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Abstract— This article addresses the invertibility problem for
switched nonlinear systems affine in controls. The problem is
concerned with finding the input and switching signal uniquely
from given output and initial state. We extend the concept of
switch-singular pairs, introduced recently, to nonlinear systems
and develop a formula for checking if given state and output
form a switch-singular pair. We give a necessary and sufficient
condition for a switched system to be invertible, which says
that the subsystems should be invertible and there should be no
switch-singular pairs. When all the subsystems are invertible,
we demonstrate output tracking by finding switching signals
and inputs that generate a given output in a finite interval
when there is a finite number of such switching signals and
inputs. Detailed examples are included to illustrate these newly
developed concepts.

I. INTRODUCTION

Switched systems consist of a family of dynamical sub-

systems together with a switching signal that determines the

active subsystem at each time instant. These systems have

been a focus of ongoing research and several results related

to stability, controllability, observability, and input-to-state

stability of such systems have been published; see [1] for

references. More recently, Vu and Liberzon introduced the

problem of invertibility of switched linear systems in [2]. In

this paper, we extend their methodology to study the prob-

lem of invertibility of continuous-time switched nonlinear

systems, which concerns with the following question: What

is the condition on the subsystems of a switched system so

that, given an initial state x0 and the corresponding output y
generated with some switching signal σ and input u, we can

recover the switching signal σ and the input u uniquely? The

problem statement is analogous to the classical invertibility

problem for non-switched systems. In fact, for every control

system with an output, we have an input-output map and the

question of left (resp. right) invertibility is, roughly speaking,

that of the injectivity (surjectivity) of this map.

System invertibility problems are of great importance from

theoretical and practical viewpoint and have been studied

extensively for fifty years, after being pioneered by Brockett-

Mesarovic [3]. The systematic study of invertibility for non-

switched nonlinear systems began with Hirschorn, who first

studied the single-input single-output (SISO) case [4], and

then generalized Silverman’s structure algorithm to multiple-

input multiple-output (MIMO) nonlinear systems [5]. Singh

[6] then modified the algorithm to cover a larger class of
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systems. Isidori and Moog [7] used this algorithm to calcu-

late zero-output constrained dynamics and reduced inverse

system dynamics. The algorithm is also closely related to

the dynamic extension algorithm used to solve the dynamic

state feedback input-output decoupling problem [8, Sections

8.2 and 11.3]. A higher-level interpretation given by a linear-

algebraic framework, which also establishes links between

these algorithms and the geometric approach, is presented by

Di Benedetto et al. in [9]. We also recommend [10, Chapter

5] for a useful survey on various invertibility techniques.

The problem of invertibility for switched linear systems

was introduced very recently in [2] where the authors used

Silverman’s structure algorithm to formulate conditions for

the invertibility of switched systems with continuous dynam-

ics. The problem of invertibility for discrete time switched

linear systems has been discussed in [11], [12] but here, the

authors assume that the switching sequence is known. In this

paper, we make no such assumption and adopt an approach

similar to [2]. We use Singh’s nonlinear structure algorithm

to study the invertibility problem for switched systems with

continuous-time nonlinear dynamical subsystems that are

affine in controls.1 Although the form of the main condition

(invertibility of subsystems plus no switch-singular pairs) is

essentially similar to [2], the technical details of checking the

conditions are different because we work with the nonlinear

structure algorithm.

Due to space constraints, certain details have been omitted;

see [14] for a complete version.

II. PRELIMINARIES

A. Nonlinear Non-switched Systems

The dynamics of a square nonlinear system affine in

controls are given by:

Γ :=

{

ẋ = f(x) + G(x)u = f(x) +
∑m

i=1 gi(x)ui,
y = h(x)

(1)

where x ∈ M, an n-dimensional real connected smooth

manifold, for example R
n; and f , gi are smooth vector fields

on M, h : M → R
m is a smooth function.

We start off by reviewing classical definitions of invert-

ibility for such systems. For that, consider the input-output

map Hx0 : U → Y for some input function space U and

the corresponding output function space Y . Since nonlinear

systems exhibit finite blow-up times, some input signals may

not have a well defined image in the output space, over

the same length of interval, under this map. We don’t give

1A related problem is discussed in [13] but it doesn’t follow the same
theoretical approach we do, and instead uses a heuristic approach with the
purpose of studying a specific application.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA10.1

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 286



a rigorous definition of Hx0
but use it, nevertheless, for

better illustration. It is assumed that the outputs exist on

the intervals considered. Denote by Γx0(u) the trajectory of

the corresponding system with the initial state x0 and the

input u, and the corresponding output by ΓO
x0

(u). In case of

non-switched systems, the following notion of invertibility2

was introduced in [5].

