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Abstract

In this paper, we present several dynamical systems for efficient

and accurate computation of optimal low rank approximation

of a real matrix. The proposed dynamical systems are gradi-

ent flows or weighted gradient flows derived from unconstrained

optimization of certain objective functions. These systems are

then modified to obtain power-like methods for computing a few

dominant singular triplets of very large matrices simultaneously

rather than just one at a time, by incorporating upper-triangular

and diagonal matrices. The validity of the proposed algorithms

was demonstrated through numerical experiments.

Keywords: SVD, Dynamical system, asymptotic sta-

bility, principal singular flow, Stiefel manifold, global
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1 Introduction

Many engineering problems can be formulated so that their solu-

tions are obtained from solving high dimensional singular value

decomposition problems. In many applications such as signal

processing,, image processing, and computational physics, the

matrices involved are usually large and sparse. Therefore, there

is a practical need for computing a few singular triplets of large

matrices efficiently and accurately.

Theoretically, bases for principal subspace can be obtained

via the singular value decomposition (SVD) of the data matrix.

However, the cost of computing SVD directly may be too high

for real-time applications where the data dimension is large.

Therefore, efficient principal subspace are needed to track or

estimate the desired subspaces.

There are many adaptive methods in the literature to obtain

SVD of a rectangular matrix. SVD dynamical systems are de-

veloped in [1]-[11]. Algorithms for computing smallest singular

triplets are proposed in [12]. Generalization of Oja’s algorithm

for obtaining the principal singular subspaces of a rectangular

matrix is considered in [13, 14]. Cross-correlation neural net-

work for extracting the cross-correlation features between two

high-dimensional data streams is developed in [15]-[17]. A num-

ber of power-based subspace algorithms are presented in [18].

The motivation for studying power-like methods for com-

puting principal singular components or subspaces is that they

are simple to implement and always converge when all nonzero

singular values are distinct. In general, if the nonzero singular

values of a data matrix A ∈ IRn×m, where m, n are positive

integers with n ≥ m, are σ1 ≥ · · · ≥ σp > σp+1 ≥ · · · ≥ σm,

then the speed of convergence of a power like method for com-

puting the principal p-dimensional subspace of A is dependent

on the ratio
σp+1

σp
. Slower convergence occurs when this ratio

approaches unity.

The following notation will be used throughout. The nota-

tion IR, and IN denote the set of real numbers, and the set of

positive integers, respectively. The transpose of a real matrix

is denoted by xT , and the derivative of x with respect to time

is written as x′. If B is a square matrix, then tr(B) denotes

the trace of B. The identity matrix of appropriate dimension is

expressed with the symbol I. Finally, the derivative of V (x, y)

with respect to time is denoted by V̇ . For any vector or matrix

x, the notation ||x|| denotes the Euclidean norm of x. In the

subsequent development, an algorithm will be said to converge

to the true singular value components if it produces a sequence

(x(k), y(k)) such that x(k)T x(k), y(k)T y(k), and x(k)T Ay(k)

converge to diagonal matrices.

2 Low-Rank Approximation

Let A ∈ IRn×m, where m, n ∈ IN with n ≥ m, be a

real matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σp >

σp+1 ≥ · · · ≥ σm ≥ 0 and the corresponding orthonor-

mal left and right singular vectors are U = [u1, · · · , um] and

V = [v1, · · · , vm], respectively. The matrices U and V are or-

thogonal, i.e., UT U = I and V T V = I. Thus A can be ex-

pressed as A =
∑m

k=1
σkukvT

k = UΣV T , where Σ is a diago-

nal matrix with diagonal elements σ1, σ2, · · · , σm. The expres-

sion Ap =
∑p

k=1
σkukvT

k
= UpΣpV T

p , p ≤ m, is known as

the low-rank p approximation of A in the sense of Frobenius

norm, where Up = [u1, · · · , up], Σp = diag(σ1, σ2, · · · , σp), and

Vp = [v1, · · · , vp].

