
A Solution to the Tracking Control Problem for Switched Linear

Systems with Time-Varying Delays

Qing-Kui Li, Georgi M. Dimirovski and Jun Zhao

Abstract— We investigate the tracking control problem for
switched linear time-varying delays systems with stabilizable
and unstabilizable subsystems. Sufficient conditions for the
solvability of the tracking control problem are developed.
The tracking control problem of a switched time-varying
delays system with stabilizable and unstabilizable subsystems
is solvable if the stabilizable and unstabilizable subsystems
satisfy certain conditions and admissible switching law among
them. Average dwell time approach and piecewise Lyapunov
functional methods are utilized to the stability analysis and
controller design. A simulation example shows the effectiveness
of the proposed method.

I. INTRODUCTION

Switched systems has attracted considerable attention due

to the widespread application in control, communication

network and biology engineering [3], [10]. These systems

arise as models for phenomena which can be described by

continuous or discrete time dynamics, and a rule specifying

the switching among them. The motivation of such systems

also arise from the better performance achieved via imposing

a controller switching strategy [9], [10]. Stability analysis

and control synthesis are two key problems in the study of

switched systems. As useful tools, Lyapunov functions can

deal with the stability problems for switched systems [1],

[3], [9], [16], although certain switching laws incorporated

with compatible information sometimes should be designed

(see, e.g., [1], [5]).

On the other hand, time-delays, which are common phe-

nomenon encountered in many engineering process, are

known to be great sources of instability and poor perfor-

mance. Therefore, how to deal with time delays has been

a hot topic in the control area, see e.g., [4], [7] and [11].

For switched systems, because of the complicated behavior

caused by the interaction between the continuous dynamics

and discrete switching, the problem of time delays is more

difficult to study. Only a few results have been reported in

the literature such as the issues on stability analysis [13],

[15], optimal control [14], and so on. The importance of the

study of tracking control for switched systems with time-

delays arises from the extensive applications in robot tracking
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control [17], guided missile tracking control, etc. However, to

the authors’ best knowledge, up to now, the issue of tracking

control, which has been well addressed for non-switched

systems without delay [12], has been rarely investigated for

switched systems with time-delays. In paper [8], although the

authors give a delay-dependent criteria, the results are based

on the assumption that all the subsystems are stabilizable.

Thus, the conditions given are restricted and the results are

somewhat conservative.

We are interested in the tracking control problem for

switched linear time-varying delays systems with stabilizable

and unstabilizable subsystems. It is easy to find many appli-

cations involving such switched systems. For example, sub-

systems with actuators breakdown in the chemical process

with multi-model cannot be discarded, one has to activate

the healthy subsystems with dominant period.

In this paper, sufficient conditions for the solvability of the

tracking control problem are developed. By introducing the

integral controllers, some restricted assumptions imposing

on the switched systems are avoided. The tracking control

problem of a switched time-varying delays system with

stabilizable and unstabilizable subsystems is solvable if the

stabilizable and unstabilizable subsystems satisfy certain

conditions and admissible switching law among them.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we use P > 0 (< 0) to denote a positive

(negative) definite matrix P , and λmax(P ) (λmin(P )) denote

the maximum (minimum) eigenvalues of P . R
n denotes the

n dimensional Euclidean space; L2[0,∞) is the space of

square integrable functions on [0,∞). For given τ > 0, let

R+ = [0,+∞] and Cn = C([−τ, 0], Rn) be the Banach

Space of continuous mapping from ([−τ, 0], Rn) to R
n with

topology of uniform convergence. Let xt ∈ Cn be defined

by xt(θ) = x(t + θ), θ ∈ [−τ, 0]. ‖ · ‖ denotes the usual

2-norm and ‖xt‖cl = sup−τ≤θ≤0{‖x(t + θ)‖, ‖ẋ(t + θ)‖}.