Definition 1: The system (1) is invertible at a point x0 :=
x(t0) ∈ M if ΓO

x0
(u1[t0,T ]) = ΓO

x0
(u2[t0,T ]) implies that

∃ ε > 0 such that u1[t0,t0+ε) = u2[t0,t0+ε). The system is

strongly invertible at a point x0 if it is invertible for each

x ∈ N(x0), where N is some open neighborhood of x0.

The system is strongly invertible if there exists an open and

dense submanifold M
α (called inverse submanifold) such

that ∀x0 ∈ M
α, the system is strongly invertible at x0. ⊳

In the most general construction of inverse systems as the

one given by Singh [6], we seek invertibility on an open

and dense subset of output space, Yα, such that the system

is strongly invertible for y ∈ Yα. Its complement, Ys :=
Y\Yα, consists of singular outputs for which the system is

not invertible. All these notions will be developed in Section

IV. Here, we just want to say that the system (1) is strongly

invertible when the domain of signals is restricted to [t0, T )
with T ∈ [t0, t̄) and t̄ := min{t > t0 : (x(t), y(t)) /∈ M

α ×
Yα}. We will generalize this notion of local invertibility to

the switched systems.

B. Switched Systems

A finite family of systems defined by (1) generates a

switched system and in this paper we will consider such

switched nonlinear systems, affine in controls, that have the

following structure:

Γσ :

{

ẋ = fσ(x) + Gσ(x)u = fσ(x) +
∑m

i=1(gi)σ(x)ui,
y = hσ(x)

(2)

where σ : [0,∞) → P is the switching signal that indicates

the active subsystem at every time, P is some finite index

set, and fp, Gp, hp, where p ∈ P , define the dynamics of

individual subsystems. The state space M is a connected real

smooth manifold of dimension n, for example R
n; fp, (gi)p

are real smooth vector fields on M, and hp : M → R
m

is a smooth function. A switching signal, as defined in

[1], is a piecewise constant and everywhere right-continuous

function that has a finite number of discontinuities τi, which

we call switching times, on every bounded time interval

and thus σ(t) = p ∈ P , ∀ t ∈ [τi, τi+1). We assume

that all the subsystems are equi-dimensional, they evolve in

the same state space M, and that there is no state jump

at switching times. For any initial state x0, a switching

signal σ, and a piecewise continuous input u on any time

domain, a solution of (2) over the same domain always

exists (in Carathéodory sense) and is unique, provided the

flow of the active subsystem is defined ∀ t ∈ [τi, τi+1). In

case of no switching this condition is equivalent to forward

completeness of the flow and we assume that each subsystem

2Throughout the paper invertibility refers to the left invertibility.

satisfies this condition. For p ∈ P , denote by Γp,x0
(u) the

trajectory of the corresponding subsystem with the initial

state x0 and the input u, and the corresponding output

by ΓO
p,x0

(u). Since switching signals are right-continuous,

the outputs are also right-continuous and whenever we take

derivative of the output, we assume it is the right derivative.

We will use Fpc to denote the space of piecewise continuous

functions, and ⊕ for concatenation of signals.

In case of switched systems (2), the map Hx0
has an aug-

mented domain, that is, now we have a (switching signal ×
input)-output map Hx0 : S × U → Y , where S is a switching

signal set. Let us first extend the definition of invertibility of

non-switched systems to define the invertibility of the map

Hx0 for switched systems.

Definition 2: A switched system is invertible at a point x0

if Hx0
(σ1[t0,T ], u1[t0,T ]) = Hx0

(σ2[t0,T ], u2[t0,T ]) = y[t0,T ],

implies that ∃ ε > 0 such that σ1[t0,t0+ε) = σ2[t0,t0+ε) and

u1[t0,t0+ε) = u2[t0,t0+ε); that is, the pre-image of Hx0 is

unique on some interval for given x0 and y. A switched

system is strongly invertible at a point x0 if it is invertible

at each x ∈ N(x0), where N is some open neighborhood of

x0. A switched system is strongly invertible if there exists an

open and dense submanifold M
α of M such that ∀x0 ∈ M

α,

the system is strongly invertible at x0 for given y ∈ Y . ⊳

The reason we have a different notion of invertibility is

because in switched systems, if a subsystem is invertible at

x0 for a given non-singular output y, then it is possible that

another subsystem might produce the same output starting

from the same initial condition. This means that the pre-

image of Hx0 at such (x0, y) is not unique and hence

the switched system is not invertible at x0 if such pairs

(x0, y) exist. We call all such pairs switch-singular pairs3.

