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Abstract— The purpose of this paper is to address the
important question of when an uncertain system with higher-
order nonlinearities can be effectively controlled by linear state
feedback. In particular, for a family of uncertain nonlinear
systems whose linearization is usually uncontrollable or, even
worse, has uncontrollable modes associated with eigenvalues
on the right-half plane, there is no linear or smooth state
feedback to achieve global asymptotic stabilization (GAS).
However, we show that if a less aggressive control objective
such as semi-global asymptotic stabilization (SGAS) or semi-
global practical stabilization (SGPS) is sought, linear controllers
would be sufficient and meet the control goal. Several examples
are provided to illustrate the effectiveness of the proposed
robust linear state feedback control laws.

I. INTRODUCTION

In this paper, we consider a family of uncertain nonlinear

systems of the form

ẋ1 = x
p1

2 + f1(t, x, u)

...

ẋn−1 = xpn−1

n + fn−1(t, x, u)

ẋn = u + fn(t, x, u) (1.1)

where u ∈ IR, x = (x1, · · · , xn)T are the system input

and state, respectively. For i = 1, · · · , n − 1, pi ≥ 1 is

an odd positive integer, and fi : IR × IRn × IR → IR, is

a C0 mapping with fi(t, 0, · · · , 0) = 0, ∀t, which involve

uncertainty and may not be known precisely.

Because system (1.1) with appropriate fi(·) represents a

generalized normal form of the affine system ξ̇ = f(ξ) +
g(ξ)u when exact feedback linearization is not possible [4],

[19], it becomes a natural starting point when investigating

various control problems for nonlinear systems whose first

approximation does not provide any useful information.

In the literature, a number of researchers have considered

the nonlinear system (1.1) and obtained many important re-

sults. For example, the papers [1], [9], [10], [11], [12], [15],

[16] gave the local stabilization results by state feedback

for a class of two- or three-dimensional nonlinear systems.

In the higher-dimensional case, the local stabilization re-

sults were reported in [5], [6], [8], [22], while the global

stabilization of the nonlinear system (1.1) was established

in the work [17], [18]. All of these results rely heavily
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on the homogeneous systems theory, in particular, the idea

of homogeneous approximation, the notion of homogeneity

with respect to a family of dilations [12], [15], [16], and

the robustness of homogeneous systems [12], [20].

The state feedback control laws derived in the afore-

mentioned work are either smooth (see, e.g., [17]) or

non-smooth but Hölder continuous. In particular, they are

in general nonlinear functions of the system state and

complicated, making them difficult to be implemented.

Since linear controllers are the most simple ones that have

been widely employed in practice, we are interested in

the fundamental question that to what extent linear state

feedback is sufficient for the control of uncertain nonlinear

systems, such as the one in the form (1.1).

The purpose of this paper is to address such an important

issue. Specifically, we intend to provide some answers to

the questions such as

1) Is the nonlinear system (1.1) stabilizable by linear

state feedback?

2) What is a reasonable control objective in the context

of linear feedback?

3) How are linear controllers systematically designed to

meet such a goal if possible?

It turns out that if one aims at a little less aggressive

control objective, namely, semi-global asymptotic stabiliza-

tion (SGAS) or semi-global practical stabilization (SGPS)

instead of global asymptotic stabilization (GAS), then linear

controllers suffice and still work for the highly nonlinear

system (1.1) under appropriate conditions.

Following the work [2], [13], [21], we formulate the two

control problems for the nonlinear system (1.1) below.

(i) SGAS by linear feedback: Given an upper bound

M > 0, find, if possible, a linear controller u = LMx with

the gain LM depending on M , such that all the trajectories

of the closed-loop system starting from the compact set

BM
Δ
= [−M, M ]

n
⊂ IRn converge uniformly to the origin.

(ii) SGPS by linear feedback: Given an upper bound

M > 0 and a lower bound ε > 0, find, if possible, a

linear controller u = Lx with the gain L depending on

M and ε, such that all the trajectories of the closed-loop

system starting from the compact set BM are driven into

the neighborhood Bε in a finite time T and stay in Bε for

all t ≥ T .

Since the upper bound of the initial condition of a con-

trolled plant can be estimated and the tolerance of the stabi-

lization can be preset, achieving SGAS or SGPS rather than

GAS may be good enough in many practical applications.
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However, such a tradeoff in the control goal dramatically

improves the implementability of the controllers.

We conclude this section by introducing some useful

lemmas to be used frequently in the rest of the paper. Their

proofs can be found, for instance, in [17], [18].

