( f MV ,gMV ) = arg min
h1∈H1,h2∈H2

‖y−Ah1 −Bh2‖
2

+ γ1‖h1‖
2
H1

+ γ2‖h2‖
2
H2

(14)

where ‖.‖ is the Euclidean norm, γ1 = σ2/λ 2
1 and γ2 =

σ2/λ 2
2 .

¥

With a slight abuse of notation, in the following equations

we think of K1 and K2 as elements of ℜ∞×∞, where the

i-th column of K1 and K2 are the sequences K(·, i;β1)
and K(·, i;β2), for i ∈ N, respectively. The following result

provides the solution of (14) and shows that f MV and gMV

admit the structure of a regularization network [19].

Proposition 4: The solutions of (14) are given by

f MV = λ 2
1 K1AT c gMV = λ 2

2 K2BT c (15)

where

c =
(

λ 2
1 AK1AT +λ 2

1 BK2BT +σ2In

)−1
y (16)

with In being the n×n identity matrix.

B. Estimating hyper-parameters and the structure of the

predictor

In many practical situations we can assume Fk = Gk = 0 for

k > q. It is worth stressing that q does not have to establish

any kind of trade-off between bias and variance. It is just a

value large enough to capture the dynamics of the predictor.

Let Ă ∈ ℜn×q and B̆ ∈ ℜn×q be matrices obtained from A

and B by retaining only the first q columns while K̆1 ∈ ℜq×q

and K̆2 ∈ ℜq×q are obtained by retaining only the first p

rows and columns of K1 and K2, respectively. For the next

developments, it is also useful to introduce the notations f̆

and ğ indicating q-dimensional random vectors which are

in one-to-one correspondence with f and g subject to the

constraints fk = gk = 0 for k > q. When such constraints

hold, we have

y = Ă f̆ + B̆ğ+ e (17)

Given a predictor structure M , the hyperparameter vector

ζ M can be determined by maximizing the marginal likeli-

hood of y, i.e. the total probability of y, f and g where f and

g are integrated out, as described in the next proposition.

Proposition 5: If the approximation (11) holds, the max-

imum marginal likelihood estimate of ζ M is the solution of

the optimization problem

ζ̂ M = argmin
ζM

J(y;ζ M ) (18)
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where J is the opposite of the log-marginal likelihood of y

given by

J(y;ζ M ) =
1

2
ln

(

det[2πV (ζ M )]
)

+
1

2
yTV−1(ζ M )y (19)

with

V [ζ M ] = λ 2
1 AK1AT +λ 2

2 BK2BT +σ2In (20)

If also (17) holds, we have

V [ζ M ] = λ 2
1 ĂK̆1ĂT +λ 2

2 B̆K̆2B̆T +σ 2In (21)

¥

Among the possible nonparametric estimators identified by

the choice of M , model selection is performed according to

Akaike criterion, that is by minimizing

AIC(M ) = 2J(y; ζ̂ M )+2dM (22)

where dM denotes the dimension of ζ M . We are now in

a position to summarize the entire numerical procedure for

predictor estimation.

Algorithm 6: The input to this algorithm includes the

input and output sequences {uk} and {yk} together with a set

of competitive structures {Mi} defining a and b in (4). The

outputs of this algorithm are the sequences {F̂k} and {Ĝk}
which define the predictor coefficients in (4).

• Choose the model M̂i which minimizes (22).

• Conditional on M̂i, define ζ̂ M̂i as in (18).

• According to the empirical Bayes approach, determine

the estimates f MV and gMV using (15), with hyperpa-

rameters set to ζ̂ M̂i .

