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Abstract— Hybrid systems are useful abstractions of embed-
ded controllers. However, they are notoriously very difficult to
verify as computation complexity grows quickly with the size
of the hybrid system. We address the problem of building in
a systematic way a compact representation of a hybrid system
obtained by composing hybrid subsystems. This technique can
be used as a front-end to any hybrid formal verification tool
thus freeing the designer from the cumbersome and error-prone
manual calculation of the composition and of its reduction.
Critical to the efficiency of the method are: i) hiding the internal
signals and synchronization events between components; ii)
eliminating locations that result in empty invariant conditions
as well as non reachable locations; iii) using the notion of
equivalent locations for a labeled transition system associated to
the hybrid system to compute an equivalent minimal realization
of the composed hybrid system.

I. INTRODUCTION

In safety critical applications such as transportation sys-
tems, the electronic control system is often a networked
system with interacting embedded controllers. For example,
the electronic control system for automobiles is a networked
system with an embedded controller for each subsystem,
engine control unit, gear-box controller, anti-lock braking
system (ABS), dashboard controller, and vehicle dynamic
control (VDC) [1]. These embedded controllers interact
asynchronously over a communication network. Their inte-
gration has become a design bottleneck due to their com-
plexity as well as to the lack of an overall understanding
of their interplay. Consequently, effective management of
controller interactions can be achieved only by formulating
the design and verification problems at a level of abstraction
that is high enough to allow analyzing the properties of
interest in a quantitative way. Hybrid systems are effective
abstractions for modeling the behavior of each embedded
controller as well as of the plant to be controlled. However,
a more powerful way of using this formalism is to address the
global verification issues where plant and controllers are con-
sidered together. We could then capture the effects of limited
resources and physical constraints on the performance of the
controlled system and check the correctness of the design.
The problem of practically composing hybrid systems is
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one of great importance, as any practical hybrid model is
inherently complex. Breaking up this model into simpler
and accurate components and then obtaining the full model
through composition would greatly increase the possibility
of analyzing and understanding the overall complex model.

In this paper, we address the problem of building au-
tomatically a compact representation of a hybrid system
obtained by composing hybrid subsystems. Critical to the
efficiency of the method are: i) hiding the internal signals and
synchronization events between components; ii) eliminating
locations that result in empty invariant conditions as well as
non reachable locations; iii) using the notion of equivalent
locations for a labeled transition system associated to the
hybrid system to compute an equivalent minimal realization
of the composed hybrid system. A procedure of this sort
could be added as a front-end to any verification tool to
alleviate the difficulties of designers in using formal verifi-
cation methods for hybrid systems since the composition and
its reduction are today manually computed. The problem of
compatibility and verification of hybrid systems composition
has been investigated in [2].

Several attempts have been made in literature to tackle the
parallel composition problem (see [3], [4], [5]). For exam-
ple, composition via the IO approach, via variable sharing,
categorically, by looking at the preservation of properties,
or studying the rise of pathological ones. In this paper we
instead consider the cascade and feedback composition of
hybrid systems.

The paper is organized as follows. In Section II the class
of hybrid system handled by the methodology is defined.
In Section III, the composition of hybrid subsystems is
presented. In Section IV, we show how to minimize the size
of the composed hybrid systems via a number of techniques
that include the computation of its minimal realization.
In Section V, a water tank control example is introduced
and its component models described. In Section VI, the
application of the methodology for constructing the overall
water tank control system model is presented. In Section VII,
the reduction techniques are applied to the test case.

II. HYBRID SYSTEMS

Hybrid systems are dynamical systems where the behav-
ior of interest is determined by interacting continuous and
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discrete dynamics. In this paper, we consider the case in
which the continuous–time dynamics is modeled by means
of differential equations and the discrete–event dynamics is
modeled by automata. The continuous part x(t) of the state
of the hybrid system takes on values in a set X ⊂ IRn, while
the discrete state q, called location, takes on values in a finite
set Q of dimension d. Given a location q, the continuous part
x(t) of the state evolves in time according to the differential
equations

ẋ(t) = f(q, x(t), u(t))
y(t) = h(q, x(t), u(t)) (1)

where u(t) are the continuous input variables taking on
values in U ⊂ IRm and y(t) are the continuous output
variables taking on values in Y ⊂ IRp.

