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Abstract— An adaptive friction compensator for position
control is proposed using the generalized Maxwell-slip (GMS)
friction model, with a new, linearly-parameterized Stribeck
function. It employs a polynomial equation that is linear-in-the-
parameter to approximate the nonlinear Stribeck effect in the
GMS model, and simplifies the design of the adaptive friction
compensator. The proposed compensator has a switching struc-
ture to accomodate for the hybrid nature of the GMS model,
and contains a robustifying term to account for unmodelled
dynamics. The stability of the proposed adaptive algorithm is
analyzed and its stability conditions are clarified. The validity
and effectiveness of the proposed, linearly-parameterized fric-
tion compensator is verified by simulations for the positional
control of an inertia system under the influence of dynamic
friction.

I. INTRODUCTION

It is widely recognized that most mechanical systems

involving two or more contact surfaces with relative motion,

would experience to varying degrees some form of frictional

effects. The presence of dynamic friction in such indus-

trial applications as robotic manipulators, hydraulic systems,

precision engineering, and so forth, can lead to significant

tracking error, or even instability. However, the task of

controller design is greatly complicated by nonlinearities

of the surface contact mechanics, structural and parametric

uncertainties.

Currently, friction compensation schemes are divided into

non-model and model-based methods. Studies have shown

that simple PD or PID controllers suffer significant perfor-

mance degradation due to the nonlinear characteristics of

friction, which can lead to hunting behaviors and instabil-

ity [1]. Black-box methods employing neural networks or

fuzzy logic for friction compensation have also been widely

researched [2], [3]. In comparison, the potential of model-

based adaptive friction compensation has been demonstrated

by several researchers. These efforts include the modeling

and compensation of Coulomb friction [4], [5], a control

scheme for dynamic, linear friction [6], and nonlinear static

mapping of the Stribeck effect [7]. These methods provide

powerful arguments for the use of adaptive control in friction

compensation, but do not combine it with a sufficiently

complex and accurate dynamic friction model.

Therefore, this paper develops a robust adaptive compen-

sation scheme using the generalized Maxwell-slip (GMS)

friction model, which has been proposed as a more accurate
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representation of the friction phenomenon than the LuGre

model [8]. The GMS model consists of parallel elementary

blocks and separates frictional mechanism into two regimes:

sticking and slipping. This results in a hybrid system, with

two separate models. The GMS model yields results that

correspond to experimental observation, while maintaining a

simpler structure than the generic friction model [9]. Offline

identification algorithms of the GMS model using Nelder-

Mead simplex [10] and particle swarm optimization (PSO)

[11] have been presented. However, designing an adaptive

controller using the GMS model can be difficult due to its

switching nature and also the nonlinear Stribeck effect.

The main novelty of this paper is the proposal of a

polynomial Stribeck function that is readily applicable to

the GMS friction model. The validity of using a polyno-

mial approximation function to describe the Stribeck effect

has been investigated in previous works [12]. By using

the polynomial approximation function, the development of

adaptive control laws are simplified, as friction models can be

linearly-parameterized. This study specifically addresses the

problem of robustness with respect to unmodeled dynamics

by introducing a sliding-mode based smooth adaptive robus-

tifying term into the control law [13]. Stability analysis is

presented to show the robustness of the algorithm, provided

that a bound on the unmodeled terms is known to exist. The

validity of the proposed robust adaptive control algorithm

based upon the GMS friction model is demonstrated by

simulation results.

II. PROBLEM STATEMENT

The objective of this study is the control of a mass acting

under the influence of friction forces. Consider the following

state-space representation of a simple mass system:

mẋp = Apxp + b
T
p (u − Ff ) (1)

where:

xp =
[

x ẋ
]T

, Ap =

[

0 m
0 0

]

, bp =
[

0 1
]T

Here, m is the mass, while x and ẋ are the mass position and

velocity, respectively. u is the input force and Ff represents

friction. To describe the effects of friction, this study employs

the generalized Maxwell-slip (GMS) friction model [?], [8].

The GMS model is an asperity-based description of the

friction phenomenon. It consists of parallel connections of

elementary blocks, shown in Figure 1, and expressed by:

Ff =

N
∑

i=1

Fi (2)
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Fig. 1. Parallel connection of N elementary blocks in the GMS
model.

Here, N represents the number of elementary blocks em-

ployed by the GMS model, and viscous friction is neglected.

Each elementary block is governed by a set of two dynamical

equations, depending on whether it is in a sticking or slipping

state. The sticking state contains a Maxwell-slip equation

to describe hysteresis and other presliding characteristcs.