Optimal low-rank approximation can be obtained by mini-

mizing the unconstrained cost function [10]

F1(x, y) =
1

2
tr(A − xyT )T (A − xyT ), (1)

where x ∈ IRn×p and y ∈ IRm×p. The gradient of F1 is

∇F1 =
1

2

[
−2Ay + 2xyT y
−2AT x + 2yxT x

]
. (2a)

The set of nonzero equilibrium point of this system consists

of points x̂ = Up̄α and ŷ = Vp̄β for some nonsingular matri-

ces α and β. Here Up̄ = [ui1 , · · · , uip ], Vp̄ = [vi1 , · · · , vip ],
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and UT
p̄ AVp̄ = Σp̄, where i1, · · · , ip ∈ {1, 2, · · · ,m}. More-

over, Σp̄β = αβT β and Σp̄α = βαT α. This implies that

Σp̄ = αβT = βαT . There is no guarantee that α or β is

diagonal as in the following example. Let α =

[
1 1
3 2

]
and

β =

[
2 1
−3 −1

]
. Clearly aβT = βαT =

[
−1 0
0 1

]
, but neither

α nor β is diagonal.

The corresponding dynamical system
[

x′

y′

]
= −

[
−Ay + xyT y
−AT x + yxT x

]
=

[
Ay − xyT y

AT x − yxT x

]
, (2b)

converges to the low-rank approximation of order p for the ma-

trix A. Clearly, the system (2b) is stable since the function

F1(x, y) may be chosen as a Lyapunov function [19]. In this

case F1(x, y) ≥ 0 and Ḟ1 = −(∇F1)T (∇F1) ≤ 0. Under mild

conditions on the initial matrices, x(0) and y(0), one can show

that x(t) → x̂ and y(t) → ŷ, where x̂ and ŷ have same ma-

trix rank as x(0) and y(0), respectively, and ∇F1(x̂, ŷ) = 0.

The solution (x̂, ŷ) is not unique and is dependent on the

initial matrices. Clearly, x̂ = Uα and ŷ = V β for some

nonsingular matrices α and β. After some manipulations, it

follows that (x̂T x̂)
−1
2 x̂T Aŷ(ŷT ŷ)

−1
2 (x̂T x̂)

−1
2 x̂T Aŷ(ŷT ŷ)

−1
2 =

(x̂T x̂)
1
2 (ŷT ŷ)

1
2 = (αT α)

1
2 (βT β)

1
2 . Hence the singular values of

the matrix (x̂T x̂)
1
2 (ŷT ŷ)

1
2 are the largest p singular values of the

matrix A. However, since the matrices (x̂T x̂)
−1
2 x̂T Aŷ(ŷT ŷ)

−1
2 ,

(x̂T x̂)
1
2 , and (ŷT ŷ)

1
2 are generally not diagonal, additional com-

putations involving p × p matrices are needed to determine the

singular values. This is summarized in the following result.

Proposition 1. Let (x(t), y(t)) be a solution of (2b) in the

interval [0, ∞), where x(0) = x0 and y(0) = y0. Let P,Q, and

Â be defined as P = limt→∞ x(t)T x(t), Q = limt→∞ y(t)T y(t),

and Â = limt→∞ x(t)T Ay(t). Then,

Â = PQ,

ÂT = QP,

x̂T AAT x̂ = PQP,

ŷT AT Aŷ = QPQ.

Moreover, there exist nonsingular p × p matrices α and β such

that Σp = αβT = βαT , αT Σpβ = αT αβT β = αT βαT β =

(αT β)2, and

(αT α)
−1
2 αT Σpβ(αT α)

−1
2 = (αT α)

1
2 (βT β)

1
2 .

Remark 1: The dynamical system (2b) can also be obtained

by maximizing the unconstrained cost function

F2(x, y) = tr(xT Ay) −
1

2
tr{xT xyT y} (3)

over full rank matrices x ∈ IRn×p and y ∈ IRm×p.