The concept of switch-singular pairs for switched systems

basically refers to the ability of more than one subsystem to

produce a segment of the desired output starting from the

same initial condition. The formal definition is given below:

Definition 3: Let x0 ∈ M and y ∈ Y on some time

interval. The pair (x0, y) is a switch-singular pair of the

two subsystems Γp, Γq if there exist u1, u2 such that

ΓO
p,x0

(u1) = ΓO
q,x0

(u2) = y. ⊳

The invertibility problem for switched nonlinear systems is

now formally defined as:

The invertibility problem: Consider a (switching signal ×
input)-output map Hx0 : S × U → Y for the switched system

(2). Find the largest possible set Y , an open dense set in

M and a condition on the subsystems such that for a given

output y ∈ Y over a finite time interval [t0, T ′], there exist

T ∈ (t0, T
′] and a unique (σ, u) over [t0, T ) having the

property that Hx0(σ[t0,T ), u[t0,T )) = y[t0,T ).

III. CHARACTERIZATION OF INVERTIBILITY

We now give conditions on the subsystem dynamics so

that the map Hx0 is injective for some sets S, U , and Y .

We do not explicitly specify what the input sets U and S

3This is similar to the concept of singular pairs conceived in [2]. We use
the term “switch-singular pair” to avoid conflict with the singularities of
individual nonlinear subsystems.
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are but instead we specify the set Y and then U will be the

corresponding set which, together with S, generates Y .

For all p ∈ P , let M
α
p be the inverse submanifold of Γp,

Yp be the set of sufficiently smooth4 outputs that can be

generated by Γp, Ys
p be the set of singular outputs of Γp, and

Yα
p be the set of outputs on which Γp is strongly invertible.

Define Ys := ∪p∈PY
s
p as the collection of all singular

outputs and let Yall be the set of outputs generated by all

the possible concatenations of all elements of Yp, ∀p ∈ P .

Let Yα := Yall\Ys; we consider outputs y ∈ Yα over a

finite interval [t0, T ′] and seek invertibility on a subinterval

[t0, T ) ⊂ [t0, T ′] such that (σ[t0, T ), u[t0, T )) is a unique

preimage of y[t0, T ). The first main result is about strong

invertibility at some x0 ∈ M.

Theorem 1: Consider the switched system (2) and the

output set Yα. The switched system is strongly invertible

at x0 ∈ M for given y ∈ Yα if and only if there exists a

neighborhood N(x0) such that each subsystem is invertible

at every x ∈ N(x0), and for all x ∈ N(x0), y ∈ Yα, the

pairs (x, y) are not switch-singular pairs of Γp, Γq for all

p 6= q, and p, q ∈ P .

Proof. Necessity: Suppose that a subsystem Γp, p ∈ P
is not invertible at some x in arbitrary N(x0), then there

exist y ∈ Yα ∩ Yα
p , and inputs u1 6= u2 over time interval

[t0, t0 + ε) ⊂ [t0, T
′], for some ε > 0 such that ΓO

p,x(u1) =
ΓO

p,x(u2) = y[t0,t0+ε). This implies that Hx(σp, u1) =
Hx(σp, u2) = y, and the map Hx is not injective for given

y. Hence, the switched system is not invertible at x. Since

there exists such x in every neighborhood of x0, it follows

that the switched system is not strongly invertible at x0.

For necessity of the second condition, suppose that ∃x ∈
N(x0), y ∈ Yα ∩ C∞ such that (x, y) is a switch-singular

pair of Γp, Γq , p 6= q. This means that both subsystems,

even though invertible at x, can produce this output over the

interval [t0, t0 +ε) ⊂ [t0, T
′], for some ε > 0. Consequently,

∃ u1, u2 (possibly same) on the corresponding interval

such that ΓO
p,x(u1) = ΓO

q,x(u2) = y. Hence, we have

Hx(σp, u1) = Hx(σq, u2) = y, that is the preimage of y
is not unique as σp 6= σq . This implies that the switched

system is not invertible at x for given y ∈ Yα. Since there

exists such x in every neighborhood of x0, it follows that

the switched system is not strongly invertible at x0.

