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Abstract— Metabolic networks map the biochemical reactions
in a living cell to the flow of various chemical substances in
the cell, which are called metabolites. A standard model of a
metabolic network is given as a linear map from the reaction
rates to the change in metabolites concentrations. We study
two problems related to the analysis of metabolic networks, the
minimal network problem and the minimal knockout problem.

The minimal network problem amounts to finding the
smallest set of reactions that can sustain the production of
a metabolite. The minimal knockout problem deals with the
question of finding the smallest set of knockouts (reactions
with zero rates) that renders the production of a metabolite
infeasible.

In this paper we present a convex relaxation technique that
results in a very fast computation for the solution to both
problems. We also demonstrate that the minimal knockout
problem is related to the dual of the minimal network problem.

I. INTRODUCTION

Biology is undergoing a paradigmatic shift that brings

about a quantitative and analytic facet to the field which

was primarily qualitative. The approach to biology that

highlights the use of quantitative models and reasoning based

on systems and control theory leads to the field of systems

biology. There are many problems in systems biology that

are essentially engineering problems, and require engineering

mindset to solve.

Experimental data from cellular and molecular biology

suggest that entities in cellular systems influence one another

and can be thought of as forming a vast and complex net-

work. Network structures in systems biology appear in many

levels, for example, genetic regulatory network, protein-

protein interaction, and metabolic networks.

Gene regulatory networks capture interactions between

genes and other cell substances, resulting in various models

for the fundamental biological process of transcription and

translation. In many cases, the product of the genes are

enzymes that facilitate various biochemical reactions in the

cell.

Metabolic networks map the biochemical reactions in a

living cell to the flow of various chemical substances in the

cell, which are called metabolites. The metabolic network of

an organism can be thought of as production lines in a large

scale biochemical plant. They capture the metabolic reactions

in which metabolic products are made, and the reactants that

are involved. Analysis of a metabolic network is important

when we want to engineer the organism to function as a

biofactory [1]. This is done by altering the metabolic network
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(by means of reaction knockout) so as to make it produce

certain products and/or not to produce certain other products.

Reaction knockouts typically correspond to disabling the

genes that produce the necessary enzyme for the reactions

involved.

Genome scale metabolic network models enable in silico

knockout experiment design for the purposes of metabolic

engineering, drug discovery, and improving the systems-

level understanding of metabolism. Current approaches to

the study of such networks employ an analysis of feasible

and optimal reaction fluxes through the network at steady

state, subject to structural, thermodynamic, and flux capacity

constraints [2], [3]. Structural constraints arise from the

stoichiometry of the metabolic reactions, thermodynamic

constraints are imposed by the irreversibility of certain

metabolic reactions, while flux capacity constraints can be

derived from the availability of nutrients, the existence of a

knockout, and biochemical data on the maximum throughput

of enzymes. Finally, the steady state assumption follows

from time-scale separation between rapid metabolic reactions

and slower environmental and cellular regulatory changes.

Given such constraints, the flux configuration through the

network is limited to a feasible region, which can be checked

for non-emptiness to characterize the production capacity

of the network [4], [5], can be analyzed to find points

that maximize biomass production [6], [7], [2] or minimize

metabolic adjustment [8], [9].

Metabolic networks are characteristic in their high degree

of robustness to single reaction knockout [10], [11], [12],

[13]. Though this limits the number of simple targets for

metabolic engineering or pharmaceutical intervention, it al-

lows for the possibility that multi-pronged perturbations may

be effective in compromising the inherent redundancy of this

cellular system. Currently, the primary method for genome-

scale in silico knockout design is flux balance analysis,

which uses linear programming (LP) to exhaustively test

the metabolic capabilities of all single, double, triple, etc.

knockout combinations. This ”brute force” linear program-

ming approach is computationally limited to the testing

of small (less than 3-5 reactions) knockout combinations

[13]. The minimal cut set (MCS) algorithm of Klamt and

Gilles is an ”rational” network-based approach for knockout

experiment design; however, it is intractable for large (i.e.

genome-scale) metabolic networks due to the computational

complexity of elementary mode computation [14], [15].