Consider the switched linear time-varying delays system






ẋ(t) = Aσ(t)x(t) + Dσ(t)x(t − dσ(t)(t)) + Bσ(t)u(t),
x(t) = φ(t), t ∈ [−τ, 0], x(0) = φ(0) = 0,

y(t) = Cσ(t)x(t), t ∈ [0,∞),
(1)

where x(t) ∈ R
n, u(t) ∈ R

p and y(t) ∈ R
q are the

state, the control input, and the output, respectively. φ(t)
is the continuous vector valued function specifying the

initial state of the system. The right continuous function

σ(t) : [0,∞) → N , {1, 2, · · · , N} is the switching

signal, corresponding to it, the switching sequence Σ =
{x0; (i0, t0), (i1, t1), · · · , (ij , tj), · · · |ij ∈ N} means that
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the ij th subsystem is active when t ∈ [tj , tj+1). For

simplicity, we denote σ := σ(t). Ai, Di, Bi, and Ci, (i ∈ N)
are constant matrices of appropriate dimensions, di(t) denote

the time-varying delays satisfying the assumption below.

Assumption 1. 0 < di(t) ≤ τ for a constant τ , i ∈ N.

Our purpose is to design a control law u = u(t) and a

class of switching signal σ = σ(t), such that the output of

system (1) tracks the reference input yr = r(t).
Consider the following integral controller

ż(t) = Cσx(t) − r(t),

u(t) = Kσx(t) + Lσz(t), (2)

where z(t), r(t) ∈ R
q. Let e(t) , y(t)− yr(t), it is obvious

that the controller contains the tracking error integral.

Augmenting system (1) with (2), we have






ẋ(t) = (Aσ + BσKσ)x(t) + Dσ(t)x(t − dσ(t))
+BσLσz(t),

ż(t) = Cσx(t) − r(t).
(3)

Let

x̄(t) =

[

x(t)
z(t)

]

, Āσ =

[

Aσ + BσKσ BσLσ

Cσ 0

]

,

D̄σ =

[

Dσ 0
0 0

]

, ̟(t) =

[

0
−r(t)

]

.

Augmented system (3) can be rewritten as

˙̄x(t) = Āσx̄(t) + D̄σx̄(t − dσ(t)) + ̟(t). (4)

Definition 1 (cf. [2]). For system (1), assume the feedback

controller (3) has been applied, then the closed-loop system

is said to be stable if the resulting closed-loop system

obtained with ω = 0, yr = 0 is stable. For the convenience of

our talking, in this case, we say that system (1) is stabilizable.

In the development to follow, we take the following

standard assumptions.

Assumption 2. Rank

[

Ai Bi

Ci 0

]

= n + q for all i ∈ N .

Assumption 3. For tracking control problem, suppose that

not all the subsystems of system (1) are stabilizable.

Definition 2. The system (1) is said to be exponentially

stabilizable under control law u = u(t) and switching signal

σ = σ(t), if the solution x(t) of switched system (1) through

(t0, φ) ∈ R+ × Cn satisfies

‖x(t)‖ ≤ κ‖xt0‖cle
−λ(t−t0), ∀t ≥ t0

for some constants κ ≥ 0 and λ > 0.

Definition 3. For augmented system (3), K̄σ , [Kσ Lσ]
is said to define an asymptotic (or exponential) switching

tracking control for system (1), if the following conditions

are satisfied:

(i) Internal stability. The system

˙̄x(t) = Āσx̄(t) + D̄σx̄(t − dσ(t))

is asymptotically (or exponentially) stable.

(ii) Asymptotic (or exponential) tracking. Given any initial

state x0 ∈ Rn and z0 ∈ Rq, and any yr ∈ Y , where Y is a

set of R
q-valued functions on [0,∞], then y(t) → yr(t) as

t → ∞, where y(t) = Cσx(t) and x(·) is the solution of (3)

with x(0) = x0.

Definition 4. System (1) is said to satisfy weighted H∞

tracking performance, if the following conditions are satis-

fied:

(i) Internal stability. Stated in definition 2.

