
  

  

Abstract—The convergence of a Kalman filter-based EM 
algorithm for estimating variances is investigated. It is 
established that if the variance estimates and the error 
covariances are initialized appropriately, the sequence of 
variance iterates will be monotonically nonincreasing. Under 
prescribed conditions, the variance estimates will converge to 
the actual values. An inertial navigation application is 
discussed in which performance depends on accurately 
estimating the process variances.   
 

Index Terms—Kalman filtering, parameter estimation, 
inertial navigation, stationary alignment.  
 

I. INTRODUCTION 
nertial navigation systems (see [1] – [5]) typically use 
optimal minimum-variance filters to track platform 
trajectories. However, attaining good tracking 

performance requires precise knowledge of the underlying 
state-space model parameters and noise statistics. An 
iterative technique for estimating these unknowns is the 
expectation-maximization (EM) algorithm which is 
described in [6] – [12].  

The EM algorithm under consideration herein was first 
proposed by Dempster, Laird and Rubin [6]. The procedure 
consists of iterating two steps: an expectation step and a 
maximization step. The expectation step of [6] involves least 
squares calculations on the incomplete observations using 
the current parameter iterates to estimate the underlying 
states. The maximization step involves re-estimating the 
parameters by maximizing a joint log likelihood function 
using state estimates from the previous expectation step. 
This sequence is repeated for either a finite number of 
iterations or until the estimates and the log likelihood 
function are stable. The paper [6] established parameter map 
conditions for the convergence of the algorithm, namely that 
the incomplete data log likelihood function is monotonically 
nonincreasing. Wu [7] subsequently noted an equivalence 
between the conditions for a map to be closed and the 
continuity of a function. In particular, if the likelihood 
function satisfies certain modality, continuity and 
differentiability conditions, the parameter sequence 
converges to some stationary value. In [8], a Kalman filter is 
used within the expectation step to recover the states. A 
multiparameter estimation problem is decoupled into 

 
G. A. Einicke, is with the Commonwealth Scientific and Industrial 

Research Organisation (CSIRO), Technology Court, Pullenvale QLD 4069, 
Australia (e-mail: garry.einicke@csiro.au). 

separate maximum likelihood estimations (MLEs) within the 
EM algorithm of [9]. Applications of the EM algorithm 
include equalization [10], speech model parameter 
identification [11], economic forecasting [8] and 
tomography [12].  

This paper addresses the problem of estimating the 
variances from incomplete observations. It is noted in [6] 
that the likelihood functions for variance estimation do not 
exist in explicit closed form. This precludes straight forward 
calculation of the Hessians required in [7] to assert 
convergence. Therefore an alternative analysis is presented 
to establish the monotonicity of variance iterates. Here, the 
expectation step employs an approach introduced in [8] that 
involves calculating optimal state estimates which relies on 
solving Riccati equations. The maximization step involves 
the calculation of decoupled MLEs similarly to [9]. As is the 
case in [7], it is shown under prescribed conditions that the 
estimate sequences will be monotonic nonincreasing. 
Further, as the measurement noise becomes sufficiently low, 
it is claimed that the variance estimates asymptotically 
approach the exact values. 

  The paper is organized as follows. The monotonicity 
properties of Riccati difference equation (RDE) solutions are 
discussed in Section II. Conditions for the monotonicity and 
convergence of measurement and process noise variance 
estimates are set out in Section III. It is shown that if the 
solution to the design Riccati equation is monotonically 
nonincreasing, and if the estimate sequences are suitably 
initialized, they will also be monotonically nonincreasing. 
Further, as the measurement noise becomes negligible and 
the states are reconstructed exactly, the variance iterates 
asymptotically converge to the actual values. The 
identification of process noise variances for the stationary 
alignment of inertial navigation equations is demonstrated in 
Section IV. 

II. SOME PROPERTIES OF RICCATI DIFFERENCE EQUATIONS 
Consider a linear system having the state-space realization  

1+kx  = kAx  + kw ,                              (1) 

kz  = kCx + kv ,                                (2) 

where A  ∈ n x n , C  ∈ p x n , kx  ∈ n , kw  ∈ n , kv  

∈ p . It is assumed that the process noise kw  and 
measurement noise kv  are  independent, zero mean, 
stationary, white processes, with actual covariances  
E{ T

k kw w } = Q  and E{ T
k kv v } = R , respectively.  The 
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optimal Kalman filter [16] which estimates the states kx  
from the measurements kz  is given by 