Imielinski and Belta have recently introduced NetKO, a

relaxed implementation of Klamt and Gilles’ method that

scales to arbitrarily large metabolic networks; however, this

method does not guarantee the discovery of a knockout

combination with a given desired property [16]. Finally,

a related work employs mixed integer linear programming

(MILP) to uncover minimal knockout combinations that
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achieve a certain network objective [17], [18], [19]. This

approach is limited primarily by the computational difficulty

associated with solving high-dimensional MILPs.

In this paper, we introduce a fast convex-programming

approach for analyzing genome-scale metabolic networks.

Specifically, our method solves either of two following

problems: 1) minimal network problem: finding minimal sets

of reactions that can sustain a desired function, 2) minimal

knockout problem: finding minimal sets of reactions that can

be disabled to abolish an undesired function. Like MILP-

based approaches, we formulate the task of knockout gener-

ation using an integer-valued objective function and integer-

valued constraints. However, rather than solving the resulting

MILP, we employ a convex relaxation of the problem to

generate an approximate solution that we subsequently verify

and refine via LP. As we show below, our method provides

an efficient and scalable approach for knockout computation

in genome-scale metabolic networks.

II. MATHEMATICAL MODEL

Consider a metabolic network with n metabolites and nr

reactions. The k-th reaction can be written as

α1,kA1 + . . . + αn,kAn → β1,kA1 + . . . + βn,kAn, (1)

where Ai denotes the i-th metabolite, and α•,k and β•,k are

nonnegative integers that denote the stoichiometric coeffi-

cients of the k-th reaction. Obviously, if Ai is not involved

as a reactant in the k-th reaction, αi,k = 0. Similarly, if Ai

is not involved as a product in the k-th reaction, βi,k = 0.

In regular reactions, we have

α•,k 6= 0n, (2a)

β•,k 6= 0n, (2b)

which means that there is always some reactant and product

associated with the reaction. Here we assume that all reac-

tions are irreversible. Notice that that this is done without any

loss of generality since reversible reactions can be written as

two opposite irreversible reactions.

In addition to the regular reactions, we also have uptake

reactions. These are reactions that can be written as

∗ → Ai, (3)

which models the uptake of a metabolite Ai from the envi-

ronment. Notice that uptake reactions can also be expressed

as in (1), without the restriction of (2a).

If we denote the concentration of the i-th metabolite as

xi and the rate of the k-th reaction as ωk, then it is easy to

show that x and ω are related through

dx

dt
= (β − α)ω, ω º 0, (4)

where β and α are n×nr matrices formed by the coefficients

of (1). The symbol º denotes elementwise inequality.

In microbes, the transient dynamics of the metabolic

network is faster than both cellular growth rates and the

dynamic changes in the organism’s environment [20]. In

analysing the network, thus, it is assumed that it is in its

steady state. In steady state condition, the rate dx
dt

must be

elementwise nonnegative. This is because the cell can act

as a perpetual sink, but not as a perpetual source (without

any uptake). Thus, in steady state condition the following

relations hold.

(β − α)ω −
dx

dt
= 0, (5a)

ω º 0,
dx

dt
º 0. (5b)

We can write (5) in a more compact manner by introducing

pseudoreactions as sinks. These are reactions that can be

written as

Ai → ∗. (6)

We associate a sink for every metabolite. Thus, there are

n pseudoreactions. Equation (5) can therefore be written

compactly as

Sv = 0, v º 0, (7)

where

S :=
[

β − α −I
]

∈ Z
n×m
+ , v :=

[

ω
dx
dt

]

∈ R
m, (8)

with m := n + nr. Such a model for metabolic networks

constitutes an analysis method known as the flux balance

analysis [20], [21].

III. CONVEX OPTIMIZATION IN METABOLIC NETWORK

ANALYSIS

A. Minimal network problem

In this paper, we are interested in two types of problems in

metabolic network analysis. The first problem is called the

minimal network problem. Mathematically, this problem is

related to finding the minimal set of reactions that can sustain

growth under certain environmental nutrient conditions.