The slipping state equation results in frictional lag and the

Stribeck effect. Mathematically, this is expressed as:

• If the elementary block is sticking, the differential

equation is given by:

Ḟi = kiẋ (3)

and the elementary block remains sticking until |Fi| >
αis(ẋ) = Wi.

• If the elementary block is slipping, the differential

equation is given by:

Ḟi = C

(

αisgn(ẋ) −
Fi

s(ẋ)

)

(4)

and the elementary block remains slipping until the

velocity goes through zero.

Here, C is a constant term introduced by the GMS model to

directly account for frictional lag dynamics, and
∑

αi =
1. s(ẋ) describes the Stribeck effect, which is generally

expressed by the following function:

s(ẋ) = FC + (FS − FC) e
−

“

|ẋ|
VS

”

σS

(5)

where FC is the Coulomb friction parameter, FS represents

static friction, VS is the Stribeck velocity, and σS is a shaping

factor.

Considering only the slipping state of friction under con-

stant velocity, the steady-state equation for each elementary

block reduces to:

Fi,ss = αis(ẋ)sgn(ẋ) (6)

Defining δi,D = Fi − Fi,ss, the frictional force equation in

the slipping regime becomes:

Fi = Fi,ss + δi,D

= αis(ẋ)sgn(ẋ) + δi,D (7)

Analysis of the above equation reveals that the friction force

is comprised of two terms: a static term corresponding to

the Stribeck effect; and a dynamic term δi,D that acts as a

perturbation.

A Lyapunov argument can be used to show that, given

bounds on the parameter values, then the dynamic term δi,D

is bounded. This is formally stated in Lemma 1.

LEMMA 1 Assuming that the system parameters are

bounded, the dynamic perturbations in the slipping state of

each elementary block in the GMS friction model are also

bounded.

Proof: Define a candidate Lyapunov function as:

Vi =
1

2
F 2

i (8)

Then the derivative of (8) along the frictional dynamics is

given as:

V̇i = FiḞi

= FiC

(

αisgn(ẋ) −
Fi

s(ẋ)

)

= C |Fi| sgn(Fi)sgn(ẋ)

(

αi −
|Fi|

s(ẋ)

)

(9)

In the slipping state, it is noted that the sign of Fi and ẋ are

always the same and are different from zero. Therefore, V̇i

is negative definite if:

|Fi| ≤ αis(ẋ) = |Fi,ss| ≤ αiFS (10)

From (7) and (10), it is clear that since Fi and Fi,ss are

bounded, the perturbation term δi,D must also be bounded.

�

III. LINEARLY-PARAMETERIZED GMS MODEL

The GMS model described in the previous section employs

a Stribeck function that contains nonlinear parameterization.

While each term in (5) has a physical meaning, the task of

designing an adaptive friction compensator for the resulting

nonlinear friction model becomes complicated due to the

presence of nonlinearity, which results in control issues such

as stability, robustness and convergence. Therefore, this study

proposes a new approximator function for the Stribeck effect

that is linearly-parameterized and has a polynomial form:

s(ẋ) = s∗(ẋ, n) + δS (11)

where:

s∗(ẋ, n) = β1 + β2 |ẋ| + . . . + βn |ẋ|
n−1

=

n
∑

i=1

βi |ẋ|
i−1

(12)
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Here, s∗(ẋ, n) is the proposed linearly-parameterized ap-

proximator function, δS is the approximation error, and n
is the order of the approximator function. A bound on δS on

any closed and bounded interval Ωẋ = [ẋmin, ẋmax] exists

and can be expressed as:

sup
Ωẋ

|δS | ≤ ∆S (13)

The main contribution of this study is that, using this

new Stribeck equation, the GMS friction model is linearly-

parameterized, allowing for the applications of linear adap-

tive control theories for compensation.

Employing the linearly-parameterized Stribeck function,

each elementary block of the GMS model becomes:

• In the sticking state, the friction force is given as:

Fi = θi,stickωstick (14)

where:

θi,stick = ki

ωstick =

∫ t

t0

ẋ(τ)dτ

and remains sticking until |Fi| > αi(s
∗(ẋ, n) + δS).

• In the slipping state, the friction force is described by:

Fi = θ
T
i,slipωslip + αisgn(ẋ)δS + δi,D (15)

where:

θi,slip =
[

αiβ1 αiβ2 . . . αiβn

]T

=
[

θi,1 θi,2 . . . θi,n

]T

ωslip = sgn(ẋ) ·
[

1 |ẋ| . . . |ẋ|
n−1

]T

and remains slipping until the velocity goes through

zero.

