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Abstract— This paper presents the optimal control problem
for a linear system with respect to a Bolza-Meyer criterion
with a non-quadratic non-integral term. The optimal solution
is obtained as a sliding mode control, whereas the conventional
linear feedback control fails to provide a causal solution.
Performance of the obtained optimal controller is verified in
the illustrative example against the conventional LQ regulator
that is optimal for the quadratic Bolza-Meyer criterion. The
simulation results confirm an advantage in favor of the designed
sliding mode control.

I. INTRODUCTION

Since the sliding mode control was invented in the begin-

ning of 1970s (see a historical review in [1]), the sliding

mode control technique is recently used in stabilization

[2], [3], tracking [4], observer design [5], identification [6],

frequency domain analysis [7], and other control problems.

Other promising modifications of the original sliding mode

concept, such as integral sliding mode [8], are developed.

Application of the sliding mode method is extended even to

stochastic systems [9], [10] and stochastic filtering problems

[11], [12]. However, although it is possible to design a sliding

manifold so that an infinite-horizon quadratic cost functional

including the system state only is minimized [1], it seems,

to the best of authors’ knowledge, that no optimal sliding

mode algorithms, solving the optimal control problem for a

Bolza-Meyer criterion with the quadratic control term [13],

[14], have been designed. Meanwhile, simply the fact that

the sliding mode control has a transparent physical sense [1]

and is successfully applied to many technical problems [15]

leads to a conjecture that the optimal control problems whose

solution is given by a sliding mode control should exist. One

of those optimal control problems is considered in this paper.

This paper presents the solution to the optimal control

problem for a linear system with a Bolza-Meyer crite-

rion, where the integral control and state energy terms are

quadratic and the non-integral term is of the first degree.

That type of criteria would be useful in the joint control

and parameter identification problems where the objective

should be reached for a finite time. It is shown that op-

timal solution is given by a causal sliding mode control,

whereas the conventional linear feedback control does not

lead to a causal solution and, therefore, fails. The theoretical
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result is complemented with an illustrative example verifying

performance of the designed control algorithm. The optimal

sliding mode regulator is compared to the conventional LQR

corresponding to the quadratic Bolza-Meyer criterion. The

simulation results confirm an advantage in favor of the de-

signed sliding mode control. For comparison purposes, both

sliding mode and LQ regulators are applied to minimizing

the quadratic Bolza-Meyer criterion without the non-integral

term. In accordance with the developed theory, the simulation

results confirm coincidence of both, sliding mode and linear

feedback, optimal control algorithms in this case.

The paper is organized as follows. Section 2 states the

optimal control problem for a linear system with a non-

quadratic Bolza-Meyer criterion. The sliding mode solution

to the optimal control problem is given in Section 3. The

proof of the obtained results is given in Appendix. Section

4 contains an illustrative example.

II. OPTIMAL CONTROL PROBLEM STATEMENT

Consider a conventional linear time-varying system

ẋ(t) = A(t)x(t)+B(t)u(t), x(t0) = x0, (1)

where x(t) ∈ Rn is the system state and u(t) ∈ Rm is the

control input. The coefficients A(t) and B(t) are considered

continuous functions of time. Without loss of generality, the

system (1) (pair (A,B)) is assumed to be controllable, i.e,

the uncontrollable state components are removed from the

consideration.

In the classical linear optimal control problem [13], [14],

the criterion to be minimized is defined as a quadratic Bolza-

Meyer functional:

J2 =
1

2
[x(T )]T ψ[x(T )]+ (2)

1

2

∫ T

t0

(uT (s)R(s)u(s)+ xT (s)L(s)x(s))ds,

where R(t) is positive and ψ , L(t) are nonnegative definite

symmetric matrix functions, and T > t0 is a certain time

moment. The solution to this problem is well-known [13],

[14] and considered fundamental for the optimal linear

systems theory.

In this paper, the criterion to be minimized includes a non-

quadratic terminal term and is defined as follows:

J1 =
n

∑
i, j=1

ψi j | x j(T ) | + (3)

1

2

∫ T

t0

(uT (s)R(s)u(s)+ xT (s)L(s)x(s))ds,
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where R(s) is positive and L(s), ψ are nonnegative definite

continuous symmetric matrix functions, and | x |= [| x1 |, . . . , |
xn |] ∈ Rn is defined as the vector of absolute values of the

components of the vector x ∈ Rn.

The optimal control problem is to find the control u∗(t),
t ∈ [t0,T ], that minimizes the criterion J1 (3) along with the

trajectory x∗(t), t ∈ [t0,T ], generated upon substituting u∗(t)
into the state equation (1).