Definition 3.1 (Minimal metabolic network problem):

Given a model of a metabolic network as in (7), a set

of target products P , and a set of uptake reactions U ,

determine the smallest set of reactions (regular and uptake)

that can sustain the production of P without involving any

reaction in U .

The set U defines the nutrient metabolites that are absent

in the environment. In this problem, thus, we are interested

in finding out the smallest set of reactions that can lead

to the production of products in P without using any U
uptake. An answer to this question leads to knowledge about

the minimum genome that is required to sustain growth and

replication of the organisms [22].

It is well known that set inclusion defines a partial order-

ing. Thus, generally there is not a unique solution for such a

problem. We are interested in enumerating the solutions. The

problem can be cast as an optimization problem as follows.

minimize card(v), (9)

subject to Sv = 0, v º 0,

vi∈P ≻ 0, vi∈U = 0.

The symbol card(v) denotes the cardinality of the vector

v, which is the number of nonzero entries of v. The same

operation is sometime called the ℓ0 norm of a vector, denoted

by ‖·‖0.
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The optimization problem defined in (9) involves a non-

convex objective function and convex constraints. This type

of problem is known as convex cardinality problem [23].

Finding an exact solution to this kind of problems involves

mixed integer linear programming (MILP) [22], [24], and it

is known to have NP-Hard complexity.

There exist convex relaxation methods for this type of

problems [23]. We have succesfully applied the relaxation

technique in another systems biology problem, the identi-

fication of sparse biomolecular networks [25], [26]. Sim-

ilar program has been carried out independently by Pa-

pachristodoulou and Recht [27] and Han et al [28].

The algorithm for the relaxation of (9) is given as an

iteration as follows:

Algorithm 1 Convex relaxation for minimal network prob-

lem

Require: A stoichiometric matrix S, a set of target products

P , and a set of uptake reactions U
1: Initialize the weight w(1) = [1, . . . , 1] ∈ R

m, and the

counter k = 1.
2: repeat

3: Solve the Linear Programming problem for some

small number ε > 0:

minimize

m
∑

i=1

w
(k)
i v

(k)
i , (10)

subject to Sv(k) = 0, v(k) º 0,

v
(k)
i∈P ≻ ε, v

(k)
i∈U = 0,

to find the flow for the k−th iteration, v(k).
4: Update weight according to

w
(k+1)
i = φ(v

(k)
i ), (11)

where

φ(x) :=
δn

δn + xn
, (12)

5: until
∥

∥v(k) − v(k−1)
∥

∥ ≤ δ, where δ > 0 is a small

number that indicates the convergence of the iteration.

The update function φ(·) in (12) is parameterized by δ
and n. See Figure 1 for different shapes of the function for

different parameters.

The intuition behind the algorithm can be explained as

follows. We replace the ℓ0 norm objective function with a

weighted ℓ1 objective function. The weight w is adjusted at

every iteration so that elements of the flow vector v that are

small are given more weight than large elements (see Figure

1). Thus, we put more emphasis on driving small elements

to zero.

Example 3.2: Consider a small metabolic network with 8

metabolites as follows.

A + B
(1)
→ E,A + C

(2)
→ F,C + D

(3)
→ G,

E + A
(4)
→ H,F + C

(5)
→ H,G + C

(6)
→ H,

∗
(7)
→ A, ∗

(8)
→ B, ∗

(9)
→ C, ∗

(10)
→ D.
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Fig. 1. The shapes of the update function φ(x) for different parameters.

Reactions (7-10) represent the uptake of nutrients from

the environment. We append this list of reactions with 8

pseudoreactions corresponding to the 8 metabolites. We want

to find the smallest network that can sustain the production

of metabolite H in the absence of metabolite D. Following

(9), this problem can be cast as

minimize card(v), (13)

subject to Sv = 0, v º 0,

v18 ≻ ε, v10 = 0,

where S is the stoichiometric matrix of the network. We

compute a solution to this problem with Algorithm 1, and

in less than a few seconds obtain {1, 4, 7, 8} as a result. We

can easily (manually) verify that it is indeed impossible to

produce H with fewer than 4 reactions.