The evolution of the discrete part q of the state may be
described by means of a transition relation

R : Q×X × Σ× U → 2Q×X×Γ

where σ are the input events taking on values in a finite set
of symbols Σ and γ are the output events taking on values
in a finite set of symbols Γ. The sets Σ and Γ include the
special symbols ε representing the absence of an input or
output event. The evolution may be also described by means
of a digraph (Q,E), or its corresponding adjacency matrix
M , with vertices corresponding to the locations q, and edges
E ⊂ Q × Q representing the possible transitions between
locations

E = {(q, q′) ∈ Q×Q|(q′, x′, γ) ∈ R(q, x, σ, u)
for some x, x′ ∈ X,σ ∈ Σ, u ∈ U and γ ∈ Γ}

The transition from location q to location q′ is possible only
for some state and input values: this is modeled associating
to each edge a guard

G(q, q′) = {x, σ, u ∈ X × Σ× U |(q′, x′, γ) ∈ R(q, x, σ, u)
for some x′ ∈ X and γ ∈ Γ}

and an output event γ(q, q′) ∈ Γ. For each location q, the
continuous part x(t) of the state may evolve until some
invariant conditions are verified, that is (x(t), σ, u(t)) ∈
D(q) with D ⊂ X×Σ×U Moreover, the initial state of the
hybrid system must be in the set Init ⊂ Q×X

In summary, a hybrid system H is formally described by
the collection

H = ((Q,X), (Σ, U), (Γ, Y ), (f, h), (E,G, γ), D, Init)

III. COMPOSING HYBRID SYSTEMS

When considering the cascade and feedback composition
of two hybrid systems H1 and H2 as shown in figure 1, the
hybrid systemH modeling the composition has the following
properties:
• the finite set Q of discrete states is the cartesian product

of the sets Q1 and Q2, that is Q ⊂ Q1 ×Q2;
• the set X of continuous states is obtained by the union

of the set X1 and X2, that is X = X1 ∪X2;

 

u1 

H1 H2 

y1 = u2 y2

σ1 γ1 = σ2 γ2

u1 

H1 H2 

y1 = u2 y2
σ1 γ1 = σ2 γ2

σ1 = γ2 
u1 = y2 

Fig. 1. Hybrid systems cascade and feedback composition

• the input and output sets, in the cascade composition,
are: Σ = Σ1, U = U1, Γ = Γ2, Y = Y2, while, in the
feedback composition, the output set is Γ = Γ2, Y = Y2

and no input is defined.
• when in location q = (qi, qj), with qi ∈ Q1 and qj ∈
Q2, the continuous part of the state evolves according
to the following differential equations:

ẋ1(t) = f1(qi, x1(t), u1(t))
ẋ2(t) = f2(qj , x2(t), y1(t))
y(t) = h2(qj , x2(t), y1(t))

when considering the cascade composition, and to

ẋ1(t) = f1(qi, x1(t), y2(t))
ẋ2(t) = f2(qj , x2(t), y1(t))
y(t) = h2(qj , x2(t), y1(t))

when considering the feedback composition.
• when in location q = (qi, qj), some variables may

be subject to more than one invariant conditions. For
example, x1 may be subject to the invariant conditions
related to location qi and to the invariant conditions on
u2 = y1 = h1(qi, x1, σ1, u1) related to location qj . As a
consequence, the invariant conditions related to disjoint
variables are the union of the invariant conditions on
these variables, while those related to joint variables are
their intersection. We adopt the symbol ⊕ to indicate
such composition, i.e. D((qi, qj)) = D(qi)⊕D(qj).

• the continuous part of the set Init ⊂ (Q1 × Q2) ×
(X1×X2) of initial states is obtained, for each location
q = (qi, qj), as

{x1 ∈ X1, x2 ∈ X2|(qi, x1) ∈ Init1, (qj , x2) ∈ Init2}
• the set E of edges corresponds to the adjacency ma-

trix M ∈ IR(d1·d2)×(d1·d2) obtained by the following
combination of the adjacency matrices M1 ∈ IRd1×d1

and M2 ∈ IRd2×d2 associated to digraphs (Q1, E1) and
(Q2, E2) respectively:

M=

M1,1 · · · M1,d1

...
...