(ii) Optimal tracking performance. Given the performance

index as

JL =

∫ ∞

0

e−σt

[

xT (t)Q1x(t)+

(
∫ t

0

e(t)dt

)T

Q2

(
∫ t

0

e(t)dt

)

+uT (t)Ru(t)
]

dt, (5)

the tracking performance index VL can be minimized and

meet certain upper bound, where Q1 ∈ Rn×n and Q2 ∈
Rq×q are positive semidefinite matrices and R ∈ Rp×p is

positive definite matrix.

Remark 1. For the switching tracking problem, asymptotic

(or exponential) tracking is an ideal case for system (1),

usually this ideal case cannot be achieved and thus one can

consider the tracking performance.

Remark 2. As part of our construction of a switching

tracking control, we shall specify the matrices Ki and Li

(i ∈ N ), note that the switching tracking controller involves

dynamic compensation through the introduction of the vector

z(t). This is indispensable because it is not possible to use

linear feedback control to achieve switching tracking without

the introduction of such a compensator.

Remark 3. When a system satisfies Definition 3 or Definition

4, we say that the tracking control problem is solvable.

Definition 5[5]. For any T2 > T1 ≥ 0, let Nσ(T1, T2)
denote the number of switching of σ(t) over (T1, T2). If

Nσ(T1, T2) ≤ N0 + T2−T1

Tα
holds for Tα > 0, N0 ≥ 0, then

Tα is called average dwell time.

III. CONTROLLER DESIGN AND PERFORMANCE ANALYSIS

In this section, we will show how to design feedback gain

Ki, Li and switching law σ(t) = i (i ∈ N), for switched

time-varying delays system (1). We first consider the non-

switched system,






ẋ(t) = Ax(t) + Dx(t − d(t)) + ω(t),
x(t) = φ(t), t ∈ [−τ, 0], x(0) = φ(0) = 0,

y(t) = Cx(t), t ∈ [0,∞),
(6)

where A,D, C are constant matrices with appropriate dimen-

sions. We have the following lemmas.

Lemma 1. Suppose that system (6) satisfies Assumption 1.

For given positive constants α and γ, if there exist positive

definite matrices P, S, matrix K, and any matrices Y, T, M

with appropriate dimensions, such that
















ϕ11 + Q ϕ12 ϕ13 AT S −Y KT

∗ ϕ22 ϕ23 DT S −T 0
∗ ∗ ϕ33 S −M 0
∗ ∗ ∗ −τ−1S 0 0
∗ ∗ ∗ ∗ −τ−1e−ατS 0
∗ ∗ ∗ ∗ ∗ −R−1

















< 0

(7)
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holds, for the Lyapunov functional candidate

V (t)=xT (t)Px(t)+

∫ 0

−τ

∫ t

t+θ

ẋT (s)e−α(t−s)Sẋ(s)dsdθ

(8)

along the trajectory of the system (6), there hold the follow-

ing inequalities

V (xt) ≤ e−α(t−t0)V (xt0) −

∫ t

t0

e−α(t−s)Γ(s)ds, (9)

where Q is a given positive semidefinite matrix, and

Γ(s) = xT (s)Qx(s) + uT (s)Ru(s) − γ2ωT (s)ω(s)

(u(s) = Kx(s)), (10)

ϕ11 = AT P + PA + αP + Y T + Y, ϕ13 = MT + P,

ϕ12 = PD + TT − Y, ϕ23 = −MT ,

ϕ22 = −TT − T, ϕ33 = −γ2I.

Proof. By Schur complement lemma, the condition (7) is

equivalent to the following inequality









Ω11 + KT RK + Q Ω12 Ω13 −Y

∗ Ω22 Ω23 −T

∗ ∗ Ω33 −M

∗ ∗ ∗ −τ−1e−ατS









< 0.