As mentioned earlier, the minimal network problem gen-

erally does not admit a unique solution. We are interested

in generating multiple minimal solutions. This is done by

adding a constraint in the optimization problem that makes

sure that it does not generate a solution that is already known.

Consider the problem shown in (9). Suppose that C is known

minimal set of reactions that we wish to exclude from the

search. We can add a constraint
∑

i∈C∗

vi ≥ ε (14)

into the optimization problem. Here C∗ = (C ∪ U)
c

and ε
is some positive number. The idea behind the constraint in

(14) is intuitive. We basically force the nullified flows not

to be all zero. Notice that this constraint is actually convex,

so it can be readily incorporated into the convex relaxation

(10).

There is a possibility that the optimization solver will just

add a reaction to the minimal set C so that (14) is satisfied.

We therefore need to check if the new solution is indeed a

minimal set. Suppose that the new solution nullifies a set of

reaction N , then checking the minimality of the new solution

can be done by solving the following optimization problem.

minimize card(v), (15)

subject to Sv = 0, v º 0,

vi∈P ≻ 0, vi∈(U∪N) = 0.
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If the argument that minimizes the problem in (15) coincides

with the new solution, we can conclude that it is indeed

minimal. As before, we can solve (15) using the relaxation

algorithm in Algorithm 1.

We apply this algorithm to find other solution(s) for the

problem given in Example 3.2. We found {2, 5, 7, 9} as a new

solution. Again, we can manually verify that {1, 4, 7, 8} and

{2, 5, 7, 9} are the only minimal solutions to this problem.

Therefore, in this example, the proposed algorithm is able to

provide us with all the minimal solutions.

B. Minimal knockout problem

The second type of problems that we are interested in, is

the minimal knockout problem. This type of problems is

related to finding the minimal set of reactions to knockout,

in order to shutoff the production of certain metabolites.

Knocking out a reaction means, mathematically, constraining

the flow to be zero. In metabolic engineering, reaction

knockout is carried out by deactivating/deleting the gene(s)

that produces the enzymes that facilitate the reaction [29].

We want to find the minimal number of reaction knock-

outs that will shutoff a certain set of product metabolites

represented by P ⊂ {1, . . . , n}. We assume that we can

only disable regular reactions and uptake reactions (by

starving the organism of the corresponding nutrients), and

not pseudoreactions. More specifically, we assume that the

set of reactions that can be knocked out is given by M . A

knockout can then be parameterized by a set K ⊂ M of

reactions whose flows are constrained to zero.

For simplicity, let us consider the special case where P
is a singleton. That is, we assume that we want to shutoff

only one product. The minimal knockout problem can then

be formulated as follows.

Definition 3.3 (Minimal knockout problem): Minimize

card(K) subject to K ⊂ M, such that the following linear

optimization problem is not feasible.

minimize 0
subject to Sv = 0, v º 0, vi∈K = 0, vi∈P º ǫ,

(16)

for any ǫ > 0.

We can write down (16) in a standard LP form

minimize 0T v
subject to Av º b, v º 0,

(17)

where

A =











S
−S
IK

−IK

IP











, b =











0
0
0
0
ǫ











,

and IK and IP are the matrices formed by the rows of

an identity matrix, corresponding to the set K and P
respectively.

The dual problem of (17) is given by

maximize bT y

subject to AT y ¹ 0, y º 0.
(18)

Let us partition y according to AT ,

AT y =: ST y1 − ST y2 + IT
Ky3 − IT

Ky4 + IT
P y5.

We can then rewrite (18) as

maximize ǫy5

subject to

{

ST y1 − ST y2 + IT
Ky3 − IT

Ky4 + IT
P y5 ¹ 0,

y º 0.
(19)

The duality theorem of linear programming states that the

infeasibility of the primal problem (16) is equivalent to the

optimal value of the dual problem (19) being +∞. Using

this result, we can obtain a geometric necessary and sufficient

condition for the infeasibility of the primal problem, as stated

in the following theorem.