Md1,1 · · · Md1,d1

,Mi,j=
{
M2 if i = j
m1

i,j(I∨M2) if i 6= j
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where m1
i,j is the (i, j) element of the matrix M1;

• if there exists an edge between locations (qi, qh) ∈ Q1×
Q2 and (qj , qk) ∈ Q1×Q2, that is Mi,j(h, k) = 1, then
the guard conditions G associated to it is obtained by
the combination of the guards G1 and G2 as follows:

G((qi, qh), (qj , qk))=

 G1(qi, qj) if h = k
G2(qh, qk) if i = j
G1(qi, qj)⊕G2(qh, qk) otherwise

IV. REDUCTION TECHNIQUES

a) Transition elimination: Some transitions can be
eliminated when considering the composed hybrid system.
In particular, the generic transition from location (qi, qh) to
location (qj , qk) will never take place if:

1) the guards conditions composition results in an empty
set, i.e. G((qi, qh), (qj , qk)) = ∅;

2) transition from location qh to location qk of the hybrid
system H2 is forced by an input event which is not
generated as output when the transition from location
qi to location qk takes place in the hybrid system H1

(also the vice versa holds true when considering a
feedback composition);

3) transition from location qi to location qk of the hybrid
system H1 produces an output event forcing, in the
hybrid system H2, a transition different from that from
location qh to location qk (also the vice versa holds true
when considering a feedback composition);

4) the guards conditions composition is equal to
G1(qi, qj)∧G2(qh, qk) and there exists a sequence of
two transitions starting from location (qi, qh) and lead-
ing to location (qj , qk) (passing through an halfway
location) that take place at the same time and are
activated by the guards condition G1(qi, qj) and
G2(qh, qk). In this case the given transition can be
eliminated since it is redundant.

b) Location elimination: The number of locations nec-
essary to describe the hybrid systems composition may be
reduced and may be much lesser than d1 · d2. In fact, the
location (qi, qj) of the hybrid system H can be eliminated
if one of the following condition holds:

1) the invariant conditions associated to the location is
the empty set;

2) the location is not reachable, that is in the digraph
(Q,E) there does not exist a path to the location from
a vertex q ∈ Q such that q ∈ Init for some x1 ∈ X1

and x2 ∈ X2;
c) Equivalent location elimination: Finally, the number

of locations of the hybrid system can be further reduced
computing the minimal order hybrid system, that is unifying
locations that result to be equivalent. To do this, the hybrid
system model is projected to the discrete domain, by abstract-
ing away continuous dynamics (see [6]). A labeled transition
system, referred to as T , associated to the hybrid system H
is introduced and it is characterized by the same sets Q and
E of discrete states and edges of the hybrid model H. To
each guard condition is associated the discrete event ω ∈ Ω

Controller Actuator:
valve

Plant:
tank

Sensor

γ(t) u(t)

x(t)xs(t)

p(t)

δ

T x(0)

Fig. 2. Feedback composition of the components

activating the corresponding transition as soon as the guard
condition is satisfied. Moreover, the labeled transition system
T is characterized by a set π(q) ∈ Π of observations and
〈〈·〉〉 is the observation map that associates to π(q) the vector
fields f, h regulating the evolution of the continuous time
state and output in location q ∈ Q, according to equation
(1). The labeled transition system T is formally described
by the collection T = (Q,Ω, E,Π, 〈〈·〉〉) (see [7], [8]).

The transition system T can be used to identify equivalent
locations (see [9]):

Definition 1: Two states qi and qj belonging to the labeled
transition system T are equivalent if the corresponding
outputs π(qi) and π(qj) are equal and for all discrete inputs
ω the next states qi

ω→ q′i and qj
ω→ q′j are equivalent too.

Equivalence relations are computed by the Table of Impli-
cations, obtained as follows:

- the symbol �: if states are not equivalent;
- the symbol ∼: if states are equivalent;
- a pair of states whose equivalence implies the equiva-

lence of the states corresponding to the entry.
By solving the implications defined in the third type of

entries, the table of implications is refined until all entries
are assigned to � or ∼. The refined table defines the
candidate equivalence classes and hence a possible minimal
label transition system equivalent to T . Since the equivalence
definition does not take into account the invariant conditions
D(q), the equivalent states of the hybrid system are a subset
of the equivalent states of the transition system. Refining
the equivalence relation to take into consideration D(q) is
immediate.