Remark 2: In (3), if x is chosen to be orthogonal, i.e., xT x =

Ip, one may use optimization theory over Stiefel manifold [20]

to obtain the dynamical system:

x′ = Ay − xyT y − xyT AT x + xyT y,

y′ = AT x − y.
(4)

Similarly, if y is chosen to be orthogonal in (3), then we obtain

the dynamical system:

x′ = Ay − x,

x′ = AT x − yxT x − yxT Ay + yxT x.
(5)

Let x(0) = x0 and y(0) = y0 are full rank matrices, and let

(x(t), y(t)) be a solution of (4) or (5) in the interval [0, ∞),

and let x̂ = limt→∞ x(t) and ŷ = limt→∞ y(t), then x̂T Aŷ =

ŷT ŷ in (4), or x̂T Aŷ = x̂T x̂ in (5). This shows that x̂T Aŷ is

symmetric and positive definite. Thus the dynamical systems

(4) and (5) converge to the p largest singular values of A given

by the eigenvalues of (x̂T x̂)
1
2 or (ŷT ŷ)

1
2 .

3 Power-Like Methods

Since the matrices xT x and yT y are positive definite, it follows

from the theory of gradient dynamical systems, that the conver-

gence behavior of the system

x′ = Ay(yT y)−1 − x,

y′ = AT x(xT x)−1 − y,
(6)

are similar to that of the system (2b), i.e., both systems (2b)

and (6) have same equilibrium points. Using Euler’s method, a

discrete version of the system (6) is

x(k + 1) = x(k) + γ{Ay(k)(y(k)T y(k))−1 − x(k))},

y(k + 1) = y(k) + γ{AT x(k)(x(k)T x(k))−1 − y(k)},
(7)

where 0 < γ ≤ 1 is a stepsize. If γ = 1 is used in (7), the

following algorithm is obtained:

x(k + 1) = Ay(k)(y(k)T y(k))−1 ,

y(k + 1) = AT x(k)(x(k)T x(k))−1.
(8)

This is a power-like method which converges from any full rank

initial matrices (x0, y0). Numerical simulations have indicated

that (8) converges even if the initial matrices (x0, y0) are not full

rank, provided the inverse operations in (8) are replaced with

generalized Moore-Penrose inverses. In other words, if x(t) → x̂

and y(t) → ŷ, then x̂ and ŷ have same matrix rank as x(0)

and y(0), respectively. In practical implementation of (8), one

may start with iteration (7) using 0 < γ < 1 for the first few

iterations, then switch to γ = 1 to speed up convergence.

The solution (x̂, ŷ) = (x(∞), y(∞)) is not unique in that it is

dependent on the initial matrices. Additionally, the iteration (8)

only produces an arbitrary basis of the p-dimensional principal

singular subspace. With a slight modification of (8), this power-

like method could produce the actual low rank SVD. The power

method for SVD is given as in the following algorithm:

xk+1 = Ay(k)Tri((y(k)T y(k))−1),

yk+1 = AT x(k)Tri((x(k)T x(k))−1).
(9)

Here the notation Tri(X) represents the upper triangular part

of X, i.e., X = Tri(X) + L, where L is lower diagonal ma-

trix with zero elements on its diagonal. Simulations have shown

that x(k)T x(k), y(k)T y(k) and x(k)T Ay(k) converge to diago-

nal matrices as k → ∞, i.e., the system (9) converges to the true

singular value components of A.

To prove this property for (9), let (x(k), y(k)) be a se-

quence generated by (9) with initial matrices (x(0), y(0)). As-

sume also that x(0)T Up and y(0)T Vp are nonsingular. Let

P = limk→∞ x(k)T x(k), Q = limk→∞ y(k)T y(k), and Â =

limk→∞ x(k)T Ay(k). Assuming that P and Q are invertible,

then the matrices P and Q may be expressed as a sum of lower

and upper triangular matrices as follows:

P−1 = U1 + L1 = UT
1 + LT

1 ,
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Q−1 = U2 + L2 = UT
2 + LT

2 ,

where U1 = Tri(P−1) and U2 = Tri(Q−1). The matrices L1 =

P−1 − Tri(P−1) and L2 = Q−1 − Tri(Q−1) are stricktly lower

triangular. From (9), we have

P = ÂU2,

Q = ÂT U1.