/ˆk kx  = / 1ˆ −k kx  + kL ( kz − / 1ˆ −k kCx ),              (3) 

1/ˆ +k kx  = /ˆk kAx ,                                   (4) 

where kL  = / 1−
T

k kP C ( / 1−
T

k kCP C  + R )-1 is the filter gain 

and / 1−k kP  ∈ n x n  is the solution of the Riccati difference 
equation (RDE) 

1/+k kP =( − kA K C ) / 1−k kP ( − kA K C )T + T
k kK RK + Q    (5) 

in which kK  = kAL  is the predictor gain. 
The optimality of (3) – (5) is reliant on A , C , Q  and R  

being known precisely. Iterative procedures will be 
described subsequently for estimating the noise covariances. 
Let iQ  and iR  denote the ith estimates of Q  and R  
respectively. A design RDE is then given by 

, 1/ , , / 1 , , ,( ) ( )T T
i k k i k i k k i k i k i k iP A K C P A K C K RK Q+ −= − − + + ,  (6) 

, , / 1 , , , ,( ) ( )T T
i k i k k i k i k i k i kA K C P A K C K RK Q−= − − + + + δ  (7) 

where ,i kK  = , / 1−
T

i k kAP C ( / 1−
T

k kCP C  + iR )-1 and ,i kδ  = iQ   

−  Q  +  ,i kK ( iR  −  R ) ,
T
i kK . Suppose that a Kalman filter 

is designed with (6), using the estimates iQ  and iR . Let 

, 1/+i k kx  = 1kx +  −  , 1/ˆ +i k kx  denote the predicted state error at 
iteration i and time k. Subtracting (4) from (1) yields 

, 1/ , , / 1 , , / 1ˆ ˆ( ) ( )i k k k k i k i k k i k i k k kx Ax w A K C x K Cx v+ − −= + − − − −  

, , / 1 ,( )i k i k k i k k kA K C x K v w−= − − + .                         (8) 
 Similarly, the recursion for the corrected state error is 

, / , , / 1 ,( )i k k i k i k k i k kx I L C x L v−= − − ,                  (9) 

where , /i k kx = kx  −  , /ˆ i k kx  and ,i kL  = 

, / 1−
T

i k kP C ( , / 1−
T

i k kCP C  + R )-1 is the filter gain at iteration i.  
The observed corrected error covariance is calculated from 

, /i k kΣ  = E{ , /i k kx , , /
T
i k kx } and (9) as 

   , / , , / 1 , , ,( ) ( )T T
i k k i k i k k i k i k i kI L C I L C L RL−Σ = − Σ − +   

1
, / 1 , / 1 , / 1 , / 1( )T T

i k k i k k i k k i k kC C C R C−
− − − −= Σ − Σ Σ + Σ . (10) 

Note that (8) can be written as , 1/+i k kx  = , /i k kAx  + kw , so 
the observed predicted error covariance , 1/+i k kΣ  = 

E{ , 1/ , 1/,+ +
T

i k k i k kx x } is given by 

, 1/ , /+Σ = Σ +T
i k k i k kA A Q .                        (11) 

In the ensuing discussion, the matrix inequality X  ≥ Y  
means X  −  Y  ≥ 0 , i.e., the matrix X −  Y  is positive 
semi-definite and has all its eigenvalues greater than or 
equal to zero. The solutions of (6) are monotonically 

dependent on iJΓ  where iΓ  = 
1−⎡ ⎤−

⎢ ⎥
− −⎢ ⎥⎣ ⎦

T
i
T

i

A C R C

Q A
 is the 

Hamiltonian matrix corresponding to (6) and 
0

0
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

I
J

I
, in 

which I  is the identity matrix (see [14] - [18]). Let 1+iΓ  be 

associated with a second design RDE 
1, 1/ 1, 1, / 1 1,( ) ( )+ + + + − += − − T

i k k i k i k k i kP A K C P A K C  

1, 1 1, 1+ + + ++ +T
i k i i k iK R K Q ,                      (12) 

in which 1+iQ  and 1+iR  denote the (i+1)th estimates of Q  
and R  respectively. From the Riccati comparison results in 

[17] – [21], if iJΓ  ≥ 1+iJΓ , i.e., if 
1−

⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦

T
i

T
i

Q A

A C R C
 ≥ 

1
1
1

+
−
+

⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦

T
i

T
i

Q A

A C R C
 and the design RDE (6) is suitably 

initialized then its solutions will be monotonic. Conditions 
for the monotonicity of the Kalman filter design error 
covariance and observed error covariance are now specified 
formally below. These conditions are used to establish the 
convergence of the EM algorithms described in Section III.  