V. THE WATER TANK CONTROL EXAMPLE

We consider a simple control problem consisting of con-
trolling the water level in a cylindric tank equipped with
an inlet pipe at the top and an outlet pipe at the bottom.
The outlet flow is assumed to be proportional to the water
level while the inlet flow is controlled by a valve whose
aperture changes linearly in time in response to a position
command. The control scheme is shown in figure 2. and
include a water level sensor and a controller that on the basis
of sensor readings actuates the valve.

Water tank. The dynamics of the water level in the tank
can be described by the hybrid system Ht shown in figure 3
where the continuous state variable x(t) represents the water
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xs > lxs < h

xs ≥ h/

γ = close

c2 c3

c1

l < xs < h

xs ≤ l/

γ = open

xs ≤ l/

γ = open

xs ≥ h/

γ = close

q1

q2

ẋ(t) = −λx(t) + u(t)
y(t) = x(t)

0 ≤ x ≤ H

ẋ(t) = 0
y(t) = x(t)

x = H ∧ u > λH

x = H ∧ u ≤ λH

x = H ∧ u > λH

p1 p2

p3p4

α = 0
σ ∈ {ε, close}

0 ≤ α ≤ 1
σ ∈ {ε, open}

α = 1
σ ∈ {ε, open}

σ = open

σ = close

α = 0
α = 1

σ = close

σ = open

α̇(t) = 0
u(t) = 0

α̇(t) = 1/T

u(t) = α(t)f(p(t))

α̇(t) = −1/T

u(t) = α(t)f(p(t))
α̇(t) = 0
u(t) = f(p(t))

0 ≤ α ≤ 1
σ ∈ {ε, close}

Fig. 3. Hybrid models of the tank (upper–left), controller (upper–right)
and valve (bottom)

level in the tank and the continuous input variable u(t) is
equal to the inlet flow per tank section area. Location q1

represents the situation in which there is no water overflow.
The hybrid system remains in this location as long as the
water level is lower than H . If the water level reaches the
top of the tank and the inlet flow is greater than the outlet
flow, then the system switches to location q2 that describes
the water overflow situation in which the water level remains
constant and equal to H . The system remains in this location
until the inlet flow is greater than the outlet flow, otherwise
the system switches back to location q1.

Valve. The inlet flow u(t) to the tank depends on the
supply inlet pressure p(t) and it is controlled by a valve that
may get a position command from a controller. It is assumed
that the inlet flow is proportional to the valve aperture α(t),
with 0 ≤ α ≤ 1, and that in response to a position command
(open or close), the valve aperture changes linearly in time at
rate 1/T . Hence, u(t) = α(t)f(p(t)) with f(p(t)) > λH for
all possible values of p(t). The hybrid model Hv describing
the behavior of the valve is represented in figure 3. In
location p1 the valve is closed and the output u(t) toward
the container is constantly zero, independently from the value
assumed by the inlet pressure p(t). In locations p2 and p4 the
valve is opening and closing, respectively. In these locations
the output u(t) depends on the inlet pressure p(t) and the
aperture of the valve α(t). Finally, in location p3 the valve
is open and the supply outlet flow u(t) depends only on the
inlet pressure p(t).

Sensor. The sensor provides a measure xs(t) of the water
level x(t) in the tank with a random bounded error, that is

|xs(t)− x(t)| ≤ δ (2)

as long as x ∈ [0, H].
Controller. The controller provides a position command

open or close to the valve on the basis of the measured
water level xs(t) and it is designed in order to regulate the
water level in a given bounded interval thus preventing water
overflow. The control law is based on a hysteresis loop: when
the water level is decreasing, the controller provides the open
command when xs(t) ≤ l while, when the water level is
increasing, the controller provides the close command when
xs(t) ≥ h, with δ < l < h < H−δ. The controller behavior
can be described by the hybrid system Hc shown in figure
3 where c1 is the initial location.

VI. CLOSED LOOP COMPOSITION

In this section we will show how to perform the compo-
sition of the hybrid models describing each component of
the overall system in order to obtain the hybrid model of the
closed loop system.

The hybrid model composition methodology is illustrated
step by step, starting by the composition of the sensor Hs,
controller Hc and tank Ht hybrid models (see subsection VI-
A), and then composing the resulting tank-sensor-controller
Htsc hybrid model with the valve Hv hybrid model (see
subsection VI-B), obtaining the final hybrid model Htscv of
the overall system.