Since P and Q are symmetric,

P−1 = U−1
2 Â−1 = Â−T U−T

2 ,

Q−1 = U−1
1 Â−T = Â−1U−T

1 .

Therefore, the following equations hold

U1 + L1 = Â−T U−T
2 ,

U2 + L2 = Â−1U−T
1 ,

U1UT
2 + L1UT

2 = Â−T ,

U2UT
1 + L2UT

1 = Â−1.

The last two equations imply that

U1UT
2 + L1UT

2 = U1UT
2 + U1LT

2 ,

or equivalently,

L1UT
2 = U1LT

2 .

Since L1UT
2 and U1LT

2 are upper and lower triangular matri-

ces, respectively, and L1 and L2 are stricktly lower triangular

matrices, then

L1UT
2 = U1LT

2 = 0.

Since U1 and U2 are invertible by the assumption that Â+ÂT is

positive definite, then L1 = 0, and L2 = 0. Consequently, P =

D1, Q = D2, and Â = D1D2, where D1 and D2 are diagonal

matrices. Assume that x̂ = limt→∞ x(t), ŷ = limt→∞ y(t), then

x̂ = UpD
1
2
1 , ŷ = VpD

1
2
2 , and Σp = D

1
2
1 D

1
2
2 .

Remark 3: Another gradient dynamical system follows from

the optimization problem

Maximize F3(x, y) = tr{(xT Ay −
1

2
(xT x + yT y)2}, (10)

where x ∈ IRn×p and y ∈ IRm×p. Note that F3 is a slight modi-

fication of F1. The corresponding gradient dynamical system is

modified and given by

x′ = AyTri((xT x + yT y)−1) − x,

y′ = AT xTri((xT x + yT y)−1) − y.
(11)

Let x(t) and y(t) be a solution of (11) in the interval [0, ∞),

where x(0) = x0 and y(0) = y0 are full rank. Assume that P,Q,

and Â are as defined previously. Then

P = ÂU1,

Q = ÂT U1.

where U1 = Tri((P + Q)−1), i.e.,

(P + Q)−1 = U1 + L1 = UT
1 + LT

1 ,

where L1 is lower diagonal matrix. This imply

P + Q = (Â + ÂT )U1,

(P + Q)−1 = U−1
1 (Â + ÂT )−1 = UT

1 + LT
1 ,

(Â + ÂT )−1 = U1UT
1 + U1LT

1 = U1UT
1 + L1UT

1 .

Consequently,

U1LT
1 = L1UT

1 .

Since U1LT
1 and L1UT

1 are upper- and lower-triangular matrices,

respectively, it follows that

L1 = 0, (P + Q)−1 = U1.

The symmetry of P + Q yields

(P + Q)−1 = D.

Here D is a diagonal matrix whose diagonal elements are those

of (P +Q)−1. Now, D−1 = P+Q = (Â+ÂT )U1 = (Â+ÂT )D =

D(Â + ÂT ). This implies that

Â + ÂT = D1 = D−2,

for some diagonal matrix D1. To show that Â is diagonal, we

have

ÂD = DÂT = D(D1 − Â),

or

ÂD + DÂ = DD1.

Therefore,

Â = D2,

for some diagonal matrix D2. Hence

Â =
D1

2
,

where

D1 =
D−2

2
.