(11)

where

Ω11 = ϕ11 + τAT SA, Ω13 = ϕ13 + τAT S,

Ω12 = ϕ12 + τAT SD, Ω23 = ϕ23 + τDT S,

Ω22 = ϕ22 + τDT SD, Ω33 = ϕ33 + τS.

Multiplying both sides of (11) by symmetric matrix

diag(I, I, I, d(t)I), and noticing 0 < d(t) ≤ τ , we have

Θ ,









Ω11 + KT RK + Q Ω12 Ω13 −d(t)Y
∗ Ω22 Ω23 −d(t)T
∗ ∗ Ω33 −d(t)M
∗ ∗ ∗ −d(t)e−ατS









< 0.

(12)

Differentiating the Lyapunov functional candidate (8)

along the trajectory of (6) and noticing d(t) ≤ τ , we have

V̇ (xt) ≤2xT (t)P (Ax(t) + Dx(t − d(t)) + ω(t))

+τ ẋT (t)Sẋ(t) −

∫ t

t−d(t)

ẋT (s)e−ατSẋ(s)ds

−α

∫ 0

−τ

∫ t

t+θ

ẋT (s)e−α(t−s)Sẋ(s)dsdθ. (13)

Note that

τ ẋT (t)Sẋ(t) = xT (t)τAT SAx(t) + 2xT (t)τAT Sω(t)

+ 2xT (t)τAT SDx(t − d(t))

+ xT (t − d(t))τDT SDx(t − d(t)) (14)

+ 2xT (t − d(t))τDT Sω(t) + ωT (t)τSω(t).

From the Leibniz-Newton formula, for any matrices Y, T, M

with appropriate dimensions, we have

2[xT (t), xT (t − d(t)), ω(t)]





Y

T

M





× [x(t) − x(t − d(t)) −

∫ t

t−d(t)

ẋ(s)ds] = 0. (15)

From (10), we have

Γ(t) =

[

x(t)
ω(t)

]T [

Q + KT RK 0
0 −γ2I

] [

x(t)
ω(t)

]

. (16)

Substituting (14) into (13) and taking (15), (16) into account,

it holds that

V̇ (xt) + αV (xt) + Γ(t)

≤





x(t)
x(t−d(t))

ω(t)





T



Ω11+Q+KT RK Ω12 Ω13

∗ Ω22 Ω23

∗ ∗ Ω33









x(t)
x(t−d(t))

ω(t)





− 2
[

xT (t)Y + xT (t − d(t))T + ωT (t)M
]

∫ t

t−d(t)

ẋ(s)ds

−

∫ t

t−d(t)

ẋT (s)e−ατSẋ(s)ds.

Let ξ(t, s) =
[

xT (t) xT (t − d(t)) ωT (t) ẋT (s)
]T

. Taking

(12) into account, we have

V̇ (xt) + αV (xt) + Γ(t)

≤
1

d(t)
×

∫ t

t−d(t)

ξT (t, s)Θξ(t, s)ds ≤ 0.

According to the theory of the first order linear nonhomoge-

neous differential inequality, (9) holds obviously. The proof

of Lemma 1 is complete. ¤

Lemma 2. Suppose that system (6) satisfies Assumption 1.

For given positive constants β and γ, if there exist positive

definite matrices P, S, matrix K, and any matrices Y, T, M

with appropriate dimensions, such that
















ϕ11 + Q ϕ12 ϕ13 AT S −Y KT

∗ ϕ22 ϕ23 DT S −T 0
∗ ∗ ϕ33 S −M 0
∗ ∗ ∗ −τ−1S 0 0
∗ ∗ ∗ ∗ −τ−1S 0
∗ ∗ ∗ ∗ ∗ −R−1

