A. Tank-sensor and controller composition

As it has been showed in Section V, the sensor model
is simply represented by the algebraic equation 2, but for
the composition point of view, it can be modeled by a
hybrid model Hs with an unique discrete location r1 without
transitions. The invariant condition is defined on the input
variable x(t) and is x(t) ∈ [0, H], while the set Xs of the
continuous time vector state is empty.

We now show how to perform each step of the composition
methodology previously described.

Computation of the set Q of locations. The set Qtsc

of the hybrid model Htsc of the composition of the tank,
sensor and controller hybrid models is obtained computing
the cartesian product of the sets Qt = {q1, q2}, Qs = {r1}
and Qc = {c1, c2, c3} of locations as follows:

Qtsc ={q1, q2}×{r1}×{c1, c2, c3}={s1, s2, s3, s4, s5, s6}=
= {(q1,r1,c1),(q1,r1,c2),(q1,r1,c3),(q2,r1,c1),(q2,r1,c2),(q2,r1,c3)}
Computation of the continuous–time dynamics. Since

the sets Xc and Xs of the continuous state variables of the
controller and the sensor are empty, while the hybrid model
Ht is characterized by Xt = {x(t)}, then Xtsc = Xs ∪
Xc ∪Xt = {x(t)}. As a consequence, the continuous time
dynamics associated to the locations of the composed hybrid
model Htsc are due only to the tank hybrid model dynamics,
that is:

(q1, r1, ci) : ẋ(t) = −λx(t) + u(t)
(q2, r1, ci) : ẋ(t) = 0 , for i = 1, 2, 3.

Definition of invariant conditions. To compute the invariant
conditions of the composed hybrid model Htsc, we note that
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part of the invariant conditions of the hybrid models Hs, Hc

andHt are defined on the variables x(t) and xs(t), related by
relation (2). As a consequence, the invariant conditions of the
composed hybrid modelHtsc are obtained by the intersection
of the invariant conditions on x(t) of the hybrid models Hs,
Hc and Ht, and by the union of the invariant conditions
related to different variables:

(q1, r1, c1) :

 x(t) ∈ [0, H]
xs(t) ∈ (l, h)
x(t) ∈ [0, H]

⇒ x(t) ∈ (l − δ, h+ δ)

(q1, r1, c2) :

 x(t) ∈ [0, H]
xs(t) ∈ (−∞, h)
x(t) ∈ [0, H]

⇒ x(t) ∈ [0, h+ δ)

(q1, r1, c3) :

 x(t) ∈ [0, H]
xs(t) ∈ (l,∞)
x(t) ∈ [0, H]

⇒ x(t) ∈ (l − δ,H]

(q2, r1, c1) :


x(t) = H
u(t) > λH
xs(t) ∈ (l, h)
x(t) ∈ [0, H]

⇒ x(t) ∈ ∅
u(t) > λH

(q2, r1, c2) :


x(t) = H
u(t) > λH
xs(t) ∈ (−∞, h)
x(t) ∈ [0, H]

⇒ x(t) ∈ ∅
u(t) > λH

(q2, r1, c3) :


x(t) = H
u(t) > λH
xs(t) ∈ (l,∞)
x(t) ∈ [0, H]

⇒ x(t) = H
u(t) > λH

Since locations (q2, r1, c1) and (q2, r1, c2) have an empty
invariant set, they can be eliminated so that the composed
hybrid model is characterized only by the following set Qtsc

of locations:

Qtsc = {s1, s2, s3, s6} = {s′1, s′2, s′3, s′4} =
= {(q1, r1, c1), (q1, r1, c2), (q1, r1, c3), (q2, r1, c3)}

Computation of the sets E and G of edges and guards.
The edges between discrete locations can be computed by
means of the adjacency matrices Ms, M t and M c associated
to the hybrid systems Hs, Ht and Hc, respectively. Since

M t q1 q2

q1 0 1
q2 1 0

Ms r1

r1 0
M c c1 c2 c3
c1 0 1 1
c2 0 0 1
c3 0 1 0

one has
M tsc s1 s2 s3 s4 s5 s6

s1 0 1 1 1 1 1
s2 0 0 1 0 1 1
s3 0 1 0 0 1 1
s4 1 1 1 0 1 1
s5 0 1 1 0 0 1
s6 0 1 1 0 1 0

where M tsc
i,j (h, k) = 1 means that there is a transition from

location (qi, r1, ch) to location (qj , r1, ck), with i, j = 1, 2
and h, k = 1, 2, 3. To eliminate locations (q2, r1, c1) and
(q2, r1, c2) characterized by empty invariant sets, we have to
set the following elements of the adjacency matrix to 0:

M tsc
2,j (h, k) = 0 for j, h = 1, 2 k = 1, 2, 3

M tsc
i,2 (h, k) = 0 for i, k = 1, 2 h = 1, 2, 3

To compute the guard conditions associated to the edges
we refer to the adjacency matrix M tsc. The guard-condition
composition is an important step that may lead to the
reduction of the number of edges of the automaton associated
to the hybrid system. Considering the sensor, controller and
tank composition we have that the intersection of the guards{

G1(q2, q1) : x = H ∧ u ≤ λH
G2(c3, c2) : x ≤ l + δ

is empty so that we can set M tsc
2,1 (3, 2) = 0.

The final adjacency matrix representing the minimal sets
of locations and edges and the associated output events are
the following

M tsc s′1 s′2 s′3 s′4
s′1 0 1 1 1
s′2 0 0 1 1
s′3 0 1 0 1
s′4 0 0 1 0

γ s′1 s′2 s′3 s′4
s′1 0 open close close
s′2 0 0 close close
s′3 0 open 0 ε
s′4 0 0 ε 0

B. Tank-sensor-controller and valve composition

We illustrate how to compose the hybrid model Htsc of
the tank-sensor and controller obtained above with the hybrid
model of the valve Hv .

Computation of the set Q of locations. The set Qtscv

of the hybrid model Htscv of the closed-loop composition
is obtained by computing the Cartesian product of the sets
Qv = {p1, p2, p3, p4} and Qtsc = {s′1, s′2, s′3, s′4}. This set
consists of 16 elements:

Qtscv = {`1, `2, . . . , `16} =
= {(p1, s

′
1), . . . , (p1, s

′
4), · · · , (p4, s

′
1), . . . , (p4, s

′
4)}

Computation of the continuous–time dynamics. The
hybrid models Hv and Htsc are characterized by the sets
of continuous state variables Xv = {α(t)} and Xtsc =
{x(t)}, respectively. As a consequence, the set Xtscv of
the composed hybrid model is the union of the two sets:
Xtscv = Xtsc ∪Xv = {x(t), α(t)}.

The continuous time dynamics associated to the locations
of the composed hybrid model Htscv is the following:

(pi, s
′
j) :

{
ẋ(t) = −λx(t) + α(t)f(p(t))
α̇(t) = 0

(p2, s
′
j) :

{
ẋ(t) = −λx(t) + α(t)f(p(t))
α̇(t) = 1/T

(p4, s
′
j) :

{
ẋ(t) = −λx(t) + α(t)f(p(t))
α̇(t) = −1/T

(pi, s
′
4) :

{
ẋ(t) = 0
α̇(t) = 0

(p2, s
′
4) :

{
ẋ(t) = 0
α̇(t) = 1/T

(p4, s
′
4) :

{
ẋ(t) = 0
α̇(t) = −1/T

for i = 1, 3 and j = 1, 2, 3.
Definition of invariant conditions. To compute the invari-

ant conditions of the composed hybrid model Htscv , note
that part of the invariant conditions of the hybrid models
Htsc, and Hv are defined on the variables α(t) and u(t),
related by the algebraic equation u(t) = α(t)f(p(t)). As a
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consequence, the invariant conditions of the composed hybrid
model Htscv are obtained by the intersection of the invariant
conditions on α(t) of the hybrid models Htscv and Hv , and
by the union of the invariant conditions related to different
variables. In doing this, the invariant conditions of location
`4 = (p1, s

′
4) results in an empty set; in fact,

(p1, s
′
4) :

 α(t) = 0
x(t) = H
u(t) > λH

⇒ x(t) = H
α(t) ∈ ∅

Hence, location `4 can be eliminated.
Computation of the sets E and G of edges guards. The

edges of the automaton associated to the hybrid model of
the composition can be computed by means of the adjacency
matrices M tsc and Mv associated to the hybrid systemsHtsc

and Hv , respectively, where

Mv p1 p2 p3 p4

p1 0 1 0 0
p2 0 0 1 1
p3 0 0 0 1
p4 1 1 0 0

and M tscv
i,j (h, k) = 1 indicates that there is a transition from

location (pi, s
′
h) to location (pj , s

′
k). To eliminate location

((p1, s
′
4)) characterized by an empty invariant set, we have

to set

M tscv
1,j (4, k) = 0 for j, k = 1, . . . , 4

M tscv
i,1 (h, 4) = 0 for i, h = 1, . . . , 4

Moreover, several edges can be eliminated when the guard-
condition composition is computed. In more details, edges