Lemma 1.1: Given real numbers x, y, m,n, a, b > 0, the

following inequality holds:

axmyn ≤ bxm+n +
n

m + n
(
m + n

m
)−

m
n a

m+n

n b−
m
n ym+n.

Lemma 1.2: Let x1, · · · , xn, p > 0 be real numbers.

Then,

(x1 + · · · + xn)p ≤ max(np−1, 1)(xp
1 + · · · + xp

n).

Lemma 1.3: For all x, y ∈ IR, ε > 0 and any odd

positive integer p, the following inequality holds:

|xp − yp| ≤ ε|y|p + C|x − y|p,

where C is a constant, which depends only on p and ε.

Throughout this paper, K represents a fixed generic

positive real number for which we use the convention

K + K = K and K × K = K, etc.

II. SGAS BY LINEAR STATE FEEDBACK

To address the SGAS problem for the nonlinear system

(1.1) by linear state feedback, it is helpful to recall how

the global stabilization was achieved by nonlinear state

feedback. In [17], it was shown that GAS of system (1.1) is

achievable by smooth state feedback under the assumptions:

Assumption 2.1: p1 ≥ p2 ≥ · · · ≥ pn−1 ≥ 1.

Assumption 2.2: There is a C0 function ρi(x1, · · · , xi) ≥
0, such that ∀(t, x, u) ∈ IR × IRn × IR (i = 1, · · · , n),

|fi(·)| ≤ (|x1|
pi + · · · + |xi|

pi)ρi(x1, · · · , xi). (2.1)

As pointed out in [17], Assumptions 2.1-2.2 are auto-

matically satisfied when p1 = · · · = pn−1 = 1 and fi is

smooth. Moreover, they are somewhat necessary for global

stabilization by smooth state feedback. Indeed, if either one

of the conditions fails to be fulfilled, counter-examples exist

illustrating the non-existence of smooth controllers [17].

These observations suggest that in the context of linear

state feedback (which is a special case of smooth feedback),

Assumptions 2.1-2.2 are still needed and may not be relaxed

when the problem of GAS by linear state feedback is under

consideration.

In contrast to the GAS result established in [17] by

nonlinear state feedback, the following theorem shows that

under the same conditions as in [17], i.e., Assumptions 2.1-

2.2, SGAS of the nonlinear system (1.1) is possible by

linear state feedback. In other words, by taking a trade-off

of the control goals, or, by pursuing a less ambitious control

objective, namely, SGAS instead of GAS, the structure of

the controller can be dramatically simplified and a linear

controller would do the job, even for a class of nonlinear

systems of the form (1.1).

Theorem 2.3: Under Assumptions 2.1 and 2.2, a linear

state feedback controller can be explicitly constructed to

semi-globally asymptotically stabilize the nonlinear system

(1.1).

Proof. The proof is based on a Lyapunov method,

a series of subtle constructions of the level sets, and the

domination design philosophy proposed in [17]. For the

convenience of the reader, we break down the proof into

several steps.

Step 1. Without the loss of generality, we assume the

prescribed upper bound M > 1. Then, choose the Lyapunov

function V1 =
x2
1

2
. By Assumption 2.2 and Lemmas 1.1 and

1.3, the time derivative V1 along the trajectories of system

(1.1) can be estimated as

V̇1 ≤ x1[x
∗p1

2 + (xp1

2 − x
∗p1

2 )] + x
p1+1

1 ρ1(x1)

≤ x1x
∗p1

2 +
1

2
|x1||x

∗p1

2 | + |x1||x2 − x∗

2|
p1

+x
p1+1

1 ρ1(x1)

≤ x1x
∗p1

2 +
1

2
|x1||x

∗p1

2 | + K|x2 − x∗

2|
p1+1

+x
p1+1

1 [ρ1(x1) + 1],

where x∗

2 is a virtual controller to be determined later and

K > 0 is a generic constant.

Associated with the Lyapunov function V1(x1), one can

construct the level set

Ω1 =
{

x ∈ IRn
∣∣∣V1(x1) ≤ N

}
,

where

N =
M2

2
+

(2M)p1−p2+2

p1 − p2 + 2
+ · · · +

(nM)p1−pn+2

p1 − pn + 2
.

As we shall see, such a subtle choice of N is crucial in

simplifying the synthesis and analysis of SGAS and SGPS

throughout the paper.