A solution to the stated optimal control problem is given

in the next section and then proved in Appendix. As demon-

strated, the obtained solution is a sliding mode control that

is optimal with respect to the criterion (3).

III. OPTIMAL CONTROL PROBLEM SOLUTION

The solution to the optimal control problem for the linear

system (1) and the criterion (3) is given as follows. The

optimal control law takes the sliding mode control form

u∗(t) = R−1(t)BT (t)Q(t)Sign[x(t)], (4)

where the Signum function of a vector x = [x1, . . . ,xn]∈ Rn is

defined as Sign[x] = [sign(x1), . . . , sign(xn)]∈ Rn, the signum

function of a scalar x is defined as sign(x) = 1, if x > 0,

sign(x) = 0, if x = 0, and sign(x) = −1, if x < 0.

The matrix function Q(t) satisfies the matrix equation with

time-varying coefficients

Q̇(t) = L(t)∗ | x(t) | −AT (t)Q(t), (5)

where A∗b denotes a product between a matrix A∈Rn×n and

a vector b ∈ Rn, that results in the matrix defined as follows:

all entries of the j-th column of the matrix A are multiplied

by the j-th component of the vector b, j = 1, . . . ,n.

The terminal condition for the equation (5) is defined as

Q(T ) = −ψ , if the state x(t) does not reach the sliding

manifold x(t) = 0 within the time interval [t0,T ], x(t) 6= 0,

t ∈ [t0,T ]. Otherwise, if the state x(t) reaches the sliding

manifold x(t) = 0 within the time interval [t0,T ], x(t) = 0

for some t ∈ [t0,T ], then the Q(t) is set equal to a matrix

function Q0(t) that is such a solution of (5) that x(t) reaches

the sliding manifold x(t) = 0 under the control law (4) with

the matrix Q0(t) exactly at the final time moment t = T ,

x(T ) = 0, but x(t) 6= 0, t < T . The trivial case x(t0) = 0 and,

therefore, x(t) = 0, t ∈ [t0,T ], is not considered here. Indeed,

if x(t) = 0, then u(t) = 0; therefore, the value of Q(t) is not

needed.

Upon substituting the optimal control (4) into the state

equation (1), the optimally controlled state equation is ob-

tained

ẋ(t)= A(t)x(t)+B(t)R−1(t)BT (t)Q(t)Sign[x(t)], x(t0)= x0.
(6)

Consequently, the main result is formulated in the follow-

ing theorem and proved in Appendix.

Theorem 1. The optimal regulator for the linear system (1)

with respect to the criterion (3) is given by the sliding mode

control law (4) and the gain matrix differential equation

(5). The optimally controlled state of linear system (1) is

governed by the equation (6).

Remark 1. It is not difficult to see that the solution

Q0(t) really exists and can be calculated. Indeed, if ψ = 0

in the criteria (2) and (3) and the non-integral term is

absent, then the optimal solutions with respect to both criteria

coincide (see Appendix for the proof). In this case, as follows

from the optimal LQR theory [13], [14], the optimal gain

matrix Q(t) has zero terminal value, Q(T ) = 0, however, the

state terminal value is different from zero, x(T ) 6= 0. Then,

decreasing the value of −ψ as the terminal condition for

the equation (5) and, consequently, increasing the energy

of the control (4), the zero terminal state value would be

reached for a certain negative definite value of −ψ0, taking

into account that each manifold xi = 0, i = 1, . . . ,n, is sliding

for the corresponding component xi and the system (1) is

assumed controllable. Finally, the solution of the equation

(5) with the terminal condition −ψ0 would be the desired

solution Q0(t).

Remark 2. Note that Theorem 1 suggests a feasible

algorithm for numerical solution of the gain matrix equation

(5). Indeed, first, the system of equations (1),(4),(5) is solved

with a given initial condition x0 and the terminal condition

−ψ corresponding to the non-integral term in the criterion

(3). Any known numerical method, such as ”shooting,” which

consists in varying initial conditions for (5) until a given

terminal condition is satisfied, could be used. If the system

state x(t) does not reach zero in the interval [0,T ] or reaches

exactly at the final moment t = T , then the optimal trajectory

and the optimal control are found. If x(t) reaches zero at

any point t < T , the system of equations (1),(4),(5) is solved

again with the initial condition x0 and the terminal condition

−ψ0, yielding the solution Q0(t). The corresponding solution

of the equation (1) yields the optimal trajectory. The formula

(4) with substituted Q0(t) and the optimal trajectory yields

the optimal control as a function of time.