< 0 (17)

holds, for the Lyapunov functional candidate

V (t) = xT (t)Px(t) +

∫ 0

−τ

∫ t

t+θ

ẋT (s)eβ(t−s)Sẋ(s)dsdθ

(18)

along the trajectory of the system (6), there holds the

following inequality

V (xt) ≤ eβ(t−t0)V (xt0) −

∫ t

t0

eβ(t−s)Γ(s)ds, (19)

where Q is a given positive semidefinite matrix, and

Γ(s) = xT (s)Qx(s) + uT (s)Ru(s) − γ2ωT (s)ω(s)

(u(s) = Kx(s)), (20)
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ϕ11 = AT P + PA − βP + Y T + Y, ϕ13 = MT + P,

ϕ12 = PD + TT − Y, ϕ23 = −MT ,

ϕ22 = −TT − T, ϕ33 = −γ2I.

Proof. The proof is same as in Lemma 1 and omitted. ¤

Lemma 1 and Lemma 2 provide the methods for the

estimation of Lyapunov functional candidate. For tracking

control problem, a switched time-varying delays system

with stabilizable and unstabilizable subsystems is solvable

if the stabilizable and unstabilizable subsystems satisfy cer-

tain conditions and admissible switching law among them,

respectively. Now we give the method of switching tracking

controller design for switched time-varying delays system.

Consider the switched time-varying delays system (1).

Under the Assumption 3, for tracking control problem, not

all the subsystems are stabilizable, without loss of generality,

we suppose that the i-th subsystem (1 ≤ i ≤ r) is stabilizable

(where the positive integer r satisfies 1 ≤ r < N ),

accordingly, we suppose that the corresponding augmented

subsystems of (4) satisfy Lemma 1, whereas the other

subsystems of (1) are unstabilizable and the corresponding

augmented subsystems are satisfy Lemma 2.

For each subsystem of the augmented system (4), which

is satisfies Lemma 1, the Lyapunov functional candidate can

be chosen as

Vi(x̄t)= x̄T (t)Pix̄(t) +

∫ 0

−τ

∫ t

t+θ

˙̄xT (s)e−α(t−s)Si ˙̄x(s)dsdθ,

(21)

where i ∈ {1, 2, · · · , r}, and Pi, Si are positive definite

matrices.

Also, for each subsystem of the augmented system (4),

which is satisfies Lemma 2, the Lyapunov functional candi-

date can be chosen as

Vj(x̄t)= x̄T (t)Pj x̄(t)+

∫ 0

−τ

∫ t

t+θ

˙̄xT (s)eβ(t−s)Sj ˙̄x(s)dsdθ,

(22)

where j ∈ {r + 1, · · · , N}, and Pj , Sj are positive definite

matrices.

Consider the following piecewise Lyapunov functional

candidate

V (x̄t) = Vσ(t)(t), σ(t) ∈ N. (23)

From Lemma 1-2, it is easy to show the properties of the

Lyapunov functional candidate (23) as

(i) There exist scalars α1 > 0, α2 > 0, such that

α1‖x̄‖
2 ≤ Vi,j∈N (x̄t) ≤ α2‖x̄‖

2
cl, ∀x̄ ∈ Rn+q.

(ii) There exists a constant scalar µ ≥ 1 such that

Vk(x̄t) ≤ µVl(x̄t) ∀x̄ ∈ Rn+q, k, l ∈ N. (24)

(iii) The Lyapunov functional candidate (23) whose deriva-

tive along the trajectory of the corresponding subsystem

satisfies

V (x̄t) ≤

{

e−α(t−t0)Vi(x̄t0) if i ≤ r,

eβ(t−t0)Vj(x̄t0) if j > r,
(25)

while ω(t) ≡ 0.