M tscv
i,2 (j, k) for i = 1, 4 j = 1, . . . , 4 k = 3, 4

M tscv
i,2 (j, j) for i = 1, 4 j = 1, 2

has to be eliminated since they corresponds to a transition
for the hybrid system Hv forced by an open command and
a transition for the hybrid system Htsc not delivering such a
command. The same arguments hold when considering the
close command so that transitions associated to

M tscv
i,4 (j, j) for i = 2, 3 j = 1, . . . , 4

M tscv
i,4 (j, 2) for i = 2, 3 j = 1, 3

M tscv
i,4 (3, 4) for i = 2, 3

M tscv
i,4 (4, 3) for i = 2, 3

will never take place. Further, also transitions associated to
the edges

M tscv
i,i (j, 2) for i = 1, 4 j = 1, 3

M tscv
4,1 (j, 2) for j = 1, 3

M tscv
2,i (k, h) for i = 2, 3 h = 1, 2 k = 3, 4

M tscv
3,3 (k, h) for k = 1, 2 k = 3, 4

have to be eliminated. In fact, they correspond to a transition
for the hybrid system Hv delivering an open/close command
and a transition for the hybrid systemHtsc different from that
forced by the delivered command.

Finally, some transitions are redundant and can be elimi-
nated. In more details,

• transitions from location `5 = (p2, s
′
1) to location `10 =

(p3, s
′
2) is equivalent to the sequence of transitions with

halfway location `9 = (p3, s
′
1);

• transitions from location `13 = (p4, s
′
1) to location `3 =

(p1, s
′
3) is equivalent to the sequence of transitions with

halfway location `1 = (p1, s
′
1);

• transitions from location `16 = (p4, s
′
4) to location `3 =

(p1, s
′
3) is equivalent to the sequence of transitions with

halfway location `15 = (p4, s
′
3).

As a consequence we can set in the adjacency matrix

M tscv
2,3 (1, 2) = M tscv

4,1 (1, 3) = M tscv
4,1 (4, 3) = 0

VII. REDUCING THE COMPOSITION

A. Reduction by reachability analysis.
In order to compute the reachable locations for the hybrid

system Htscv , consider the digraph (Q,E) associated to the
adjacency matrix M tscv and note that the initial locations of
the hybrid system are `1, `5, `9 and `13. Since

r1,j∨r5,j∨r9,j∨r13,j = [ 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 ]

where ri,j is the i, j element of the reachability matrix

R = H(I +Mtscv +M2
tscv + . . .+M15

tscv)

and H is the Heaviside function, then locations `2, `4, `7, `8,
`11, `12, and `14 are not reachable from the initial locations.
As a consequence, these locations can be eliminated and the
composed hybrid model Htscv is characterized only by the
following set Qtscv of locations:

Qtscv = {`1, `3, `5, `6, `9, `10, `13, `15, `16}
When considering only the previous set Qtscv , the adjacency
matrix Mtscv reduces to

M tscv `1 `3 `5 `6 `9 `10 `13 `15 `16

`1 0 1 0 1 0 0 0 0 0
`3 0 0 0 1 0 0 0 0 0
`5 0 0 0 1 1 0 0 1 1
`6 0 0 0 0 0 1 0 1 1
`9 0 0 0 0 0 1 0 1 1
`10 0 0 0 0 0 0 0 1 1
`13 1 0 0 1 0 0 0 1 1
`15 0 1 0 1 0 0 0 0 1
`16 0 0 0 0 0 0 0 1 0

B. Reduction using equivalence
The set Ω of discrete events is composed by the following

elements: ω1 = {α = 0}, ω2 = {α = 1}, ω3 = {x ≥ h−δ},
ω4 = {x ≤ l + δ}, ω5 = {x = H ∧ u > λH}, and ω6 =
{x = H ∧ u ≤ λH}. To fill up the table of implication for
the label transition system Tsctv it is useful to refer to the
following Table of Transitions