A discrete version of (11) is given as

x(k + 1) = x(k) + γ{Ay(k)Tri((x(k)T x(k) + y(k)T y(k))−1)

− x(k)},

y(k + 1) = y(k) + γ{AT x(k)Tri((x(k)T x(k) + y(k)T y(k))−1)

− y(k)},
(12)

where 0 < γ ≤ 1 is a stepsize. When γ = 1, (12) transforms

into a power-like method:

x(k + 1) = Ay(k)Tri((x(k)T x(k) + y(k)T y(k))−1),

y(k + 1) = AT x(k)Tri((x(k)T x(k) + y(k)T y(k))−1).
(13)

4 Diagonalization Using A Weight Ma-
trix

The cost function (1) may be modified so that

(x̂T x̂)
−1
2 x̂T Aŷ(ŷT ŷ)

−1
2 , (x̂T x̂)

1
2 , and (ŷT ŷ)

1
2 converge to di-

agonal matrices. This can be accomplished by incorporating a

weight matrix D which is diagonal and all its diagonal elements

are distinct. Thus consider the cost function F4 defined as

F4(x, y) = tr(xT AyD) −
1

2
tr{xT xyT y}, (14)

where x ∈ IRn×p and y ∈ IRm×p. D is a diagonal matrix whose

eigenvalues are distinct and positive.

The gradient of F4 is

∇F4 =

[
AyD − xyT y

AT xD − yxT x

]
, (15)

from which we obtain the gradient dynamical system

x′ = AyD − xyT y,

y′ = AT xD − yxT x.
(16)
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If x(0) and y(0) are full rank, the system (16) converges to the

low-rank approximation of order p for the matrix A. Clearly,

the system (16) is stable since the function −F4(x, y) is bounded

below and radially unbounded. The main difference between the

systems (2b) and (16) is that the one in (16) converges to the

true singular triplets.

Let x(t) and y(t) be a solution of (16) in the interval

[0, ∞), where x(0) = x0 and y(0) = y0 are full rank. Let

P = limt→∞ x(t)T x(t), Q = limt→∞ y(t)T y(t), and Â =

limt→∞ x(t)T Ay(t). Note that P,Q, and Â exists since the sys-

tem (16) is stable. Then

ÂD = PQ,

ÂT D = QP.

Since P and Q are symmetric, then

ÂD = DÂ.

From the assumption that all eigenvalues of D are distinct, it

follows from Proposition 2 that Â = D1 for some diagonal ma-

trix D1. Consequently, PQ = QP = D1. If all eigenvalues of Â

are distinct, Proposition 4 guarantees that

P = D3, Q = D4,

for some diagonal matrices D3 and D4. This means that P , Q

and Â are diagonal and therefore, Up = x̂D
−1
2

3 , Vp = ŷD
−1
2

4 ,

and Σp = D
−1
2

3 x̂T AŷD
−1
2

4 .

One may use the equation ∇F4 = 0 to derive the following

power-like method:

xk+1 = Ay(k)D(y(k)T y(k))−1,

yk+1 = AT x(k)D(x(k)T x(k))−1.
(17)

Let {(x(k), y(k)}∞k=0 be a sequence generated by the system

(17) where x(0) = x0 and y(0) = y0 are given to be full rank.

Also, let P = limt→∞ x(t)T x(t), Q = limt→∞ y(t)T y(t), and

Â = limt→∞ x(t)T Ay(t). Then, (17) implies that

ÂD = PQ,

ÂT D = QP.

The last two equations yield

ÂD = DÂ.

From the assumption that all eigenvalues of D are distinct, it fol-

lows from Proposition 2 that Â = D1 for some diagonal matrix

D1. Hence,

PQ = QP = D1.

If all diagonal elements of D1 are distinct, then

P = D3, Q = D4,

and hence,

x̂ = UpD
1
2
3 ,

ŷ = VpD
1
2
4 .

Remark 4: Another gradient dynamical system follows from

the optimization problem

Maximize F5(x, y) = tr{(xT AyD −
1

2
(xT x + yT y)2}, (18)

where x ∈ IRn×p and y ∈ IRm×p. Here D is a diagonal matrix

and all its eigenvalues are distinct. Note that F5 is a slight mod-

ification of F3. The corresponding gradient dynamical system

is given by

x′ = AyD − x(xT x + yT y),

y′ = AT xD − y(xT x + yT y).
(19)

Let x̂ = limt→∞ x(t), ŷ = limt→∞ y(t), and let P,Q, Â be

as defined above. Then

ÂD = P (P + Q),

ÂT D = Q(P + Q).
(20)

The equations of (20) imply that

ÂÂ−T = PQ−1.