Now, for any piecewise constant switching signal σ(t) and

any 0 ≤ t0 < t, we let T−(t0, t) (resp., T+(t0, t)) denote

the total activation time of stabilizable (resp., unstabilizable)

subsystems during (t0, t). Then, we choose a scalar λ∗ ∈
(0, α) arbitrarily to propose the following switching law:

(S1): Let t0 < t1 < t2 < · · · < ti be a specified sequence

of time instants. Determined the switching signal σ(t) so that

inf
t≥t0

T−(t0, t)

T+(t0, t)
≥

β + λ∗

α − λ∗
(26)

holds on time interval (t0, t). Meanwhile, we choose λ∗ ≤ α

as the average dwell time scheme: for any t > t0,

Nσ(t0, t) ≤ N0 +
t − t0

τ
, τ > τ∗ =

lnµ

λ∗
. (27)

Under the switching law (S1) for any t0, t satisfying

ti−1 < t0 ≤ ti < ti+1 < · · · < tk ≤ t, we have

βT+(t0, t)−αT−(t0, t) ≤ β(t−tk)−λ∗(t−t0)+β(ti−t0).
(28)

Therefore,

eβT+(t0,t)−αT−(t0,t) ≤ ec−λ∗(t−t0), (29)

where c = 2βT0, T0 = max{t − tk, ti − t0}.

We are now in a position to present the procedure of

construction of tracking control for switched time-varying

delays system.

Step 1. Augmenting System (1) by the integral controller

(2); by the LMIs ToolBox calculating the matrices inequal-

ities (7) for the stabilizable subsystems of (1), and (17) for

the unstabilizable subsystems of (1). The controller gains

Ki, Li (i ∈ N) are determined, meanwhile, the Lyapunov

functional candidates (21) and (22) can be obtained.

Step 2. For given α, β which satisfy (7) and (17), specify

the activation time period ratio of stabilizable subsystems to

unstabilizable ones by (26).

Step 3. From Lyapunov functional candidates (21) and

(22), determine the parameter µ which satisfies (24), from

this calculate the average dwell time by (27). Therefore,

switching tracking controller can be constructed.

The following theorems provide theoretical basis for the

switching tracking controller design above.

Theorem 1. Consider the switched time-varying delays

system (1) satisfying Assumption 1-3. Suppose that the

subsystems (1 ≤ i ≤ r) of system (4) satisfy the conditions

of Lemma 1, and the others satisfy the conditions of Lemma

2, yr = r(t) ∈ L2[0,∞]. Then, under the switching law

(S1) and the average dwell time scheme (27), the switching

tracking control problem is solvable for switched time-

varying delays system (1). The closed-loop system (3) or

(4) achieves the upper bound of performance index

JL ≤
αec

λ∗

[

V (x̄0) + γ2

∫ ∞

0

̟T (s)̟(s)ds

]

.

Proof. Internal stability. Consider the augmented system (4).

Note that with ̟(t) ≡ 0, for any σ(t) under the switching
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law (S1), the piecewise Lyapunov functional candidate (23)

on every switching point tk satisfies (24). We have,

V (x̄t) ≤eβT+(tk,t)−αT−(tk,t)Vσ(tk)(x̄tk
)

≤ · · · ≤ eβT+(t0,t)−αT−(t0,t)µkVσ(t0)(x̄t0).

Thus,

V (x̄t) ≤ µNσ(t0,t) · eβT+(t0,t)−αT−(t0,t)Vσ(t0)(x̄t0), (30)

where Nσ(t0, t) is the switching numbers in (t0, t).
Taking (27) and (29) into account, we get

V (x̄t)≤µNσ(t0,t) · eβT+(t0,t)−αT−(t0,t)Vσ(t0)(x̄t0)

≤eN0 ln µ−c · e−(λ∗−
ln µ

τ
)(t−t0)Vσ(t0)(x̄t0)

≤c0 · e
−2λ(t−t0)Vσ(t0)(x̄t0), (31)

where c0 = eN0 ln µ−c, λ = 1
2 (λ∗ − ln µ

τ
).

According to (21), (22) and (31), we have

a‖x̄(t)‖2 ≤ V (x̄t), Vσ(t0)(x̄t0) ≤ b‖x̄(t0)‖
2
cl, (32)

where

a = min
i∈N

λmin(Pi), b = max
i∈N

λmax(Pi) + τ2 max
i∈N

λmax(S).