Sufficiency: Suppose that for given x0 ∈ M, there exist

some inputs u1, u2 and switching signals σ1, σ2 such that

Hx0(σ1, u1) = Hx0(σ2, u2) = y ∈ Yα over [t0, T
′].

Initially, we have σ1(t0) = σ2(t0) = p because (x0, y) is

not a switch-singular pair. Since y ∈ Yα
p , and Γp is invertible

at every x ∈ N(x0), ∃ ε1 > 0 such that u1[t0,t0+ε1) =
u2[t0,t0+ε1) = Γ−1,O

p,x0
(y[t0,t0+ε1)), the output of the inverse

subsystem. As there are no switch-singular pairs in N(x0),
∃ ε2 > 0 such that σ1[t0,t0+ε2) = σ2[t0,t0+ε2). Let ε =
min{ε1, ε2}, then it follows from Definition 2 that the

switched system is invertible at every x ∈ N(x0) and hence

is strongly invertible at x0. ¤

Based on the result of Theorem 1, the conditions for

4The required differentiability assumptions are discussed in Section IV.

strong invertibility of switched systems can be developed.

Let M
α :=

⋂

p∈P
M

α
p , then M

α is an open and dense subset

of M because it is a finite intersection of open and dense

subsets. Since, every subsystem is strongly invertible on M
α,

we have the following result.

Corollary 1: The switched system (2) is strongly invertible

at every x0 ∈ M
α and for y ∈ Yα if and only if Γp,

∀ p ∈ P , is strongly invertible at every x0 ∈ M
α
p and the

subsystem dynamics are such that the pairs (x0, y) are not

switch-singular pairs of Γp, Γq for all p 6= q, p, q ∈ P ,

∀x0 ∈ M
α, y ∈ Yα. ⊳

It follows from the proof of sufficiency part in The-

orem 1 that the switched system is strongly invertible

over the interval [t0, T ), where T ∈ [t0, t̄) and t̄ :=
min{t > t0 : (x(t), y(t)) /∈ M

α × Yα}. If the output

y loses continuity over the interval [t0, T ) because of

switching, then (σ[t0,T ), u[t0,T )) = (σ[t0,τ1), u[t0,τ1))⊕ · · · ⊕
(σ[τk,T ), u[τk,T )), where τi, i = 1, · · · , k, are the switching

instants in the interval [t0, T ).

IV. CHECKING INVERTIBILITY

In this section, we address the computational aspect of

the concepts introduced in previous sections and develop

algebraic criteria for checking the invertibility of switched

systems. To put everything into perspective, we provide

appropriate background related to the invertibility of non-

switched systems and use it to develop the concept of

functional reproducibility. To check if (x0, y) is a switch-

singular pair, we develop a formula using the functional

reproducibility criteria of non-switched systems.

A. Single-Input Single-Output (SISO) Systems

We start off with the case when all the subsystems are

SISO because it gives more insight into computations and

helps understand the concepts which we will later generalize

to multivariable systems. To this end, consider a SISO non-

linear system affine in controls (1) with m = 1 and assume

it has a relative degree r at x0 [15], i.e, ∃ a neighborhood

N(x0) such that LgL
r−1
f h(x) 6= 0 ∀x ∈ N(x0), where

Lk
fh(x) =

∂(Lk−1
f

h(x))

∂x
f(x) and L0

fh(x) = h(x). To check

if the subsystem is invertible or not, we first derive an explicit

expression for the input u in terms of the output y by

computing the derivatives of y, i.e, y(t) = h(x(t)), ẏ(t) =
Lfh(x(t)), · · · , y(r)(t) = Lr

fh(x(t)) + LgL
r−1
f h(x(t))u(t).

From the last equation, we can derive an expression for u(t):

u(t) = −
Lr

fh(x)

LgL
r−1
f h(x)

+
1

LgL
r−1
f h(x)

y(r)(t) (3)

Hence, u can be determined explicitly in terms of measured

output y. On substituting the expression for u from (3) in

equation (1), one gets the dynamics for the inverse system:

ż = f(z) + g(z)
(

−
Lr

fh(z)

LgL
r−1
f h(z)

+
1

LgL
r−1
f h(z)

y(r)(t)
)

The dynamics of this inverse subsystem evolve on the set

M
α := {z ∈ M | LgL

r−1
f h(z) 6= 0}. The discussion

motivates the following result, given in [4]:
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Lemma 1: A SISO system is strongly invertible at x0 if

and only if the system has a finite relative degree r at x0.