By construction, it is easy to show that

x ∈ BM ⇒ |x1| ≤ M ⇒ V1(x1) ≤ N.

Hence,

BM ⊂ Ω1.

Furthermore, the continuous function ρ1(x1) is bounded on

Ω1 by a constant depending on M.

Keeping this in mind, we choose the linear virtual

controller x∗

2 = −β1x1 with a known constant β1 ≥ 1,

such that

V̇1

∣∣∣
Ω1

≤ −(n + 1)xp1+1

1 + K|x2 − x∗

2|
p1+1. (2.2)

Step 2. Now, define

ξ2 =
x2 − x∗

2

β1

=
x2

β1

+ x1 ⇔ x2 = β1(ξ2 − x1) (2.3)

and choose the Lyapunov function

V2 = V1 +
ξ

p1−p2+2

2

p1 − p2 + 2
.
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The associated level set is defined as

Ω2 =
{

x ∈ IRn
∣∣∣V2(x1, x2) ≤ N

}
.

Owing to β1 ≥ 1 and (2.3), the following implications

hold.

x ∈ BM ⇒ |x1| ≤ M, |ξ2| ≤ 2M

⇒ V2(x1, x2) ≤ N ⇒ V1(x1) ≤ V2(x1, x2) ≤ N.

In other words,

BM ⊂ Ω2 ⊂ Ω1.

(see the details in Fig. 1)

2x

2Ω

1x

 

MB

1Ω

 

Fig. 1 The level set on (x1, x2)-space: SGAS case

As a consequence,

V̇2

∣∣∣
Ω2

≤ −nx
p1+1

1 + Kξ
p1+1

2

+ξ
p1−p2+1

2

[ 1

β1

(xp2

3 + f2(·)) + (xp1

2 + f1(·))
]

≤ −(n + 1)xp1+1

1 + Kξ
p1+1

2

+
ξ

p1−p2+1

2

β1

[x∗p2

3 + (xp2

3 − x
∗p2

3 )]

+ξ
p1−p2+1

2 [
f2(·)

β1

+ (xp1

2 + f1(·))].

where x∗

3 is a virtual controller to be determined later.

Using Assumptions 2.1-2.2 and Lemmas 1.1-1.2, we have

|ξp1−p2+1

2 ||
f2(·)

β1

+ x
p1

2 + f1(·)|

≤ |ξp1−p2+1

2 |(|f2(·)| + |β1(ξ2 − x1)|
p1 + |f1(·)|)

≤ |ξp1−p2+1

2 |(|x1|
p2 + |ξ2|

p2)ρ̃2(x1, x2)

≤
1

2
x

p1+1

1 + ξ
p1+1

2 ρ̄2(x1, x2)

where ρ̃2(x1, x2) ≥ 0 and ρ̄2(x1, x2) > 0 are continuous

functions.

Since the continuous function ρ̄2(x1, x2) is bounded on

the level set Ω2, an estimation similar to Step 1 can be

obtained as follows:

V̇2

∣∣∣
Ω2

≤ −(n − 1)xp1+1

1 +
ξ

p1−p2+1

2 x
∗p2

3

β1

+
|ξp1−p2+1

2 x
∗p2

3 |

2β1

+ Kξ
p1+1

2 + K|x3 − x∗

3|
p1+1.

Consequently, it is possible to find a linear virtual con-

troller x∗

3 = −β2ξ2 with a fixed constant β2 > 1 such that

V̇2

∣∣∣
Ω2

≤ −(n − 1)[xp1+1

1 + ξ
p1+1

2 ] + K|x3 − x∗

3|
p1+1.

Step n. By induction, one can prove that a similar

conclusion holds at the n-th step. As a matter of fact, we

can recursively construct a set of

(1) linear virtual controllers:

x∗

1 = 0, x∗

2 = −β1ξ1, · · · , x∗

n = −βn−1ξn−1

with fixed gains βi ≥ 1 (i = 1, · · · , n);
(2) auxiliary variables:

ξ1 = x1 − x∗

1 = x1, ξ2 =
x2 − x∗

2

β1

=
x2

β1

+ x1,

· · · , ξn =
xn − x∗

n

βn−1

=
xn

βn−1

+ · · · +
x2

β1

+ x1;

(3) Lyapunov functions:

V1 =
ξ2
1

2
, V2 = V1 +

ξ
p1−p2+2

2

p1 − p2 + 2
,

· · · , Vn = Vn−1 +
ξp1−pn+2
n

p1 − pn + 2
, (pn = 1)

and the level sets

Ωi
Δ
=

{
x ∈ IRn

∣∣∣Vi(x1, · · · , xi) ≤ N
}

satisfying

BM ⊂ Ωn ⊂ · · · ⊂ Ω2 ⊂ Ω1;

(4) and a linear state feedback control law

u = −βnξn, (2.4)

such that the closed-loop system (1.1)-(2.4) satisfies

V̇n

∣∣∣
Ωn

≤ −ξ
p1+1

1 − · · · − ξp1+1
n .