ω1 ω2 ω3 ω4 ω5 ω6

`1 `1 × `3 `6 × ×
`3 `3 × `3 `6 × ×
`5 `5 `9 `15 `6 `16 ×
`6 `6 `10 `15 `6 `16 ×
`9 × `9 `15 `10 `16 ×
`10 × `10 `15 `10 `16 ×
`13 `1 `13 `15 `6 `16 ×
`15 `3 `15 `15 `6 `16 ×
`16 `16 `16 `16 × `16 `15

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB08.4

4698



ẋ(t) = −λx(t)
α̇(t) = 0

l − δ < x < H
α = 0

ẋ(t) = −λx(t) + α(t)f(p(t))
α̇(t) = −1/T

l − δ < x < H
0 ≤ α ≤ 1

ẋ(t) = 0
α̇(t) = −1/T

x(t) = H
λH

f(p(t)) ≤ α ≤ 1

ẋ(t) = −λx(t) + α(t)f(p(t))
α̇(t) = 1/T

0 < x < h + δ
0 ≤ α ≤ 1

ẋ(t) = −λx(t) + f(p(t))
α̇(t) = 0

0 < x < h + δ
α = 1

l3 l15 l16

l6 l10

α = 0

x = H

∧
u > λH

x = H

∧
u ≤ λH

x ≥ h− δ

x ≤ l + δ

x ≤ l + δ

α = 1

x = H

∧
u > λH x = H

∧
u > λH

x ≥ h− δ

Fig. 4. Minimal hybrid system composition of the valve, tank controller
and sensor

where each element contains, if any, the location reached
from the location identifying the row of the table when
the event identifying the column of the table takes place.
Comparing the rows associated to locations with the same
vector fields f , it is immediate to compute the following
table of implications

`3 ∼
`5 � �
`6 � � (`9, `10)
`9 � � � �
`10 � � � � ∼
`13 � � � � � �
`15 � � � � � � (`1, `3)
`16 � � � � � � � �

`1 `3 `5 `6 `9 `10 `13 `15

from which we conclude that, when considering the transi-
tion system Tsctv , we have `3 ∼ `1, `10 ∼ `9, `6 ∼ `5 and
`15 ∼ `13.

Invariant condition verification
We verify now whether the candidate pairs of locations

identified with the Table of Implication are effectively equiv-
alent. The invariant conditions associated to the candidate
pair of locations `1 and `3 are the following:

D(`1) =
{
x(t) ∈ (l − δ, h+ δ)
α(t) = 0 D(`3) =

{
x(t) ∈ (l − δ,H)
α(t) = 0

We verify that D(`1) ⊂ D(`3) and that, when in `1, if x(t) ∈
D(`3)

⋂
D(`1), a transition from `1 to `3 takes place, hence

the equivalence of locations `1 and `3.
A similar analysis can be done for the pairs of locations

`13 − `15, `5 − `6 and `9 − `10 thus proving equivalence of
all the pairs. As a consequence, the number of locations of
the composed hybrid system can be reduced obtaining the
hybrid system shown in figure 4.

VIII. CONCLUSION

In this paper we addressed the problem of verifying a
hybrid system given as composition of subsystems. Ex-
isting formal verification tools require the construction of

the composed system by hand. This requirement can be a
serious impediment for the utilization of formal methods
as the construction of the model of the overall system is
cumbersome and error prone. In this paper, we introduced a
procedure to compute a hybrid model given its components.
Even if this manual computation can be replaced by an
automatic procedure, we still have the problem of complexity
explosion. Formal tools for hybrid systems rarely succeed
with state space dimensions that are considered routine by
users and discrete formal verification tools. For this reason,
we presented techniques to compact automatically the rep-
resentation of the overall system including the computation
of an equivalent minimal realization.

The methodology for composing hybrid subsystems and
compacting the resulting model was applied to a case study:
a water tank system in which the measured liquid level
is regulated by a valve by means of a hybrid controller.
Applying the reduction technique here proposed, the number
of locations is reduced from 16 in the original composed
hybrid system to 5 in the reduced one.

The code for the computation of the composed reduced
hybrid model can be inserted as a front-end into any formal
verification tools for hybrid systems. We plan to verify the
effectiveness of the method by adding it to Ariadne [10], a
hybrid system formal verification tool based on reachability
analysis. We also plan to extend the algorithms used to
reduce the composition to include the techniques presented
in [11] that leverage the literature on continuous time system
order reduction.
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