For SISO subsystems, the input u appears in the r-th

derivative of the output. Thus the smoothness of u doesn’t

affect the existence of the first r − 1 derivatives of y. If u :
[0, t) → R is a locally essentially bounded, Lebesgue mea-

surable function, then y(r)(t) exists almost everywhere and

y(r−1)(t) is absolutely continuous. So for SISO nonlinear

subsystems, U can be defined as the space of functions which

are locally essentially bounded and Lebesgue measurable;

and Yp can be the set of corresponding outputs.

We now turn to the concept of functional reproducibility,

which in broad terms means the ability to follow a given ref-

erence signal. This concept will help us study the existence

of switch-singular pairs. We look at the conditions under

which a system can produce the desired output yd over some

interval [t0, T ) starting from a particular initial state x0. The

following result was given in [4]:

Lemma 2: If the system (1), with m = 1 and x(t0) = x0,

has a relative degree r < ∞ at x0, then there exists a control

input u such that ΓO
x0

(u) = yd(·) if and only if

y
(k)
d (t0) = Lk

fh(x0) ∀ k = 0, 1, · · · , r − 1 (4)

This result is easy to comprehend by looking at the

expressions for the output derivatives. As control u(t) does

not directly affect y(k)(t), ∀k = 1, · · · , r−1, their values at

t0 are determined by the initial state. The control u, for which

ΓO
x0

(u) = yd(·), is given by (3) with y replaced by yd in that

formula. We can now easily check for the switch-singular

pairs among Γp, Γq with relative degrees rp, rq respectively,

where p, q ∈ P .

Lemma 3: For SISO switched systems, (x0, y) is a switch-

singular pair of two subsystems Γp and Γq if and only if

y ∈ Yp ∩ Yq and







y
...

y(rκ−1)






(t0) =







hκ(x0)
...

Lrκ−1
fκ

hκ(x0)






, κ = p, q ∈ P

Example 1: Consider a two-mode SISO switched system:

Γp :=















ẋ =





x1 + x2

x2

x1x2



 +





0
1
x2



 u, M = R
3

y = x1

Γq :=















ẋ =





x2

x2x3

−x2



 +





0
1
x2



u, M = R
3

y = 2x1

If Γp is active, then ẏ = x1+x2; if Γq is active, then ẏ = 2x2.

Both subsystems have relative degree 2 on R
3 which can be

verified by taking second derivative of the output. If there

exists x ∈ R
3 which forms a switch-singular pair with y ∈

Yp ∩ Yq, then we must have x1 = 2x1 and x1 + x2 = 2x2,

or subsequently x1 = x2 = 0. This state constraint yields

y = ẏ = 0. If we let Y
α

:=
{

y ∈ Fpc :

(

y(t)
ẏ(t)

)

6= 0 ∀t
}

,

then there exists no switch-singular pair between x ∈ R
3 and

y ∈ Y
α

. Theorem 1 and Lemma 1 infer that the switched

system generated by {Γp,Γq} is strongly invertible on Y
α

,

∀x0 ∈ R
3. ⊳

We now have the tool set to check for the invertibility

conditions given in Theorem 1. If these conditions are

satisfied and the switched system is strongly invertible, a

switched inverse system can be constructed to recover the

input and switching signal σ from given output and initial

state. For the switched inverse system, define the index

inversion function Σ
−1

: M
α × Yα → P as:

Σ
−1

(x0, y) = p : y ∈ Yp and y(k)(t0) = Lk
fp

hp(x0) (5)

where k = 0, 1, · · · , rp − 1, t0 is the initial time of y, and

x0 = x(t0). The function Σ
−1

is well-defined since p is

unique by the fact that there are no switch-singular pairs.

The existence of p is guaranteed as it is assumed that y ∈ Yα

is an output. Thus, an inverse switched system Γ−1
σ is:

σ(t) = Σ
−1

(z(t), y(t)),

ż = fσ(z) + gσ(z)
(

−
L

rσ
fσ

hσ(z)

Lgσ L
rσ−1
fσ

hσ(z)
+ y(rσ)(t)

Lgσ L
rσ−1
fσ

hσ(z)

)

,

u(t) = −
L

rσ
fσ

hσ(z)

Lgσ L
rσ−1
fσ

hσ(z)
+ y(rσ)(t)

Lgσ L
rσ−1
fσ

hσ(z)

with the initial condition z(t0) = x0. The initial condition

σ(t0) determines the initial active subsystem at the initial

time t0, from which time onwards, the active subsystem

indexes and the input as well as the state are determined

uniquely and simultaneously.