Remark 3. As follows from Theorem 1, application of

the sliding mode control (4) leads to a causal terminal

condition for the gain matrix equation (5), which makes the

optimal control problem numerically solvable. In contrast,

application of the linear feedback control u∗(t) = K(t)x(t)
leads to the terminal condition Q(T ) = −ψ ∗ Sign[x(t)],
which explicitly depends on the unknown value x(T ), and,

therefore, is non-causal. As well-known, non-causal prob-

lems are not numerically solvable and unusable in practice.

Thus, in case of a criterion (3), the sliding mode control

allows one to obtain a feasible solution to the optimal control

problem, whereas the classical linear feedback control fails.

IV. EXAMPLE

This section presents an illustrative example of designing

the optimal regulator for a system (1) with a criterion (3),

using the scheme (4)–(6).

Consider a scalar linear system

ẋ(t) = x(t)+u(t), x(0) = 1. (7)

The control problem is to find the control u(t), t ∈ [0,T ],
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T = 5, that minimizes the criterion

J1 = 50 | x(T ) | +
1

2
[
∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt], (8)

where | x | denotes the absolute value of a scalar variable x.

Applying the optimal regulator (4)-(6), the control law (4)

is given by

u∗(t) = Q∗(t)sign[x(t)], (9)

where Q∗(t) satisfies the equation

Q̇∗(t) =| x(t) | −Q∗(t), (10)

with the initial condition Q∗(5) = −50, if x(t) 6= 0 for any

t < 5, and Q∗(5) = 0, otherwise.

Upon substituting the control (9) and the obtained expres-

sion for Q∗(t) into (7), the optimally controlled system takes

the form

ẋ(t) = x(t)+Q∗(t)sign[x(t)], x(0) = 1. (11)

The obtained system (10),(11) can be solved using simple

numerical methods, such as ”shooting.” This method consists

in varying initial conditions of (10) until the given terminal

condition is satisfied.

The system (10),(11) is first simulated with the terminal

condition Q∗(5) = −50. As the simulation shows, the state

x(t) reaches zero before the final moment T = 5. Accord-

ingly, the terminal condition for the equation (10) is reset to

Q∗(5) = −ψ0 such that x(5) = 0 (see Remark 2 in Section

3), and the system (10),(11) is simulated again. The results

obtained applying the regulator (9)–(11) to the system (7)

are shown in Fig. 1, which presents the graphs of the gain

matrix (10) Q∗(t), the control (9) u∗(t), the state (7) x(t),
and the criterion (8) J1(t) in the interval [0,5]. The value of

the criterion (8) at the final moment T = 5 is J1(5) = 2.4142.

The optimal regulator (9)–(11) is compared to the best

linear regulator for the criterion (2) with the quadratic non-

integral term

J2 = 25x2(T )+
1

2
[
∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt]. (12)

As follows from the optimal LQR theory [13], [14], the linear

control law is given by

u(t) = Q(t)x(t), (13)

where Q(t) satisfies the Riccati equation

Q̇(t) = −AT (t)Q(t)−Q(t)A(t)+L(t)−

Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) =−ψ . Substituting numer-

ical values from (7),(12) for the parameters, the last equation

turns to

Q̇(t) = 1−2Q(t)−Q2(t), Q(5) = −50. (14)

Upon substituting the control (13) into (7), the controlled

system takes the form

ẋ(t) = x(t)+Q(t)x(t), x(0) = 1. (15)

Note that the comparison of the sliding mode optimal

regulator (9)–(11) to the best linear regulator (13)–(15) with

respect to the criterion (8) is conducted for illustration

purposes, since the sliding mode optimal regulator (9)–(11)

should theoretically yield a better result, as follows from

Theorem 1.

The results obtained applying the regulator (13)–(15) to

the system (7) are shown in Fig. 2, which presents the graphs

of the gain matrix (14) Q(t), the control (13) u(t), the state

(7) x(t), and the criterion (8) J1(t) in the interval [0,5]. The

value of criterion (8) at the final moment T = 5 is J1(5) =
2.4142+2.1∗10−3 = 2.4163. To provide better comparison,

Figure 3 presents the graphs of the control functions (9) u∗(t)
and (13) u(t) and the corresponding state trajectories (7) x(t)
in detail in the interval [4.995,5].