Combining (31) and (32) gives rise to

‖x̄(t)‖2 ≤
1

a
V (x̄t) ≤

bc0

a
· e−2λ(t−t0)‖x̄t0‖

2
cl.

Therefore, ‖x̄(t)‖ ≤
√

bc0

a
· e−λ(t−t0)‖x̄t0‖cl, which means

that system (3) or (4) is exponentially stable with ̟ ≡ 0.

The proof of internal stability is complete.

Optimal tracking performance. When ̟ 6= 0, considering

the Lyapunov functional candidates from Lemma 1-2, for

any t ∈ [tk, tk+1), we have

V (x̄t) ≤



















e−α(t−tk)Vσ(tk)(x̄tk
) −

∫ t

tk
e−α(t−s)Γ(s)ds,

if σ(tk) = i ≤ r,

eβ(t−tk)Vσ(tk)(x̄tk
) −

∫ t

tk
eβ(t−s)Γ(s)ds,

if σ(tk) = j > r.
(33)

Under the switching law (S1), for the switching signal σ(t)
the piecewise Lyapunov functional candidate (23) satisfies

V (x̄t)≤eβT+(tk,t)−αT−(tk,t)Vσ(tk)(x̄tk
)

−

∫ t

tk

eβT+(s,t)−αT−(s,t)Γ(s)ds

≤µeβT+(tk,t)−αT−(tk,t)Vσ(t−
k

)(xt
−

k
)

−

∫ t

tk

eβT+(s,t)−αT−(s,t)Γ(s)ds ≤ · · ·

≤µkeβT+(t0,t)−αT−(t0,t)Vσ(t0)(x̄0)

−µk

∫ t1

t0

eβT+(s,t)−αT−(s,t)Γ(s)ds − · · ·

−µ0

∫ t

tk

eβT+(s,t)−αT−(s,t)Γ(s)ds

=eβT+(t0,t)−αT−(t0,t)+Nσ(t0,t) ln µVσ(t0)(x̄t0)

−

∫ t

t0

eβT+(s,t)−αT−(s,t)+Nσ(s,t) ln µΓ(s)ds.

For the augmented system (3) or (4), there has Γ(t) =
x̄T (t)Qx̄(t) + uT (t)Ru(t) − γ2̟T (t)̟(t), in which Q =
diag{Q1, Q2}, u(t) = Kx̄(t), K = [kσ, Lσ]. Multiplying

both sides of (34) by e−Nσ(t0,t) ln µ gives rise to

e−Nσ(t0,t) ln µV (x̄t) +

∫ t

t0

eβT+(s,t)−αT−(s,t)−Nσ(t0,s) ln µ

×
[

x̄T (s)Qx̄(s) + uT (s)Ru(s)
]

ds

≤eβT+(t0,t)−αT−(t0,t)V (x̄0) (34)

+ γ2

∫ t

t0

eβT+(s,t)−αT−(s,t)−Nσ(t0,s) ln µ̟T (s)̟(s)ds.

For the convenience of discussion, we let t0 = 0. Under the

switching law (S1) and the average dwell time scheme (27)

with σ < λ∗, we can obtain
∫ t

0

e−α(t−s)−σs
[

x̄T (s)Qx̄(s) + uT (s)Ru(s)
]

ds

≤ec−λ∗tV (x̄0) + γ2

∫ t

0

ec−λ∗(t−s)̟T (s)̟(s)ds. (35)

Integrating the above inequality from t = 0 to ∞ leads to
∫ ∞

0

e−σs
[

x̄T (s)Qx̄(s) + uT (s)Ru(s)
]

ds

≤
αec

λ∗

[

V (x̄0) + γ2

∫ ∞

0

̟T (s)̟(s)ds

]

. (36)

Note that

x̄T (t)Qx̄(t) = xT (t)Q1x(t)+
(

∫ t

0
e(t)dt

)T

Q2

(

∫ t

0
e(t)dt

)

,

so we have

JL ≤
αec

λ∗

[

V (x̄0) + γ2

∫ ∞

0

̟T (s)̟(s)ds

]

.