• Compute the sequences {F̂t} and {Ĝt} as follows

F̂t(ζ̂
M̂i) =

∞

∑
k=1

ak(ζ̂
M̂i) f MV

t−k

Ĝt(ζ̂
M̂i) =

∞

∑
k=1

bk(ζ̂
M̂i)gMV

t−k

V. NUMERICAL EXPERIMENTS

The performance of the proposed approach is evaluated by

numerical experiments where output data are generated by

three ARMAX models of order 2,4 and 6. In the z-transform

domain, it holds that

Y (z) =
P1(z)

P3(z)
U(z)+

P2(z)

P3(z)
V (z) (23)

where {uk} and {vk} are mutually independent white noises

of unit variance. Polynomials {Pi} defining the three models

are specified below. Poles of the predictor transfer functions

defining the optimal one-step-ahead predictor (PTF poles)

are also reported (they coincide with the zeros of P2(z)).

ARMAX models

1)

P1(z) = 0.5578z−0.2420

P2(z) = z2 +0.4z−0.21

P3(z) = z2 −0.7z−0.18

PTF poles = {−0.7,0.3}
2)

P1(z) = 1.5723z3 −7.7367z2 −1.7896z−0.9056

P2(z) = z4 +0.8z3 +0.8z2 +0.256z−0.1785

P3(z) = z4 −1.1z3 +0.95z2 −0.523z−0.153

PTF poles = {−0.2+0.9 j,−0.2−0.9 j,−0.7,0.3}
3)

P1(z) = 0.5578z5 −0.242z4 +0.2z3 −0.1z2

+ 0.05z−0.02

P2(z) = z6 −0.9z5 +0.38z4 +0.22z3 −0.5416z2

+ 0.2678z−0.0392

P3(z) = z6 −1.4z5 +1.01z4 −0.408z3 −0.1932z2

+ 0.1851z−0.0326

PTF poles = {−0.8,0.2+0.8 j,0.2−0.8 j,0.3,0.4,0.6}

Our aim is to estimate the one-step-ahead predictors for the

three models starting from 150 noisy output data.

We compare different estimators by resorting to Monte

Carlo simulations and using two measures of performance.

The first one regards prediction capability on new data. In

particular, at any Monte Carlo run the estimates {F̂k} and

{Ĝk} of predictor coefficients are first obtained. Then, we

generate a test set of 500 new output and input data, denoted

respectively by {ynew
k }500

k=1 and {unew
k }500

k=1. The one-step-ahead

prediction ŷnew
t is then computed and the generalization error

at the j-th Monte Carlo run is

err j1 =

√

∑500
t=1 (ŷnew

t − ynew
t )2

500
(24)

The other measure of performance regards quality of

predictor coefficients reconstruction and is characterized by

the following two quantities

err j2 =

√

∞

∑
t=1

(

F̂t −Ft

)2
err j3 =

√

∞

∑
t=1

(

Ĝt −Gt

)2
(25)

During Monte Carlo simulations, 4 different predictors are

designed. The first one relies upon the classical PEM ap-

proach where competitive ARMAX models of order ranging

from 1 to 10 are postulated and the best one is selected

according to the AIC criterion (as implemented in the

MATLAB System Identification Toolbox [20]).1

The second predictor design method is the nonparametric

one described in the previous section. In particular, let P j(z)
denote a generic polynomial of order j whose roots belong

to the open left semidisk of unit radius in the complex plane.

Define also Bl
j as the impulse responses {hk} ∈B admitting

the following representation in the z-transform domain

H j(z) =
z j

P j(z)

1We do not allow the order of the polynomials to be different from each
other. However, it has been observed that introducing further competitive
models would not improve the results presented in the sequel. This will also
hold in the sequel when dealing with ARX modeling.
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Then, we set ak(ζ
M j) = bk(ζ