Let R be a matrix defined by R = PQ−1, then

Â = RÂT . (21a)

Equation (21a) yields

Â(I − RT ) + (I − R)ÂT = 0. (21b)

The next step is to show that R = I under the assumption that

Â+ ÂT is positive definite. Since P and Q are positive definite,

then the eigenvalues of R are all real with corresponding real

eigenvectors. Thus assume that λ is an eigenvalue of RT with

associative right eigenvector z, then RT z = λz. Pre- and post-

multiplying the left and right sides of the equation (21b) by zT

and z respectively, give

zT Âz(1 − λ) + zT ÂT z(1 − λ) = 0,

and hence

(1 − λ){zT Âz + zT ÂT z} = 0.

Since Â + ÂT is positive definite by assumption, it follows that

λ = 1. i.e., each eigenvalue of R is equal to 1. The eigen-

values of PQ−1 = R are same as those of P
1
2 Q−1P

1
2 . Since

each eigenvalue of the symmetric matrix P
1
2 Q−1P

1
2 is 1, then

P
1
2 Q−1P

1
2 = I and hence P = Q, R = I. This shows

that Â is symmetric. Now, the equations of (20) simplify to

ÂD = 2P 2 = DÂ. Since all eigenvalues of D are distinct,

it follows from Proposition 2 that Â = D1, and consequently,

P = Q =

√
DD1
2

. This shows that P,Q, and Â are diagonal.

5 Numerical Experiments

In order to verify that the dynamical systems and power-like

methods, which are proposed in the previous sections, converge

to the true singular vectors of the data matrix A, a few numerical

examples are provided. The first experiment is to compute the

largest six singular values of a matrix A of size 70 × 70 using

the power like method (9). The matrix A is generated randomly

with singular values (in decreasing order) as given.

14.5318 14.2656 13.7690 13.3242 13.0242 12.5197 12.5064

12.1766 11.9105 11.6099 11.3957 11.2249 10.8717 10.6580

10.5067 10.3144 10.1320 9.8869 9.6993 9.3254 9.0150 8.7069

8.5200 8.3468 8.2616 7.8747 7.8367 7.5584 7.3931 7.2216 7.0510

6.9850 6.7580 6.4006 6.2288 6.0383 5.8459 5.5437 5.4306 5.2177

5.0972 4.9270 4.8632 4.7497 4.4700 4.1268 4.0707 3.8745 3.6793

3.2429 3.0531 2.9417 2.7391 2.5303 2.3154 2.1925 2.1571 1.9277

1.6832 1.3921 1.1618 1.0600 0.9830 0.8741 0.5887 0.4864 0.3642

0.1808 0.0000 0.0000.

Note there is very little separation between two adjacent sin-

gular values. Figure 1 shows the convergence to the six largest
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singular values of A. As can be seen in the Figure, larger sin-

gular values require less number of iterations to converge. We

also examined the matrices xT x, yT y and xT Ay and noted that

they are diagonal after convergence. The number of iterations

was 920.

The values to which the algorithm converges to are: 14.5318,

14.2656, 13.7690, 13.3242, 13.0242, 12.2793.

Figure 1: A plot showing the number of iterations

versus six singular value approximation.

These are obtained via algorithm (11)

Figure 2: A plot showing the number of iterations

versus six singular value approximation.

These are obtained via algorithm (19)

The second experiment involves computing the largest six

singular values of a 70 × 70 randomly generated matrix B with

singular values (in decreasing order) are as given below.