Lemma 2.1 [19]: Suppose that: 
i) the data kz  has been generated by the model (1) – (2) 

in which 
A is known and its eigenvalues are inside the unit circle, 

C is known and the pair (A, C) is observable, and 
 ii) there exist estimates satisfying iR  ≥ R  and iQ  ≥ Q  

for i ≥ 1,  
Then: 

i) , 1/+i k kP ≥ , 1/+i k kΣ , 

ii) , /i k kP ≥ , /i k kΣ , and 

iii) 1+iR  ≥ iR , 1+iQ  ≥ iQ , 1,1+iP  ≥ ,1iP  => 1,i kP +  ≥ ,i kP  

(and equivalently iR  ≥ 1+iR , iQ  ≥ 1+iQ , ,1iP  ≥ 1,1+iP  => ,i kP  

≥ 1,+i kP ) 

∀ i ≥ 1. 
Thus the sequence of observed prediction and correction 

error covariances is bounded above by the design prediction 
and correction error covariances, which depend 
monotonically on iδ . Next it is argued that the sequence of 
the observed prediction and correction error covariances 
also depend monotonically on iδ . 

Lemma 2.2 [19]: Under the conditions of Lemma 2.1, 
i) 1+iR  ≥ iR , 1+iQ  ≥ iQ  => 1, 1/+ +i k kΣ  ≥ , 1/+i k kΣ  (and 

equivalently iR  ≥ 1+iR , iQ  ≥ 1+iQ  => , 1/i k k+Σ  ≥ 1, 1/i k k+ +Σ ), 
and 

ii) 1+iR  ≥ iR , 1+iQ  ≥ iQ   => 1, /+i k kΣ  ≥ , /i k kΣ  (and 

equivalently iR  ≥ 1+iR , iQ  ≥ 1+iQ  => , /i k kΣ  ≥ 1, /i k k+Σ ). 

III. ITERATIVE PARAMETER ESTIMATION 

A. Estimation of measurement noise variances 
This section describes the application of an EM algorithm 

(see [6] – [12]) to iteratively estimate the measurement noise 
variances. In respect of (1) - (2), assume that kv  ∈ p  
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consists of independent, zero-mean, white Gaussian, 
measurement noise sequences. Then (2) may be written as 

1,

2,

,

...

k

k

p k

z
z

z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

1

2

...

p

c
c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

kx + 

1,

2,

,

...

k

k

p k

v
v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  where  cj , j = 1,…,p, refers to 

the jth row of C. Denote the actual measurement noise 

covariance by R  = 

1

2

0 ... 0
0 ... 0
0 ... ... 0
0 ... 0 p

r
r

r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 where jr  = { }T
j jE v v  ∈ 

. From the approach of [20], it is assumed that ,j kz  ~  
N( j kc x , )jr , i.e., the probability density function of ,i jz  is 

, ,/ 2 1

1 1( ) exp{ (
2(2 )π =

= − ∑ N
j k j kN kjj

p z z
rr

2) }j kc x− . By setting 

,log ( )e j k

j

p z
r

∂

∂
 = 0, it is straightforward to show that an 

unbiased MLE for the jth measurement noise variance is 
given by 

,1

1 (
1 =

=
− ∑ N

j j kk
r z

N
2)j kc x− .               (13) 

Denote the estimated measurement noise covariance by 

iR  = 

,1

,2

,

0 ... 0
0 ... 0
0 ... ... 0
0 ... 0

i

i

i p

r
r

r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, where ,i jr  is the ith estimate of jr . 

Suppose that a Kalman filter designed with iR  has produced 

corrected state estimates, which are denoted by , /ˆ i k kx . Let 

, , /ˆ i j k kx  denote the jth component of , /ˆ i k kx . An EM algorithm 
for iteratively re-estimating iR  arises by a finite repetition of 
the following two-step procedure.  

Step 1)  Use a Kalman filter designed with iR  to 

calculate corrected state estimates , /ˆ i k kx . 

Step 2)  For j = 1,…,p, use , , /ˆ i j k kx  within (13)  to obtain 

1+iR . 
It is shown below that if the error covariance and 

measurement noise variance estimates are initialized 
appropriately then the sequence of subsequent estimates will 
be monotonically nonincreasing.  