M j), ∀ζ M j ,k and we define

a : ζ M j 7→ B
l
j b : ζ M j 7→ B

l
j

In this way, the finite-dimensional component of the prior

in (4) describes the poles with negative real part of the

predictor impulse responses. As far as the prior on f

and g is concerned, we set β1 = β2 and hyperparameters

{λ1,λ2,β1,β2,σ}, as well as a and b, are determined from

data according to Algorithm 6. As far as the issue of initial

effects is concerned, we set q = 50 in (17) and define y-
a and y

in (10,11) as the vector containing the first 50 and the last 100

available output samples, respectively. Finally, the marginal

likelihood was evaluated by using the expressions reported

in (19) and (21). The last two predictors rely upon ARX

modeling so that predictor coefficients are estimated via least

squares. The difference lies in the way model order (bounded

by 40 during the simulations) is selected. To be specific, the

third predictor design scheme uses the AIC criterion while

the fourth one uses an ”oracle”, in which case model order

is the one which minimizes the generalization error defined

in (24). This is an ideal situation which provides a lower

bound on ARX modeling performance.

Top panels of Fig. 1 report boxplots of {err j1} for the

four predictors. It is apparent that the nonparametric es-

timator performs significantly better than PEM and ARX.

Remarkably, the mean of the prediction error associated

with the nonparametric approach is close to 1, the lower

bound achievable by means of the optimal predictor. In

addition, the performance of the nonparametric estimator

is always very close to (or also better than) that of the

oracle-based ARX predictor. In middle and bottom panels

of Fig. 1 we display boxplots regarding {err j2} and {err j3}.

The superiority of the nonparametric approach is even more

apparent. These outcomes are remarkable also in view of

the fact that the PEM approach exploits a finite number of

competitive models among which the true model is present.

The nonparametric approach, instead, searches the estimate

within a much larger and infinite-dimensional space. How-

ever, the AIC criterion, applied to the marginal likelihood

(19), proves to be remarkably robust, while, using PEM, it

is far more difficult to select model complexity since the

joint likelihood, associated with a much richer parametric

structure, has to be handled.

Finally, we consider an even more probing situation where

the predictor is trained using an input whose nature is

different from that used for generating the test set. In this

way, prediction on new input data is made more difficult. In

particular, the input {uk}, used for system identification, is

a square wave of period 20, which alternates between levels

0 and 1, while the input {unew
k }, used to generate the test

set, remains white noise. In Fig. 2 we display boxplots of

{err j1} for the four predictors obtained in such a situation.

Compared with the results reported in top panels of Fig. 1,

one can see that the nonparametric approach still performs

well whereas there is a significant degradation of the quality

of the results obtained via PEM and ARX modeling.

VI. CONCLUSIONS

Approaches which are currently used for predictor design

postulate finite-dimensional models which are identified by

standard techniques such as least-squares and PEM. In this

paper, we have extended a recently proposed nonparametric

paradigm to identify the predictor within infinite-dimensional

spaces of candidate models. In particular, predictor coeffi-

cients are modeled as the convolution between a Gaussian

process which incorporates information on BIBO-stability

and a low-order finite-dimensional model which is used to

capture high-frequency oscillations. The predictor structure

as well as unknown hyperparameters contained in the prior

are estimated from data. Then, according to an empirical

Bayes paradigm, minimum variance estimates of the predic-

tor impulse responses are obtained. Numerical experiments

involving ARMAX models show that the approach may

greatly improve predictor design in terms of both prediction

capability on new data and accuracy in reconstruction of

predictor coefficients. In a companion paper, benefits related

to the use of such technique for subspace identification of

state-space models will be discussed.
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Fig. 1. Monte Carlo simulation with white noise as input for identification. Results relative to the four predictors with data generated by ARMAX
models of order 2 (left), 4 (middle) and 6 (right) Top Prediction capability on new data: boxplot of prediction errors {err j1}. Middle and bottom Predictor
coefficients reconstruction: boxplot of errors {err j2} (middle) and {err j3} (bottom).
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Fig. 2. Monte Carlo simulation with square wave as input for identification. Prediction capability on new data: boxplot of prediction errors {err j1} relative
to the four predictors with data generated by ARMAX models of order 2 (left), 4 (middle) and 6 (right).
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