B. Multiple-Input Multiple-Output (MIMO) Systems

For multiple-input multiple-output (MIMO) nonlinear sys-

tems affine in controls (1), one uses the structure algorithm

to compute the inverse. When a system is invertible, the

structure algorithm, or Singh’s inversion algorithm, allows us

to express the input as a function of the output, its derivatives

and possibly some states.

The Structure Algorithm: This version of the algorithm

closely follows the construction given in [9], which is a

slightly modified version of the algorithm in [6].

Step 1: Calculate ẏ = Lfh(x) + LGh(x)u = ∂h
∂x

[f(x) +
G(x)u] and write it as ẏ =: a1(x) + b1(x)u. Define

s1 := rank b1(x), which is the maximal rank of b1(x) in

some neighborhood of x0, denoted as N1(x0). Permute, if

necessary, the components of the output so that the first

s1 rows of b1(x) are linearly dependent. Decompose y as

ẏ =

(

˙̃y1

˙̂y1

)

=

(

ã1(x) + b̃1(x)u

â1(x) + b̂1(x)u

)

where ˙̃y1 consists of

the first s1 rows of ẏ. Since the last m − s1 rows of b1(x)
are linearly dependent upon the first s1 rows, there exists a

matrix F1(x) such that

˙̃y1 = ã1(x) + b̃1(x)u,

˙̂y1 = ĥ1(x, ˙̃y1) = â1(x) + F1(x)( ˙̃y1 − ã1(x)) (6)

where the last equation is affine in ˙̃y1. Finally, set B̃1(x) :=
b̃1(x).

Step k+1: Suppose that in steps 1 through k,
˙̃y1, · · · , ỹ

(k)
k , ŷ

(k)
k have been defined. Suppose also that
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the matrix B̃k := [b̃T
1 , . . . , b̃T

k ]T (vertical stacking of the

linearly independent rows obtained at each step) has full

rank equal to sk in Nk(x0). Then calculate ŷ
(k+1)
k =

∂ĥk

∂x
[f(x) + G(x)u] +

∑k
i=1

∑k
j=i

∂ĥk

∂ỹ
(j)
i

ỹ
(j+1)
i and write it

as ŷ
(k+1)
k = ak+1(x, {ỹ

(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k +

1}) + bk+1(x, {ỹ
(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k})u. Define

Bk+1 := [B̃T
k , bT

k+1]
T , and sk+1 := rankBk+1. Permute,

if necessary, the components of ŷ
(k+1)
k so that the first

sk+1 rows of Bk+1 are linearly independent. Decompose

ŷ
(k+1)
k as ŷ

(k+1)
k = [ỹ

(k+1)
k+1 , ŷ

(k+1)
k+1 ]T , where ỹ

(k+1)
k+1 con-

sists of the first (sk+1 − sk) rows. Since the last rows

of Bk+1(x, {ỹ
(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k}) are linearly

dependent on the first sk+1 rows, we can write

ỹ
(k+1)
k+1 = ãk+1(x, {ỹ

(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k + 1})

+ b̃k+1(x, {ỹ
(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k})u,

ŷ
(k+1)
k+1 = ĥk+1(x, {ỹ

(j)
i | 1 ≤ i ≤ k + 1, i ≤ j ≤ k + 1})

where once again everything is rational in ỹ
(j)
i . Finally, set

B̃k+1 := [B̃T
k , b̃T

k+1]
T , which has full rank equal to sk+1

locally. End of Step k + 1.

By construction, s1 ≤ s2 ≤ · · · ≤ m. If for some integer

α we have sα = m, then the algorithm terminates. We call α
the relative order5 of the system. The closed form expression

for u is derived from the α-th step of the structure algorithm

which gives an invertible matrix B̃α := [b̃T
1 , . . . , b̃T

α ]T having

full rank equal to m in a neighborhood Nα(x0) =: N(x0).

u(t) = B̃−1
α [Ỹα − Ãα] (7)

where Ỹα = [ ˙̃y1, · · · , ˙̃yα]T and Ãα = [ã1, · · · , ãα]T .

Note that the entries of the matrix B̃α are ratio-

nal functions of the derivatives of the output and

there may exist an output for which the rank of B̃α

drops. All such outputs are called singular outputs and

we define Ys
p := {y ∈ Yp | rank B̃α(x, y) < m, x ∈ N(x0)}.