Theorem 3.4: The primal problem (16) is infeasible if and

only if

IT
P ∈ κ + im ST + im IT

K , (20)

where κ is the nonpositive cone and im denotes the image

of a matrix.

κ = {y | y ¹ 0}.
Proof: (if) Suppose that (20) holds. For any y5 ≥ 0,

we can always find γ1, γ2 and γ3 ¹ 0 such that

IT
P y5 = ST γ1 + IT

Kγ2 + γ3. (21)

Since γ1 and γ2 can always be written as

γ1 = y2 − y1, γ2 = y4 − y3,

where yi ≥ 0, i = 1, . . . 4, it follows that the optimal value

of the dual problem (19) is +∞.

(only if) Suppose that (20) is false. From the same

argument as above, y is feasible in the dual problem only if

y5 = 0. It follows that the optimal value of the dual problem

is finite and coincides with that of the primal problem.

We introduce the following notation.

Notation 3.5: We denote the vectors obtained by collect-

ing the rows corresponding to M from IT
P as p1. The

remaining rows form another vector p2. Similarly, ST is

decomposed into ST
1 and ST

2 .
With this notation, (20) can be written as

[

p1

p2

]

∈ κ + im

[

ST
1

ST
2

]

+ im

[

IT
K

0

]

. (22)

The problem of finding the smallest knockout set that renders

the production of a product P infeasible can then be cast as

finding a space of the form im

[

IT
K

0

]

with the smallest

dimension, such that (22) holds. We can then write down

the minimal knockout problem as the following convex

cardinality optimization problem.

minimize card (max(0, η))
subject to ST

2 y − p2 º 0, ST
1 y − p1 + η º 0,

(23)

with η and y as the variables. The nonzero entries of the

optimal η values represent the reactions that are knocked out.

We can rewrite (23) without the max operator as follows.

minimize card (ξ)

subject to

{

ST
2 y − p2 º 0, ST

1 y − p1 + η º 0,
ξ − η º 0, ξ º 0,

(24)
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with ξ, η, and y as the variables. Notice that (24) is amenable

to the ℓ1 relaxation technique that we have discusses pre-

viously (see Algorithm 1). Therefore, a convex relaxation

algorithm for solving (24) can be given as follows.

Algorithm 2 Convex relaxation for minimal network prob-

lem

Require: A stoichiometric matrix S, a set of target products

P , and a set of eligible knockouts M
1: Initialize the weight w(1) = [1, . . . , 1] ∈ R

m, and the

counter k = 1.
2: repeat

3: Solve the Linear Programming problem:

minimize

m
∑

i=1

w
(k)
i ξ

(k)
i , (25)

subject to ST
2 y(k) − p2 º 0, ST

1 y(k) − p1 + η(k) º 0,

ξ(k) − η(k) º 0, ξ(k) º 0,

to find the flow for the k−th iteration, v(k).
4: Update weight according to

w
(k+1)
i = φ(ξ

(k)
i ), (26)

where

φ(x) :=
δn

δn + xn
, (27)

for some parameters δ, n > 0.

5: until
∥

∥ξ(k) − ξ(k−1)
∥

∥ ≤ δ, where δ > 0 is a small

number that indicates the convergence of the iteration.

Example 3.6: Consider the small network in Example

3.2. We want to find a minimal set of knockouts that can

render the production of H infeasible. Moreover, we assume

that we can only knockout uptake reactions, which means

M = {7, 8, 9, 10}. We run Algorithm 2 for this problem,

and obtained {7, 9} which corresponds to starving the system

of A and C. We can verify that this is indeed a minimal

knockout set for our purpose.

We can find alternative solutions to the one already com-

puted by the algorithm by introducing a linear constraint, as

discussed in the Subsection III-A. Applying this technique,

we obtain another minimal set {2, 3}, which corresponds to

starvation of B and C. We can verify that these are indeed

two sets of minimal reactions.