The proof is complete. ¤

Theorem 2. Consider the switched time-varying delays

system (1) satisfying Assumption 1-3, and the time-varying

delays also satisfy 0 < ḋi(t) ≤ d < 1. Suppose that the

subsystems (1 ≤ i ≤ r) of system (4) satisfy the conditions

of Lemma 1, and the others satisfy the conditions of Lemma

2, yr = r(t) ∈ D , where D is a set of constants or step

inputs on [0,∞]. Then, under the switching law (S1) and the

average dwell time scheme (27), there holds y(t) → yr(t)
as t → ∞, that is, the switching tracking control problem is

solvable for system (1).

Proof. Adopting the method in [12] and repeating the

procedures in the proof of Lemma 1, 2 and Theorem 1 with

the condition 0 < ḋi(t) ≤ d < 1 gives directly the result. ¤

Remark 4. In Theorem 1 and Theorem 2, if the subsystems

which satisfy the conditions of Lemma 1 are 1 ≤ i ≤ N ,

i.e., r = N , this case degenerates into the case of paper [8].

IV. NUMERICAL EXAMPLE

We illustrate the main results by a numerical example.

Consider the switched linear time varying delays system

(1) with a stabilizable and an unstabilizable subsystem with

A1 =

[

−4 −2.5
1.2 −1.5

]

, D1 =

[

0.2 0.3
0.1 0

]

, B1 =

[

1
−0.3

]

;
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A2 =

[

−2 0.5
3.2 3.5

]

, D2 =

[

0.1 0.1
0.2 0

]

, B2 =

[

−0.1
−0.2

]

;

C1 =

[

−5 −0.5
0.1 −1

]

, C2 =

[

−0.1 0.7
0.3 1.2

]

, r(t) =

[

−1
0

]

;

and dσ(t) = 2.4 − 0.1e−t, α = 0.6, β = 0.4, τ = 2.4, Q =
I4×4, R = 0.1, solving (7) and (17) gives piecewise Lya-

punov functional (21) and (22) respectively with

P1 =

[

P̂−1
1 0

0 P̂−1
1

]

, P2 =

[

P̂−1
2 0

0 P̂−1
2

]

,

S1 =

[

Ŝ1 0

0 Ŝ1

]

, S2 =

[

Ŝ2 0

0 Ŝ2

]

,

where

P̂1 =

[

0.2405 −0.0857
−0.0857 0.1672

]

, P̂2 =

[

0.2907 −0.0865
−0.0865 0.1877

]

,

Ŝ1 =

[

3.7770 2.6622
2.6622 6.1308

]

, Ŝ2 =

[

2.7482 −0.0531
−0.0531 2.7368

]

.

Consequently, the controller gains are given as

K1 =
[

0.52951.0927
]

, L1 =
[

0.52951.0927
]

;

K2 =
[

4.02921.8681
]

, L2 =
[

4.02921.8681
]

.

Solving (24) gives µ = 1.2951, and according (27), we have

τ∗
α = ln µ

α
= 0.4310. Take λ∗ = 0.5 < α, the activation ratio

of stabilizable subsystems to unstabilizable subsystems is
T−(t0,t)
T T (t0,t)

= 9, by using average dwell time method provided

by Theorem 2, we obtained that system (1) is solvable, the

simulation results are depicted in Fig.1-Fig.2.

V. CONCLUSIONS

In this paper, we have investigated tracking control prob-

lem for switched linear time-varying delays systems with

stabilizable and unstabilizable subsystems. Average dwell

time approach and piecewise Lyapunov functional methods

are utilized to the stability analysis and controller design, and

with free weighting matrix scheme, switching control laws

are obtained. A simulation example shows the effectiveness

of the proposed switching control laws.
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