This linearly-parameterized friction model is used to con-

struct a suitable adaptive controller for compensation.

To express the two regimes of the GMS model in a unified

framework, define the indicator function χ[X ] of the event

X as:

χ[X ] =

{

1 if X is true

0 otherwise
(16)

This allows the expression of the GMS model as:

Ff = θ
T
ω +

N
∑

i=1

χi,slip (αisgn(ẋ)δS + δi,D) (17)

where:

θ =
[

θ1,stick . . . θN,stick

θ
T
1,slip . . . θ

T
N,slip

]T

ω =
[

χ1,stickωstick . . . χN,stickωstick

χ1,slipω
T
slip . . . χN,slipω

T
slip

]T

χi,stick = χ [Fi is sticking]

χi,slip = χ [Fi is slipping]

+ +

+

+

−
+

+
−

m̂
ẍd

ẋd

λ

F̂f

u

Ff

x, ẋ

m̂

ė1

∆̂

θ̂

xd
κ κ

e1

e2

κ

+

+

+

x

ẋ
−

+

Fig. 2. Adaptive friction compensator for position control.

Notice that χi,stick and χi,slip are mutually exclusive events

that indicate the current state of each elementary block in the

GMS model. That is, each elementary block must either be

sticking or slipping, but cannot be both, at any given time.

IV. ADAPTIVE FRICTION COMPENSATOR

The structure of the adaptive friction compensator for

positional control is shown in Figure 2. The system is given

as a mass acting under the influence of friction as described

by the GMS model. The control objective is the positional

tracking of a desired trajectory defined by xd, that is assumed

to be designed such that ẋd and ẍd exist and are bounded.

A position tracking error is stated as:

e1 = xd − x (18)

The following filtered tracking error is defined to facilitate

the subsequent design and analysis:

e2 = ė1 + κe1 (19)

The proposed control law is give as:

u = m̂ẍd + κe2 + e1 + m̂κė1 + F̂f + λ (20)

where m̂ is the estimated value of the mass, and λ is

a robustifying term to be defined later. The friction force

estimate, F̂f , is defined as:

F̂f = θ̂
T
ω̂ (21)

where:

θ̂ =
[

θ̂1,stick . . . θ̂N,stick

θ̂
T

1,slip . . . θ̂
T

N,slip

]T

ω̂ =
[

χ̂1,stickωstick . . . χ̂N,stickωstick

χ̂1,slipω
T
slip . . . χ̂N,slipω

T
slip

]T

χ̂i,stick = χ
[

F̂i is sticking
]

χ̂i,slip = χ
[

F̂i is slipping
]

Here θ̂ are the estimates of the parameters of the linearly-

parameterized friction model. It is noted that the true GMS

friction model can thus be expressed in terms of ω̂ as:

Ff = θ
T
ω̂ + δ (22)
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where:

δ = δsw +

N
∑

i=1

[χi,slip (αisgn(ẋ)δS + δi,D)]

δsw = θ
T (ω − ω̂) (23)

Here, δ is an uncertainty term that arises from the switching

error between the true GMS model and friction compensator,

δsw, the approximation error δS , and dynamic perturbation

terms δi,D. It can be shown that ∆ is a bounded term. That

is:

sup
Ωẋ

|δ| ≤ ∆ (24)

Setting the robustifying term λ as:

λ = ∆̂η∆ tanh ((a + bt)e2) (25)

where ∆̂ is the estimate of ∆, a and b are user-defined

positive constants, κ∆ > 1. The parameter estimation errors

are defined as:

m̃ = m̂ − m (26)

θ̃ = θ̂ − θ (27)

∆̃ = ∆̂ − ∆ (28)

The adaptive laws are established according to:

˙̃m = ˙̂m = γm (ẍd + κė1) e2 − σmγmm̂ (29)

˙̃
θ =

˙̂
θ = Γθω̂e2 − σθΓθθ̂ (30)

˙̃∆ =
˙̂
∆ = γ∆|e2| − σ∆γ∆∆̂ (31)

where Γθ , γm, γ∆, σm, σθ and σ∆ are positive. The main

stability result of the proposed method is now presented.