Hence, we work with u such that ΓO
x0

(u) /∈ Ys
p for any

time instant. Comparing to the SISO case, we had B̃α =
LgL

r−1
f h(x) which is a function of the state only and thus

there exists no singular output for SISO systems. Another

useful class of systems for which Ys
p = ∅ was discussed in [5]

by Hirschorn. As was the case in SISO systems, substitution

of the expression for u from (7) in (1) gives the dynamics of

the inverse system. These dynamics are defined on an open

dense set M
α := {x ∈ M | rank B̃α(x, y) = m, y /∈ Ys

p}.

However, unlike in the SISO case, we need some differ-

entiability assumptions on the input signals. In the structure

algorithm, Step 1 gives ˙̃y1 that has already u on the right-

hand side and the α-th step of the algorithm involves

{ỹ
(j)
i | 1 ≤ i ≤ α − 1, i ≤ j ≤ α}. Thus ỹ

(α−1)
i must

be absolutely continuous so that ỹ
(α)
i exists almost every-

where. For the input space, it means that u(α−1) must be

Lebesgue measurable and locally essentially bounded. These

constraints characterize the input space U for MIMO case.

5The term was coined in [5] and is weaker than the notion of vector
relative degree.

Based on the structure algorithm, we now study

the conditions for functional reproducibility of MIMO

nonlinear systems. Using the notation derived in

the structure algorithm, let Z(x, ˙̃y1, · · · , ỹ
(α−1)
α−1 ) :=

[h(x), ĥ1(x, ˙̃y1), · · · , ĥα−1(x, ˙̃y1, · · · , ỹ
(α−1)
α−1 )]T ; ŷ :=

[y, ŷ1, · · · , ŷ
(α−1)
α−1 ]T and ŷd := [yd, ŷd1

, · · · , ŷ
(α−1)
dα−1

]T .

So Z is basically a concatenation of the expressions

appearing at each step of Singh’s structure algorithm

which get differentiated and ŷ is the concatenation of the

corresponding expressions on the left-hand side so that

Z
(

x, ˙̃y1, · · · , ỹ
(α−1)
α−1

)

− ŷ = 0. The following result is

along the same line as Lemma 2.

Lemma 4: If the system given by equation (1) with

x(t0) = x0 has a relative order α < ∞, then there exists a

control input u such that ΓO
x0

(u) = yd(·) if and only if

ŷd(t0) = Z
(

x0, ˙̃yd1
(t0), · · · , ỹ

(k)
dk

(t0)
)

∀k = 0, 1, · · · , α − 1
Similarly to the SISO case, the idea is that the portion of

output which is not directly affected by u is determined

initially by the value of state variables; and the input u, for

which ΓO
x0

(u) = yd(·), is given by (7) with y replaced by yd

in that formula.

This result gives the following condition for the verifica-

tion of switch-singular pairs.

Lemma 5: For MIMO switched systems, (x0, y) is a

switch-singular pair of two subsystems Γp, Γq if and only

if y ∈ Yp ∩ Yq and











y
˙̂y1

...

ŷακ−1
(ακ−1)











(t0) =











hκ(x0)

ĥ1
κ(x0, ˙̃y1)

...

ĥακ−1
κ (x0, ˙̃y1, · · · , ỹ

(ακ−1)
ακ−1 )











(8)

for κ = p, q, where ακ denotes the relative order of

subsystem Γκ.

The procedure for constructing the inverse switched system

is exactly the same as discussed earlier for the SISO case.

V. OUTPUT TRACKING

In the previous section, we considered the question of

left invertibility where the objective was to recover (σ, u)
uniquely for all y in some output set Yα. In this section,

we address a different problem which concerns with finding

(σ, u) (that may not be unique) which generates a given

function yd starting from an initial state x0. In other words,

we are given one particular (x0, yd) and wish to find its

preimage H−1
x0

:= {(σ, u) : Hx0(σ, u) = yd}. For output

tracking, we require the individual subsystems to be strongly

invertible because if this is not the case, then the set H−1
x0

(yd)
may be infinite. However, we do not assume that the switched

system is invertible as the subsystems may have switch-

singular pairs. We will only consider the functions yd(t) over

finite time intervals so that there is only a finite number of

switches under consideration.

We will use a modification of the switching inversion

algorithm from [2] to compute the preimage of yd under the
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map Hx0
. The actual algorithm and related details on output

tracking appear in [14]. Here we just give an example to

illustrate the working of the algorithm.