11.6099 11.3957 11.2249 10.8717 10.6580 10.5067 10.3144

10.1320 9.8869 9.6993 9.3254 9.0150 8.7069 8.5200 8.3468 8.2616

7.8747 7.8367 7.5584 7.3931 7.2216 7.0510 6.9850 6.7580 6.4006

6.2288 6.0383 5.8459 5.5437 5.4306 5.2177 5.0972 4.9270 4.8632

4.7497 4.4700 4.1268 4.0707 3.8745 3.6793 3.2429 3.0531 2.9417

2.7391 2.5303 2.3154 2.1925 2.1571 1.9277 1.6832 1.3921 1.1618

1.0600 0.9830 0.8741 0.5887 0.4864 0.3642 0.1808 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

This experiment is carried out with 6-dimensional vector us-

ing the power-like method (19). The stepsize is γ = 0.09 and

matrix D is given below:

D=

0.7635 0 0 0 0 0

0 1.3055 0 0 0 0

0 0 0.8288 0 0 0

0 0 0 0.9740 0 0

0 0 0 0 0.8840 0

0 0 0 0 0 0.4626

Figure 2 shows the convergence to the six largest sin-

gular values of B. As can be seen in the Figure, larger

singular values require less number of iterations to con-

verge. This algorithm converges to the following values.

{11.6099, 11.3957, 11.2249, 10.8707, 10.6350, 10.3149}.
We also examined the matrices xT x, yT y and xT Ay and

noted that the off-diagonal elements are small in magnitude but

are not substantially close to zero as those in Experiment 1. In

both experiments, x(0) and y(0) are randomly generated.

6 Conclusion

A number of principal singular subspace methods are derived

and analyzed. These methods are based on dynamical systems

which are derived using constrained and unconstrained opti-

mization methods. Different dynamical systems are obtained

by weighting a given system with a diagonal matrix, or by using

upper triangular matrices. Some of the proposed flows gen-

eralize Oja’s principal component flow and other known flows

for singular value decomposition. Further analysis is needed to

explore numerical stability and convergence. Extension of the

proposed rules to complex data and matrices can be achieved

with minor modifications.

7 Appendix

Finally, we state a few results which are essential for the deriva-

tions of the proposed methods.

Proposition 2. Let D,C ∈ IRn×n such that D is diagonal

having distinct eigenvalues. If CD = DC, then C is diagonal.

Proposition 3. Let A,B ∈ IRn×n be real matrices such that

AT = A, and all eigenvalues of A are distinct. If AB = BA,

then BT = B.
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Proof. Post-multiplying both sides of the equation AB = BA

by BT , yields

ABBT = BABT .

Thus ABBT is symmetric, i.e.,

ABBT = BBT A.

Let

A = ZΣ1ZT ,

where Z is orthogonal and Σ1 is diagonal. This implies that

ZΣ1ZT BBT = BBT ZΣ1ZT ,

or equivalently,

Σ1ZT BBT Z = ZT BBT ZΣ1.

Since all eigenvalues of Σ1 are distinct, Proposition 2 guarantees

that ZT BBT Z = Σ2
2, where Σ2 is diagonal. Hence

BBT = ZΣ2
2ZT ,

and therefore,

B = ZΣ2α,

for some orthogonal matrix α, i.e., αT α = Ip. Now AB = BA

implies that

ZΣ1ZT ZΣ2α = ZΣ2αZΣ1ZT ,

or

Σ1αZ = αZΣ1.

Since all eigenvalues of Σ1 are distinct, Proposition 2 guarantees

that αZ = Σ3, where Σ3 is diagonal. Note that αZ = Σ3 is

orthogonal matrix and thus

Σ2
3 = I.

The matrix α is then determined as

α = Σ3ZT ,

and consequently,

B = ZΣ2Σ3ZT .

Thus B is symmetric.

Proposition 4. Let A, B,D ∈ IRn×n be symmetric matrices

such that D is diagonal and AB = D. If all eigenvalues of D

are distinct, then A and B are diagonal.

Proof. Clearly, AD = A2B = BA2 = DA and BD = B2A =

AB2 = DB. Since all eigenvalues of D are distinct, Proposition

2 implies that A and B are diagonal.
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