IV. METABOLOME SCALE APPLICATIONS

This section is devoted to the application of the algo-

rithms presented in the previous section in metabolome scale

problems. We use the metabolic network model constructed

by Palsson and coworkers [3]. The network consists of

762 metabolites, 148 uptake reactions, and 1177 regular

reactions. We append the list of reactions with 762 pseudore-

actions/sinks for each of the metabolites. The connectivity of

the network is shown in Figure 2.

All the computation in this paper was implemented in

MATLAB using the cvx toolbox [30]. The program runs

on an Intel Xeon 2.8 GHz processor, and each of the

computations below takes less than 10 seconds to complete.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

600

700

nz = 3324

Regular reactions Pseudoreactions Uptake 

Fig. 2. The elements of the metabolic network of E. coli that we use in
this paper. Each row represents a metabolite, and each column represents a
reaction. The × signs indicate positive coefficients, ◦ signs indicate negative
coefficients. Notice that we have three sections in the network, uptake
reactions, regular reactions, and pseudoreactions/sinks.

A. Minimal network of Escherichia coli

We are interested in finding the minimal metabolic net-

work in E. coli that can sustain the production of biomass

on a glucose-only medium [22]. Biomass production is an

abstract way to model cell growth. To model this medium,

we assume that the set of metabolite uptakes consists of only

carbon dioxide, hydrogen, potassium, sodium, ammonium,

oxygen, phosphate, sulphate, glucose, and water. The feasi-

bility of biomass production is then modeled as the feasibility

of a sink containing various components of E. coli biomass.

Applying Algorithm 1 to the problem, we obtain a network

consisting of 247 metabolic reactions. This is smaller than

25% of the number of regular reactions, which indicates

a huge redundancy in the metabolic network of E. coli in

a glucose-only growth medium. The flows of the minimal

network is shown in Figure 3. The largest flows in the

plot are annotated. For example, we can see that there is

a huge uptake of hydrogen, as well hydrogen as byproduct.

Another major byproduct is water. Two main reactions are

marked with R1 and R2 in Figure 3. These are reactions that

convert ADP (Adenosine diphosphate) into ATP (Adenosine

triphosphate). ATP is the main energy storage in the cell.

which is required in most anabolic reactions in the cell. The

creation of ATP can thus be seen as energy uptake by the

cell. R1 is the ATP synthase reaction, the main synthesis

reaction of ATP. R2 is a reaction in the Nucleotide Salvage

Pathway that recovers bases and nucleotides that are formed

during degradation of RNA and DNA.

B. Minimal knockout for Escherichia coli

In this problem, we are interested in finding the minimal

knockout set that disable the biomass production in the

metabolic network of E. coli. We use the same network as

in the previous subsection. By applying Algorithm 2 to the

problem, we obtain a minimal set consisting of 7 reactions.

The reactions are listed below.

Reaction: udpg → udpgal

Pathway: Alternate Carbon Metabolism

Reaction: akg + coa + nad → CO2 + nadh + succoa

Pathway: Citrate Cycle
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Fig. 3. The flows of the minimal metabolic network of E. coli on a
glucose-only medium. The left section consists of uptake reactions, the
middle section consists of regular reactions, and the right section consists
of pseudoreactions. The dominant flows are marked and annotated.

Reaction: g3p + nad + pi → 13dpg + H + nadh

Pathway: Glycolysis/Gluconeogenesis

Reaction: ADP + 4 H + pi → ATP + 3 H + H2O

Pathway: Oxidative Phosporylation

Reaction: accoa + pi → actp + coa

Pathway: Pyruvate Metabolism

Reaction: thr-L → 2obut + NH4

Pathway: Valine, leucine, and isoleucine metabolism

Reaction: ala-L + btn + 2 H → cys-L + dtbt

Pathway: Cofactor and Prosthetic Group Biosynthesis

It is interesting to contrast this result with that of the

minimal network problem. On the one hand, the network is

robust, in the sense that growth can be sustained even if more

than 75% of the network is knocked out. However, we also

see fragility in the network, where knocking out 7 certain

reactions in the network can disable growth. This minimal set

of reactions is not unique. In fact, using the method discussed

in the previous section, we can find other minimal knockout

set with 7 reactions that disable the production of biomass

in E. coli.
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