This, in turn, implies that system (1.1) is SGAS by linear

state feedback.

Remark 2.4: When p1 = p2 = · · · = pn−1 = 1, the

uncertain system (1.1) is of a strict feedback form. In this

case, Theorem 2.3 reduces to the SGAS result in [21].

However, the proof presented above is much simpler than

the one in [21], thanks to the use of the simple quadratic

Lyapunov functions and the level sets Ω1, · · · , Ωn thus

constructed.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC11.4

1595



III. SGPS BY LINEAR STATE FEEDBACK

In this section, we turn our attention to the question

of when the nonlinear system (1.1), without Assumptions

2.1-2.2, can still be controlled by linear state feedback. It

has been known that in the absence of Assumptions 2.1-

2.2, system (1.1) may exhibit inherent nonlinearities in the

sense that the first approximation of (1.1) may contain

uncontrollable modes associated with eigenvalues on the

right-half plane. Such nonlinearities prevent the nonlinear

system (1.1) from being stabilizable by any linear or smooth

state feedback, even locally [3].

Although a linear controller cannot stabilize the nonlinear

system (1.1) that fails to satisfy Assumptions 2.1-2.2, the

main result of this section is to point out that if a less

aggressive control objective – SGPS instead of GAS and/or

SGAS – is pursued, linear controllers still do the job.

Due to the limited space, in what follows we will discuss

only an illustrating case, that is, the planar system

ẋ1 = x
p
2 + f1(t, x, u)

ẋ2 = u (3.1)

with p being a positive odd integer and f1(·) satisfying the

following assumption:

Assumption 3.1: There exists a smooth function

f̄1(x1) ≥ 0, with f̄1(0) = 0, such that

|f1(t, x, u)| ≤
1

2
|x2|

p + f̄i(x1),

where x2 := u.

Theorem 3.2: Under Assumption 3.1, SGPS of the non-

linear system (1.1) is achievable by linear state feedback.

Proof. The proof also relies on the Lyapunov argument

and the recursive design of a SGPS linear controller. The

major difference between the proof of Theorem 3.2 and that

of Theorem 2.3 lies on the subtle construction of the level

sets of the control Lyapunov functions in order to guarantee

semi-global practical stabilizability. Nevertheless, due to the

need of overcoming the singularity at the origin, the proof

of SGPS result is more involved and subtle than its SGAS

counterpart.

For simplicity, it is assumed that the bounds M > 1 and

0 < ε < 1.

Step 1. Choose the quadratic Lyapunov function V1 =
x2
1

2

as well as the associated level set

Ω1
Δ
=

{
(x1, x2) ∈ IR2

∣∣∣V1(x1) ≤ N
}

, N =
M2

2
+

(2M)2

2
.

From Assumption 3.1, it follows that

V̇1 ≤ x1x
∗p
2 + x1(x

p
2 − x

∗p
2 )

+
1

2
|x1||x

∗

2|
p +

1

2
|x1|

∣∣∣|x2|
p − |x∗

2|
p
∣∣∣ + x1f̄1(x1),

where x∗

2 is a virtual controller to be designed.

Note that f̄1(0) = 0 and f̄1(x1) is a smooth function.

Then, there exists a generic constant K > 0 such that on

the level set Ω1,

|f̄1(x1)| ≤ K|x1|.

Similar to the proof of Theorem 2.3, design x∗

2 = −β1x1

with β1 ≥ 1 being a constant to be assigned later and define

ξ2 =
x2 − x∗

2

β1

=
x2

β1

+ x1 ⇔ x2 = β1(ξ2 − x1).

Then,

V̇1

∣∣∣
Ω1

≤ −
1

2
β

p
1x

p+1

1 + x
p+1

1 + Kβ
p
1ξ

p+1

2 + Kx2
1. (3.2)

To handle the lower-degree terms such as Kx2
1, we

employ Lemma 1.1 to arrive at the following estimate:

Kx2
1 ≤ Kτ−

p−1

2 x
p+1

1 +
1

2
τ, ∀τ ∈ (0, 1).