It can be observed that the optimal sliding mode control

(9) yields a certainly better value of the criterion (8) in

comparison to the linear feedback control (13). Note again

that the classical linear feedback control fails to provide a

causal optimal control for the criterion (8) (see also Remark

3).

For verification purposes, both, the sliding mode and linear

feedback control laws, are applied to minimizing the criterion

J =
1

2
[
∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt], (16)

which coincides with the criteria (8) and (12), if the non-

integral term is absent. In this case, the optimal sliding mode

regulator

u∗(t) = Q∗(t)sign[x(t)],

Q̇∗(t) =| x(t) | −Q∗(t), Q(5) = 0, (17)

ẋ(t) = x(t)+Q∗(t)sign[x(t)], x(0) = 1.

and the optimal linear feedback regulator

u(t) = Q(t)x(t),

Q̇(t) = 1−2Q(t)−Q2(t), Q(5) = 0. (18)

ẋ(t) = x(t)+Q(t)x(t), x(0) = 1.

yield the same control u∗(t)= u(t) and, accordingly, the same

optimal trajectory x(t) and the same final criterion value

J(5) = 2.4142, although the gain matrices Q∗(t) and Q(t)
are different. The graphs of the gain matrices Q∗(t) and Q(t)
are shown in Fig. 4.

V. APPENDIX

Proof of Theorem 1. Necessity. Define the Hamiltonian

function [13] for the optimal control problem (1),(3) as

H(x,u,q, t) =
1

2
(uT R(t)u+ xT L(t)x+qT ẋ(t) =

=
1

2
(uT R(t)u+ xT L(t)x+qT [A(t)x+B(t)u]. (19)

Applying the maximum principle condition ∂H/∂u = 0 to

this specific Hamiltonian function (19) yields

∂H/∂u = 0 ⇒ R(t)u(t)+BT (t)q(t) = 0.
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Accordingly, the optimal control law is obtained as

u∗(t) = −R−1(t)BT (t)q(t).

Let us seek q(t) as the Signum function of x(t) multiplied

by a gain matrix

q(t) = −Q(t)Sign[x(t)], (20)

where Q(t) is a square symmetric matrix of dimension n×n.

This yields the complete form of the optimal control

u∗(t) = R−1(t)BT (t)Q(t)Sign[x(t)]. (21)

Using the co-state equation dq(t)/dt = −∂H/∂x, which

gives

−dq(t)/dt = L(t)x(t)+AT (t)q(t), (22)

and substituting (20) into (22), we obtain

Q̇(t)Sign[x(t)]+Q(t)d(Sign[x(t)])/dt = (23)

= L(t)x(t)−AT (t)Q(t)Sign[x(t)].

Taking into account that d(Sign[x(t)])/dx = 0 almost ev-

erywhere outside the sliding manifold x(t) = 0, the following

equation is obtained

Q̇(t)Sign[x(t)] = L(t)x(t)−AT (t)Q(t)Sign[x(t)]. (24)

Note that if x(t) = 0, then u(t) = 0; therefore, the value of

Q(t) is no longer needed. The equation (24) is satisfied, if

Q(t) is assigned as a solution of the equation (5).

Note that if the state x(t) does not reach the sliding

manifold x(t) = 0 at an interior point of the interval [0,T ],
the transversality condition [13] for q(T ) implies that

q(T ) = −Q(T )Sign[x(T )] = ∂J/∂x(T ) = ψSign[x(T )],

which is satisfied if

Q(T ) = −ψ. (25)

However, if x(t) reaches the sliding manifold x(t) = 0 before

the final moment t = T , then the transversality condition is

not useful, since the problem becomes a two fixed point

problem where the terminal point is fixed at an a priori

unknown time moment when x(t) reaches the sliding mani-

fold x(t) = 0. Given that the final state value x(T ) remains

equal to zero, if the state enters the sliding mode before the

final moment t = T , only the integral part of the criterion

should be minimized over all control laws providing that

x(t) reaches the sliding manifold x(t) = 0 within the interval

[0,T ]. Since the minimal value of the integral part of the

criterion (3) over all possible controls is provided by the

linear feedback control solving the optimal LQR problem

(see also Remark 1 in Section 3), which leads to a nonzero

final state value x(T ) 6= 0 (see [13], [14]), the minimal value

of the integral part of the criterion (3) over all control laws

providing that x(t) reaches the sliding manifold x(t) = 0

within the interval [0,T ] is given by the control law, which

brings the state into the sliding manifold x(t) = 0 exactly at

the final moment t = T . This control law corresponds to the

gain matrix Q0(t) in view of its definition in the paragraph

after (5). Thus, the terminal conditions for the equation (5)

are correctly defined by Theorem 1. The necessity part is

proved.