Lemma 3.1 [19]: In respect of the above EM algorithm 
for estimating R , suppose for  j = 1,…, p and an i = 1 that: 

i) A is known and its eigenvalues are inside the unit circle, 
ii) C is known and the pair (A, C) is observable,  
iii) a iQ  ≥ Q   has been selected, and 
iv) some ,i jr  ≥ jr have been selected.  

Then  
i) 1,+i kP  ≤ ,i kP  and 
ii) 1+iR  ≤ iR  

∀ i ≥ 1. 
 It is known (e.g. see [11]) that when the estimation 

problem is dominated by measurement noise, that is, when 
the ratio of the measurement noise to the process noise 
intensities is large, the measurement noise variance 
iterations converge to the actual value. 

Lemma 3.2 [19]: Under the conditions of Lemma 3.1, 
additionally suppose that C is diagonal, Q and R-1 approach 
the zero matrix, then 

10, 0,−→ → → ∞i

Lim

Q R i iR R= .                   (14) 

B. Estimation of process noise variances 
In respect of (1) - (2), assume that kw  ∈ n  consists of 

independent, zero-mean, white Gaussian, measurement noise 
sequences. Let , 1j kx +  denote the jth row of 1kx + , then (1) 
may be written as 

1, 1

2, 1

, 1

...

k

k

n k

x
x

x

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

1

2

... k

n

a
a

x

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+ 

1,

2,

,

...

k

k

n k

w
w

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  where aj , j = 1,…, n, refers 

to the jth row of A. Denote the actual process noise 

covariance by Q = 
1

2

0 ... 0
0 ... 0
0 ... ... 0
0 ... 0 n

q
q

q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, where  jq  = { }T
j jE w w  

∈ . From the approach of [20], it is assumed that , 1+j kx  
~ N( j ka x , )jq , i.e., the probability density function of , 1j kx +  

is 
1

, 1 , 1/ 2 1

1 1( ) exp{ (
2(2 )π

−

+ +=
= − ∑ N

j k j kN kjj
p x x

qq
2) }j ka x− . By 

setting , 1( )j k

j

p x
q

+∂

∂
 = 0, it is straightforward to show that an 

unbiased MLE for the jth process noise variance is given by 
1

, 11

1 (
2

−

+=
=

− ∑ N
j j kk

q x
N

2)j ka x− .                 (15) 

Denote the estimated process noise covariance by 

iQ =

,1

,2

,

0 ... 0
0 ... 0
0 ... ... 0
0 ... 0

i

i

i p

q
q

q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, where ,i jq  is the ith estimate of jq . 

Suppose at iteration i that a Kalman filter designed with iQ  
has produced corrected state estimates, which are denoted by 

, /ˆ i k kx .  Let , , /ˆ i j k kx  denote the jth  row of , /ˆ i k kx . An EM 
algorithm for iteratively estimating Q  arises by repeating 
the following two-step procedure.  

Step 1)  Use a Kalman filter designed with iQ  to 
calculate corrected state estimates , /ˆ i k kx . 

Step 2)  For j = 1,…,n, use , , /ˆ i j k kx  and , , 1/ 1ˆ i j k kx + +  within 
(15) to obtain 1+iQ . 
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It is shown below that if the process noise variance 
estimate is initialized appropriately then the sequence of 
subsequent estimates will be monotonically nonincreasing. 

Lemma 3.3 [19]: In respect of the above EM algorithm 
for estimating Q , suppose for  j = 1,…, n and an i = 1 that: 

i) A is known and its eigenvalues are inside the unit circle, 
ii) C is known and the pair (A, C) is observable,  
iii) an iR  ≥ R   has been selected, and 
iv) some ,i jq  ≥ jq have been selected. 
Then 
i) 1,+i kP  ≤ ,i kP  and 
ii) 1+iQ  ≤ iQ  
∀ i ≥ 1. 
It is known that when the ratio of the process noise to the 

measurement noise intensities is large, the states are 
reconstructed exactly [11], in which case the process noise 
variance iterations converge to the actual value. 

Lemma 3.4 [19]: Under the conditions of Lemma 3.3, 
additionally suppose that C is diagonal and R approaches the 
zero matrix, then  

10, 0,−→ → → ∞

Lim

R Q i iQ Q= .                  (16) 
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Fig. 1. Normalized (1,1) component of Qi (solid line), normalized (2,2) 

component of Qi (dashed line), normalized (3,3) component of Qi (dot-
dashed line) and normalized (3,3) component of Qi (dotted line). 