Clearly, one can choose β1 = −Cτ−
p−1

2p ≥ 1 with a

sufficiently large constant C > 0, such that

V̇1

∣∣∣
Ω1

≤ −2τ−
p−1

2 x
p+1

1 + Kβ
p
1ξ

p+1

2 +
1

2
τ.

Step 2. Choose the quadratic Lyapunov function

V2 = V1 +
ξ2
2

2

and define the associated level set

Ω2 =
{

(x1, x2)
∣∣∣V2(x1, x2) ≤ N

}
.

Similar to the proof of Theorem 2.3, it can be shown that

BM ⊂ Ω2 ⊂ Ω1, ∀τ.

A straightforward calculation gives

V̇2

∣∣∣
Ω2

≤ −2τ−
p−1

2 x
p+1

1 + Kβ
p
1ξ

p+1

2 +
1

2
τ

+ξ2

[ u

β1

+ x
p
2 + f1(·)

]

≤ −2τ−
p−1

2 x
p+1

1 + Kβ
p
1ξ

p+1

2 +
1

2
τ

+
ξ2u

β1

+ |ξ2|(
3

2
|x2|

p + f̄1(x1)).

Using Lemma 1.1 and the fact that f̄1(0) = 0, it is deduced

that on Ω,

|ξ2f̄1(x1)|
∣∣∣
Ω2

≤ K|ξ2x1| ≤ τ−
p−1

2 x
p+1

1 +
1

2
τ + Kξ2

2 ,

ξ
p+1

2

∣∣∣
Ω2

≤ Kξ2
2 ,

where K > 0 is a fixed constant independent of τ .

Therefore,

V̇2

∣∣∣
Ω2

≤ −τ−
p−1

2 x
p+1

1 + Kβ
p
1ξ

p+1

2 + τ +
ξ2u

β1

≤ −τ−
p−1

2 x
p+1

1 + Kτ−
p−1

2 ξ2
2 + τ +

ξ2u

β1

.
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Obviously, the linear controller

u = −β2β1ξ2 = −Cτ−
p−1

2
−

p−1

2p ξ2 = −β2x2 − β2β1x1

with β2 = Cτ−
p−1

2 , renders

V̇2

∣∣∣
Ω2

≤ −τ−
p−1

2 x
p+1

1 − Kξ2
2 + τ.

On the other hand, it follows from Lemma 1.1 that

−τ−
p−1

2 x
p+1

1 ≤ −Kx2
1 + τ.

Consequently,

V̇2

∣∣∣
Ω2

≤ −Kx2
1 − Kξ2

2 + 2τ = −2KV2 + 2τ,

which implies that if V2(x1, x2) > τ
2K

Δ
= K0τ and

(x1, x2) ⊂ Ω2, V̇2 is negative definite.

For the convenience, define the level set

Ω0 =
{

(x1, x2)
∣∣∣V2(x1, x2) ≤ K0τ

}
,

which shrinks to the origin as τ ↘ 0, because

V2 ≤ K0τ ⇒ |x1| ≤ Kτ
1
2 ↘ 0, |ξ2| ≤ Kτ

1
2 ↘ 0

⇒ |x2| ≤ |β1|(|ξ2| + |ξ1|) ≤ Kτ
1
2p ↘ 0,

as τ ↘ 0. Hence, there exists a sufficiently small τ ∈ (0, 1)
such that Ω0 ⊂ Bε and

V̇2

∣∣∣
Ω2−Ω0

< 0, BM ⊂ Ω2.

This implies the SGPS property of the closed-loop system

(see Fig. 2 for detailed illustrations).

 

0Ω

 

2Ω

2x  

1x  

 

MB

 B
ε  

Fig. 2 The level set on x-space: SGPS case

The proof in the higher-dimensional case can be carried

out, conceptually, in a similar manner, but technically, is

much more complicated and hence is omitted here.

IV. DISCUSSIONS AND EXAMPLES

For the purpose of illustration, we present in this section

several examples to demonstrate how the linear state feed-

back control schemes developed so far can be employed to

achieve SGAS or SGPS for highly nonlinear systems with

uncontrollable unstable linearization.

Example 4.1: Consider the planar non-triangular system

ẋ1 = x
p
2 + x

p−1

2 φp−1(x1) + · · · + x2φ1(x1) + φ0(x1)

ẋ2 = u, (4.1)

where x = (x1, x2) ∈ IR2 and u ∈ IR are the system state

and input, respectively, p ≥ 1 is an odd integer and the

mappings φi : IR → IR, i = 0, · · · , p − 1 are C1 with

φi(0) = 0.