Sufficiency. The optimality of the optimal control law u∗(t)
given in Theorem 1 and by the formula (21) is proved in a

standard way (see details, for example, in [16]): composing

the Hamilton-Jacobi-Bellman (HJB) equation, corresponding

to the Hamiltonian (19), and demonstrating that it is satisfied

with the Bellman function V (x, t) =−
n

∑
i, j=1

Qi j(t) | x j |, where

Qi j(t) are the entries of the matrix Q(t) solving the equation

(5). The demonstration mostly repeats the formulas (22)–(25)

in the necessity part. Finally, minimizing the right-hand side

of the HJB equation over u yields the optimal control u∗(t)
in the form (21). The theorem is proved. ¥

Proof of Proposition in Remark 1. Consider the optimal

control problem for a linear system (1) with respect to the

Bolza-Meyer criterion without a non-integral term

J =
1

2

∫ T

t0

(uT (s)R(s)u(s)+ xT (s)L(s)x(s))ds. (26)

As follows from the optimal LQR theory [13], [14], the

linear control law is given by

u(t) = R−1(t)BT (t)Q(t)x(t), (27)

where Q(t) satisfies the Riccati equation

Q̇(t) = −AT (t)Q(t)−Q(t)A(t)+L(t)− (28)

Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = 0, and the optimally

controlled system takes the form

ẋ(t) = A(t)x(t)+B(t)R−1(t)BT (t)Q(t)x(t), x(t0) = x0.
(29)

Let us show that the optimal LQ regulator (27)-(29)

coincides with the optimal sliding mode regulator given by

Theorem 1. Indeed, upon introducing the new gain matrix

Q∗(t) = Q(t)∗ | x(t) |, the control law (27) turns to the sliding

mode control (4) and the equation (29) coincides with (6).

Furthermore, in view of (28) and (29), the newly introduced

gain matrix Q∗(t) satisfies the equation

Q̇∗(t) =
d(Q(t)∗ | x(t) |)

dt
=

dQ(t)

dt
∗ | x(t) | +Q(t)∗

d(| x(t) |)

dt
=

(−AT (t)Q(t)−Q(t)A(t)+L(t)−

Q(t)B(t)R−1(t)BT (t)Q(t))∗ | x(t) | +

Q(t)(A(t)∗ | x(t) | +R−1(t)BT (t)Q(t)∗ | x(t) |) =

L(t)∗ | x(t) | −AT (t)Q(t)∗ | x(t) |=

L(t)∗ | x(t) | −AT (t)Q∗(t),

with the terminal condition Q∗(T ) = 0, which coincides with

(5). The proposition is proved. ¥
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VI. CONCLUSIONS

This paper presents an optimal control problem, whose

solution is given by a sliding mode control, thus addressing

a challenging question known the beginning of the sliding

mode control design: can a sliding mode control be a

solution to an optimal control problem? The optimal control

problem is considered for a linear system with a Bolza-

Meyer criterion, where the integral control and state energy

terms are quadratic and the non-integral term is of the

first degree. That type of criteria would be useful in the

joint control and parameter identification problems where the

objective should be reached for a finite time. It is shown that

optimal solution is given by a causal sliding mode control,

whereas the conventional linear feedback control fails to

provide a feasible solution. It is also verified that both sliding

mode and LQ regulators yield the same optimal trajectory,

being applied to the optimal control problem with respect to

the quadratic Bolza-Meyer criterion without the non-integral

term, whose solution is well-known from the LQR theory.

The proposed approach based on a sliding mode control is

expected to be applicable to other optimal control problems

with non-quadratic criteria, where the conventional linear

feedback control would not work.
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Fig. 1. Sliding mode regulator optimal with respect to criterion J1. Graphs
of the gain matrix (10) Q∗(t), the control (9) u∗(t), the state (11) x(t), and
the criterion (8) J1(t) in the interval [0,5].
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Fig. 2. Linear feedback regulator. Graphs of the gain matrix (14) Q(t),
the control (13) u(t), the state (15) x(t), and the criterion (8) J1(t) in the
interval [0,5].
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Fig. 3. Graphs of the graphs of the (15) u∗(t) (thick) and (13) u(t) (thin)
and the corresponding state trajectories (7) x(t) in detail in the interval
[4.995,5].
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Fig. 4. Graphs of the gain matrices Q∗(t) (above) and Q(t) (below) for
criterion (16) J1 without non-integral term.
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