THEOREM 1 Consider the mass system acting under the

influence of friction as given in (1) and assume that (24)

holds, but is unknown. The control signal (20) together

with the adaptive laws (29), (30), and (31), guarantees that

Lyapunov function defined as:

V =
1

2
e2

1 +
1

2
me2

2 +
1

2
γ−1

m m̃2 +
1

2
θ̃

T
Γ
−1

θ θ̃ +
1

2
γ−1

ǫ ∆̃2

(32)

is uniformly bounded and converges to a small neighborhood

of the origin. The same property holds for the error signals

e1, e2, m̃, θ̃, and ∆̃.

Proof: By examining (18) and (19), it is noted that:

ė1 = −κe1 + e2 (33)

ė2 = ë1 + κė1 (34)

Taking the derivative of the candidate Lyapunov function

defined by (32) and using (1) and (20):

V̇ = e1ė1 + me2ė2 + γ−1

m m̃ ˙̃m + θ̃
T

Γ
−1

θ
˙̃
θ

+γ−1

∆
∆̃ ˙̃∆

= −κe2

1 + e1e2 + e2 (mẍd − u + Ff + mκė1)

+γ−1

m m̃ ˙̃m + θ̃
T

Γ
−1

θ

˙̃
θ + γ−1

∆
∆̃ ˙̃∆

= −κe2

1 − κe2

2 + m̃
(

γ−1

m
˙̃m − (ẍd + κė1) e2

)

+θ̃
T

(

Γ
−1

θ
˙̃
θ − ω̂e2

)

+ Λ (35)

where:

Λ = γ−1

∆
∆̃ ˙̃∆ + δe2 − λe2 (36)

Substituting the adaptive laws (29) and (30):

V̇ = −κe2

1 − κe2

2 − σmm̃m̂ − σθθ̃
T
θ̂ + Λ

≤ −κe2

1 − κe2

2 −
σm

2
m̃2 −

σθ

2
θ̃

T
θ̃ +

σm

2
m2

+
σθ

2
θ

T
θ + Λ (37)

Using (25) and the adaptive law (31):

Λ = γ−1

∆
∆̃ ˙̃∆ + δe2 − ∆̂η∆ tanh ((a + bt)e2) e2

= ∆̃|e2| + δe2 − ∆̂η∆ tanh ((a + bt)|e2|) |e2|

−σ∆∆̃∆̂

≤ ∆̃|e2| + ∆|e2| − ∆̂η∆ tanh ((a + bt)|e2|) |e2|

−
σ∆

2
∆̃2 +

σ∆

2
∆2

= ∆̂|e2| (1 − η∆ tanh ((a + bt)|e2|))

−
σ∆

2
∆̃2 +

σ∆

2
∆2 (38)

Note that:

1 − η∆ tanh ((a + bt)|e2|) ≤ 0 (39)

if and only if:

|e2| ≥ ν (40)

where:

ν =
1

a + bt
ln

(

η∆ + 1

η∆ − 1

)

(41)

By examining (41), it is clear that as t → ∞, ν → 0 when

κ∆ > 1. Therefore, (40) is satisfied and:

V̇ ≤ −cV + λ (42)

where:

c = min

{

2κ,
2κ

m
, σmγm,

σθ

λmax(Γ
−1

θ )
, σ∆γ∆

}

(43)

λ =
σm

2
m2 +

σθ

2
θ

T
θ +

σ∆

2
∆2 (44)

As λ/c > 0, (42) results in:

0 ≤ V (t) ≤ λ/c + (V (0) − λ/c) e−ct (45)

Therefore all error signals e1, e2, m̃, θ̃ and ∆̃ are uniformly

bounded and converge to a small neighborhood of the origin.

�
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Fig. 3. (a) The Stribeck curve; and (b) approximation error of the
Stribeck curve for various model order.

TABLE I

INITIAL, CONVERGED AND LS/TRUE PARAMETER VALUES.

Parameter Initial Converged LS/True

β1 0.3 0.8845 0.9200

β2 0 −482.2020 −516.1794

β3 0 1.31×105 1.37×105

β4 0 −1.24×107
−1.24×107

k1 [N/m] 1.50×104 0.86×104 1.00×104

k2 [N/m] 1.05×104 0.66×104 0.70×104

k3 [N/m] 0.75×104 0.45×104 0.50×104

k4 [N/m] 0.45×10
4

0.32×10
4

0.30×10
4

V. SIMULATION RESULTS

Simulation results are presented to illustrate the validity of

the proposed linearly-parameterized GMS model in compen-

sating for frictional dynamics. First, an analysis is conducted

on the accuracy of the polynomial Stribeck function in

describing the Stribeck effect. The effectiveness of the pro-

posed adaptive friction compensator is then demonstrated by

examining the tracking performance for position trajectories.