Notably, (4.1) is known to be a normal form of the

affine system ξ̇ = f(ξ) + g(ξ)u in the plane [14]. It

is feedback equivalent to the planar affine system when

rank[g(0), ad
p
fg(0)] = 2. A more general characterization

in [4], [19] shows that system (4.1) is indeed a special case

of the so-called Hessenberg normal form [4], [19].

A fascinating feature of the planar system (4.1) is that it

is usually not smoothly stabilizable when p > 1, because

its linearization may have uncontrollable modes associated

with eigenvalues on the right-half plane; for instance, see

the simple example

ẋ1 = x3
2 + x2x1 + x1

ẋ2 = u. (4.2)

As a consequence, there exist no linear controllers that

stabilize system (4.2), even locally. However, a straightfor-

ward calculation shows that the planar system (4.1) satis-

fies Assumption 3.1. By Theorem 3.2, a linear controller

can be designed to achieve semi-global practical stability.

Simulations of system (4.2) with u = −25x2 − 100x1

and x(0) = (3,−2)T have been conducted, illustrating the

effectiveness of the linear controller. The simulation figures

are omitted due to the limit of spaces.

Example 4.2: Consider the uncertain planar system with

uncontrollable linearization

ẋ1 = x3
2 + x3

1d(t)

ẋ2 = u + x2, (4.3)

where d(t) is a C0 time-varying parameter with |d(t)| ≤ 1.

Clearly, Example 4.2 satisfies Assumptions 2.1 and 2.2.

If the control objective is global asymptotic stabilization, a

smooth nonlinear controller must be used according to the

work [17]. By comparison, Theorem 2.3 indicates that under

the same conditions, a linear controller exists, achieving

SGAS for the uncertain system (4.3). In fact, Simulations

of system (4.3) with u = −50x2−250x1, x(0) = (−5, 5)T

and d(t) = sin t demonstrate the performance of the linear

controller. The details are omitted for the reason of space.
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Example 4.3: Consider the nonlinear system

ẋ1 = x2 + x
1
3

1

ẋ2 = u, (4.4)

which has been shown to be not stabilizable, even locally,

by any continuous state feedback [7], due to the presence of

the nonlinearity x
1
3

1 . In other words, all the existing continu-

ous control design methods including the one proposed [18]

are invalid and inapplicable to system (4.4). However, if one

does not insist to pursue GAS or SGAS but instead, to make

a trade-off by seeking a less aggressive control aim such as

SGPS, the linear state feedback scheme proposed in section

3 works and can be used to control the non-continuously

stabilizable system (4.4). In fact, SGPS can be achieved by

linear state feedback. The proof of this conclusion is very

close to that of Theorem 3.2 and omitted for the sake of

spaces. The efficiency of a linear controller can be seen

from the simulations in Fig. 3.

0 1 2 3 4 5
−20

−15

−10

−5

0

5

Time

x
1

x
2

Fig. 3 Simulations of system (4.4) with u = −25x2 − 100x1

and x(0) = (5,−6)T .

V. CONCLUSIONS

In this paper, we have provided some answers to the

important questions such as, to what extent, a linear con-

troller would be good enough for the control of nonlinear

systems. This was done by presenting two linear robust

state feedback control schemes, which achieve SGAS and

SGPS for a family of inherently nonlinear systems (1.1),

respectively. The main results of the paper are Theorems

2.3 and 3.2, whose proofs are constructive and carried

out by designing recursively, a set of linear state feedback

stabilizers, control Lyapunov functions and the associated

level sets. Because linear controllers are much easier to be

implemented than the existing nonlinear controllers [17],

[18], the linear feedback design methods proposed in this

work have offered an valuable alternative for the control

of uncertain systems with higher-order nonlinearity. The

effectiveness of our robust linear controllers was illustrated

by several examples — some of them such as Example 4.3

are very difficult to be controlled and cannot be dealt with,

even locally, by any continuous feedback. As a trade-off,

the gains of our linear controller should be large enough to

overcome the nonlinearity of system.

Finally, it is worth pointing out that under suitable

conditions, the main results of this paper can be extended,

without many efforts, to a family of uncertain cascade

systems involving zero-dynamics. Such generalizations will

be presented in a full version of the paper.
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