Example 2: Consider a switched system with two modes

Γ1 :







ẋ =

(

x1x2

x2

)

+

(

0
1

)

u, M = R
2

y = x2

Γ2 :







ẋ =

(

0
x1

)

+

(

ex2

ex2

)

u, M = R
2

y = x1

We wish to reconstruct the switching signal σ(t) and the

input u(t) which will generate the following output:

yd(t) =

{

cos t if t ∈ [0, t∗)
2 cos t if t ∈ [t∗, T )

, t∗ = π and T = 4.5

with the given initial state x0 = (0, 1)T .

In this example, any state x lying on the diagonal, ∆ :=
{(x1, x2)

T : x1 = x2} forms a switch-singular pair with the

output whose corresponding state trajectory hits the same

state x at any time.

We now use the switching inversion algorithm to find

(σ, u) such that ΓO
x0,σ(u) = yd. Using the index-matching

map with given x0 and yd(0) = 1, we get P∗ :=
Σ−1(x0, yd[0,t∗)) = {1}. The inverse of Γ1 on [0, t∗) is

Γ−1
1 :







ż =

(

z1z2

0

)

+

(

0
1

)

ẏd, M
α
1 = R

2

u(t) = −z2 + ẏd

with z(0) = x0, which then gives

z(t) =

(

0
cos t

)

=: x(t)

u(t) = − cos t − sin t
t ∈ [0, t∗). (9)

We want to find T := {t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-

singular pair of Γ1, Γ2 }, which is equivalent to solving

cos t = x1(t) = 0, for t ∈ (0, t∗). This equation has a

solution t = π/2 =: t1 < t∗, and hence T = {t1}, a finite

set. We have ξ = x(t1) = (0, 0)T and repeat the procedure

for the initial state ξ and the output yd[t1,T ) with P∗ :=
Σ−1(ξ, yd[t1,t∗)) = {1, 2}. We analyze these two cases:

Case 1: p = 1. This implies t1 is not a switching time and

u(t), x(t) are still given by (9) for t1 ≤ t < t∗. Repeating

the procedure with ξ = x(t∗) = (0, 0)T and yd[t∗,T ) and

yd(t
∗) = −2, we observe that yd(t

∗) 6= x1(t
∗) and also

yd(t
∗) 6= x2(t

∗), thus the index-matching map returns an

empty set, Σ−1(ξ, yd[t∗,T )) = ∅.

Case 2: p = 2, which means that t1 is a switching instant.

So we work with the inverse system of Γ2,

Γ−1
2 :







ż =

(

0
z1

)

+

(

1
1

)

ẏd, M
α
1 = R

2

u(t) = e−z2 ẏd

So z(t1) = ξ gives z(t) =

(

cos t
cos t + sin t − 1

)

=: x(t)

and u(t) = −ecos t+sin t sin t, for t ≥ t1. We find T = {t1 <
t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-singular pair of Γ1, Γ2},

which is equivalent to solving for cos t = x2(t) = cos t +
sin t − 1, where π/2 = t1 < t ≤ t∗ = π. This equation

has no solution and thus there exist no switch-singular pairs

in interval (t1, t∗). So, we let ξ = x(t∗) = (−1, −2)T and

repeat the procedure with ξ and yd[t∗,T ), which gives the

unique solution σ[t∗,T ) = 1 and u[t∗,T ) = −2(cos t + sin t).
Thus, the switching inversion algorithm returns (σ, u), where

(σ, u) =







(1, − cos t − sin t), if 0 ≤ t < t1
(2, −ecos t+sin t sin t), if t1 ≤ t < t∗

(1, −2(cos t + sin t)), if t∗ ≤ t ≤ T

In this example, the output only loses smoothness at t∗ and

t∗ is a switching instant. However, there is another switching

at t1 where the output doesn’t lose smoothness. Without the

concept of switch-singular pairs, one might falsely conclude

that there is no switching signal and input that generates

yd(t) but instead the use of the switching inversion algorithm

allows us to recover the input and switching signal. ⊳

VI. CONCLUSIONS

For future work, one interesting problem is to develop

conditions for checking the existence of switch-singular

pairs which are more constructive as it is in general not

feasible to verify (8) for every output and state. Another

research direction is to approach the problem geometrically

and investigate characterizations equivalent to non-existence

of switch-singular pairs to obtain geometric criteria for left

invertibility of switched systems.
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