A. Determination of Stribeck Approximation Function

The nonlinear Stribeck function is assumed to be described

by (5), with the following parameters:

FS = 1.05 [N], FC = 0.2 [N]

VS = 98×10−5 [m/s], σS = 0.78 (46)

The approximation of this function by the proposed poly-

nomial Stribeck equation is accomplished by using off-

line, least-square, curve fitting technique. The identification

process was conducted for various orders of the linearly-

parameterized Stribeck function to determine a model order

that provides good trade-off between modeling accuracy

and minimal parameters. This will be used to construct the

adaptive friction compensator.

Figure 3(a) illustrates the Stribeck effect. The model order

for the linearly-parameterized function is varied from 1 to

10. The resulting modeling error is shown in Figure 3(b).

Based upon these results, it is determined that n = 4
provides a good approximation of the nonlinear Stribeck

function while maintaining a small amount of parameters.

From this observation, the friction compensator proposed in

this reserach is constructed using a linearly-parameterized

Stribeck function of order 4.
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Fig. 4. Convergence of linearly-parameterized Stribeck function
coefficients.
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Fig. 5. Convergence of Maxwell-slip parameters and ∆̂.

B. Adaptive Controller Performance

The effectiveness of the proposed adaptive controllers is

illustrated for two position trajectory signals. It is assumed

that the upper bound on the number of elementary blocks

is known from offline system identification procedures, such

as PSO [11]. This study assumes the frictional dynamics to

be governed by four elementary blocks. Experimental in-

vestigations have determined that a GMS model constructed

with four elementary blocks is sufficient to accurately capture

frictional characteristics under realistic conditions [8], [10].

The results indicate that increasing the number of elementary

block does not serve to improve the modeling accuracy. The

system parameters are given as:

m = 1 [kg], C = 24 [N/s]

k1 = 1.0×104 [N/m], k2 = 0.7×104 [N/m]

k3 = 0.5×104 [N/m], k4 = 0.3×104 [N/m]

α1 = α2 = α3 = α4 = 0.25 (47)

For the Stribeck effect described by the parameters given

in (46), the coefficients of the proposed polynomial Stribeck

function with a model order of four is determined as outlined

above, and is given in Table I.

The gains κ and κ∆ are chosen as:

κ = 200, κ∆ = 2000 (48)

The results of the proposed adaptive controller is compared

to a PD controller with the following gains:

kP = 40000, kD = 200 (49)
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Fig. 6. Comparison of position tracking performance for random
step trajectory of proposed controller after convergence, PD and
PID controllers.

Another result using a conventional PID controller is also

presented, with the gains set as:

kP = 40000, kI = 400000, kD = 200 (50)

The convergence of the polynomial Stribeck parameters and

the Maxwell-slip parameters, when the reference trajectory

satisfies the persistently exciting condition, are shown in

Figures 4 and 5. In this section, the performance of the

proposed adaptive controller is evaluated for the trajectory

tracking of a random step and ramp position signal. Using

the converged estimates, trajectory tracking performances

of the proposed adaptive controller, conventional PD and

PID controllers are compared in Figures 6 and 7. It is

noted that Figure 6 shows the effectiveness of the proposed

adaptive algorithm after convergence in achieving trajectory

tracking of a random step signal. The PD controller, however,

exhibits considerable steady-state tracking error. The PID

controller eliminates this steady-state error for a step signal.

However, by examining Figure 7, it is seen that both the

PD and PID controllers yield unacceptable tracking results

for a ramp trajectory. In particular, the tendencies of these

controllers to cause limit-cycling due to the stick-slip effect

and integral wind-up is evident. This is compared to the

proposed adaptive friction compensator, which effectively

achieves position tracking for both random step and ramp

trajectories despite modeling uncertainties.

VI. CONCLUSION

An adaptive friction compensator is proposed using poly-

nomial approximation of the Stribeck effect. The structure is

based upon the GMS friction model, which becomes linearly-

parameterized, allowing for the straight-forward design of

adaptive laws. Stability and robustness conditions with re-

spect to unmodeled dynamics is guaranteed by introducing a

robustifying term into the control signal. The friction force

is accurately estimated and compensated for by the adaptive

controller, and allows for trajectory tracking of velocity and

position signals.
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Fig. 7. Comparison of position tracking performance for ramp
trajectory of proposed controller after convergence, PD and PID
controllers.
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