IV. INERTIAL NAVIGATION APPLICATION 
Our team is engaged in developing inertial navigation 

systems to automate longwall shearers within underground 
coal mines. Inertial navigation systems are used to measure 
the coal face profile in three dimensional space. This 
information is used to keep the face straight, on track and in 
the seam. Strapdown inertial navigation systems (see [1] – 
[5]) possess three-axis accelerometer and gyro sensor 
assemblies. The sensor data is used to calculate estimates of 
the instantaneous orientation, velocity and position of a 
mobile platform. The modeling of orientation can be 
undertaken either by direction cosine matrices [1] – [4] or by 
quaternions [5]. Our development is based on the approach 

of [1] and employs direction cosine matrices and a tilt 
vector. 

A rotation of a body in three dimensional space can be 
represented by a simple rotation matrix for each Euler angle, 
namely yaw, pitch and roll. A direction cosine matrix is the 
product of these three rotation matrices. A standard 
calculation can be applied to transform the direction cosine 
matrix into a three dimensional tilt vector which is also 
known as the orientation vector (see [21] – [23]). 

Alignment is the process of estimating the Earth rotation 
rate and rotating the attitude direction cosine matrix, so that 
it transforms the body-frame sensor signals to a locally-level 
frame, wherein certain components of accelerations and 
velocities approach zero when the platform is stationary. 
This can be achieved via an alignment Kalman filter using 
the model 

1/+k kx  = / 1−k kAx  + ku ,                           (17) 

where, T
kx  = [ ,X kδω , ,γ X k , ,X kvδ , ,X krδ ]T, ,X kδω  ,γ X k , 

,X kvδ and ,X krδ  ∈  are the x components of the error in 
earth rotation rate, tilt, velocity and position vectors 
respectively, and µk  ∈ 4  is a deterministic signal which is 
a nonlinear function of the states (see [1]). The state 

transition matrix is given by A  = I  + sTΦ  + 21 ( )
2! sTΦ  + 

31 ( )
3! sTΦ , where Ts is the sampling period and Φ  = 

0 0 0 0
1 0 0 0
0 0 0
0 0 1 0

g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 is the continuous-time transition matrix, in 

which g is the universal gravitational constant. The output 
mapping within (2) is C  = [0 0 0 1] . It is demonstrated 
below that the EM algorithm described in Section IIIB can 
be used to estimate the unknown Q from measured data.  

Raw three-axis accelerometer and gyro data was recorded 
from a stationary Litton LN270 Inertial Navigation System 
at a 500 Hz data rate. From the conditions of Lemma 3.3, the 
initial parameter estimates and RDE solution need to be 
larger than the steady state values. That is, selecting 
arbitrarily large initial values will suffice. However, in order 
to generate a compact plot, the initial estimates were 
selected to be 10 times the steady state values. The diagonal 
components of Q, normalized by their value after 10 
iterations, are shown in Fig. 1. The figure demonstrates that 
approximate MLEs (13) can approach steady state values 
from above, which is consistent with Lemma 3.3.  

The estimated Earth rotation rate magnitude versus time is 
shown in [19]. At 100 seconds, the estimated magnitude of 
the of the Earth rate is 72.53 micro-radians per second, that 
is, one revolution every 24.06 hours. This estimated Earth 
rate is about 0.5% in error compared with the mean sidereal 
day of 23.93 hours.   

A comparison of the calculated yaw angle and that 
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reported by the LN270 is shown in Fig 2. It can be seen that 
the estimated yaw angle (indicated by the solid line) agrees 
with the yaw angle reported by the LN270 after 40 seconds 
(indicated by the dashed line). Since the estimated Earth rate 
and yaw angle are in reasonable agreement, it is suggested 
that the MLEs for the unknown Q are satisfactory.  
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Fig. 2. Estimated yaw angle (solid line) and LN270 reported yaw angle 
(dashed line). 

V. CONCLUSION 
This convergence of variance MLEs within an EM 

algorithm is investigated. It is established that: 
i) the sequence of  observed error covariances depend 

monotonically on the maximum likelihood variance 
estimates, 

ii) the maximum likelihood variance estimates depend 
monotonically on the observed error covariances,  

iii) when the process noise becomes negligible, the MLEs 
of the measurement noise variances asymptotically approach 
the actual values, and 

iv) when the measurement noise becomes negligible, the 
MLEs of the process noise variances asymptotically 
approach the actual values. 

An illustration is provided by an inertial navigation 
application, in which performance is reliant on accurate 
variance estimates.                       
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