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Abstract— The paper presents application of the Mono-
tone Structural Evolution (MSE) to dynamic optimization of
switched systems. The MSE is a direct computational method
of optimal control which automatically identifies the optimal
structure. Its distinctive feature is that the decision space
undergoes gradual evolution, driven by the discrepancy from
the Maximum Principle conditions. The approach is illustrated
with two examples: the benchmark fishing problem, and a
three-mode problem with right-hand sides linear in the state.

I. INTRODUCTION

Optimization problems for switched systems are widely
studied in the literature (see, e.g., [2], [10], [19]). This
paper is confined to autonomous systems with continuous
state trajectories and switchings independent of state. The
choice of modes, their number and sequence as well as
switching times are decision variables. Such problems can
be approached directly, by nonlinear programming (NLP)
of mixed type. They can also be formulated as optimal
control problems with constraints of special type, to which
the Maximum Principle is applied [1]. We follow the latter
approach which gives a possibility to study the limits of
optimizing sequences by means of singular control theory
applied to relaxed problems [9], and to employ computational
optimal control methods for approximation of solutions.

Computational methods of optimal control are divided into
direct and indirect [3]. In the indirect approach, the boundary
value problem of the Maximum Principle is solved, usually
by multiple shooting. The rate of convergence is high, but
the area of convergence is relatively small. Practically, the
optimal control structure has to be determined beforehand.
In the direct methods, approximating finite-dimensional opti-
mization problems are solved by NLP algorithms. The direct
simultaneous approach discretizes both controls and state
trajectories, and frequently leads to large-scale computations.
In the sequential approach only the controls are discretized
and the states are computed by numerical integration. The
direct methods feature large areas of convergence but in
general, they are rather slow. A special class of sequential
methods uses switching times and, possibly, the end points of
singular arcs as the NLP decision variables. The derivatives
of cost for gradient optimization are obtained from adjoint
solutions [8], [11] – [14] or by variational and difference
techniques [7], [17]. Such parameterization usually results
in a low-dimensional decision space and good convergence,
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but the optimal control structure has to be known to start the
NLP computations.

Our main goal is to show that the method of monotone
structural evolution (MSE) [6], [8], [12] – [16] is an effective
tool for optimization of switched systems. The MSE is a
direct sequential method for optimal control computations
which detects the optimal control structure in an automatic
way, within the NLP algorithm. Its distinctive feature is
that the decision space undergoes gradual evolution in the
course of optimization, with changing the control parameter-
ization and the number of decision variables. Such structural
changes, which locally increase efficacy of gradient opti-
mization, are followed by periods of gradient optimization
in a constant decision space. The changes are driven by
current discrepancy from the Maximum Principle conditions.
The control is preserved by every structural change so that
monotone decrease of the cost is achieved in the whole
algorithm. A basic idea behind the application of the MSE to
switched systems is that of spike generations, with the rule
of minimum positive efficiency which prevents the algorithm
from converging to chattering modes if the optimal solution
has a singular arc. A concept similar to that of spike
generation (mode insertions) can be found in [4].

We begin with the statement of the optimization problem.
Next, we explain the basics of the MSE and present the
general algorithm, together with the spike generations. Two
examples are then solved. The first is the well-known fishing
problem [9], and the second is a generalization of the
problem discussed in [4] to arbitrary three-mode systems
with the right-hand sides linear in the state.

II. PROBLEM STATEMENT AND OPTIMALITY
CONDITIONS

Let q : Rn → R and fi : Rn → Rn, i = 1, ...,M be given
functions of class C1, and T , a positive real. The problem
is to find a positive integer N , a strictly increasing sequence
of reals τi ∈ [0, T ], i = 0, ..., N , τ0 = 0, τN = T and
a function {1, ..., N} 3 i 7→ ki ∈ {1, ...,M}, ki 6= ki−1,
i = 2, ..., N which minimize a cost functional

Q(N, τ, k) = q(x(T ))

on the trajectories of a switched system

ẋ(t) = fki(x(t)), τi−1 ≤ t < τi, i = 1, ..., N ,

x(0) = x0. The initial state x0 is fixed. This formulation also
covers integral costs, considered in further sections, which
are transformed by introducing an additional state variable.
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It is standard to restate this hybrid problem as a control
problem: minimize the cost

S(u) = q(x(T )) (1)

subject to

ẋ(t) = f(x(t))u(t), t ∈ [0, T ], x(0) = x0 (2)

where f = [f1 ... fM ], the control u is piecewise continuous,
u ∈ PC(0, T ;Do),

Do =
{
v ∈ RM : vi ∈ {0, 1}, i = 1, ...,M,

∑M

i=1
vi = 1

}
.

This control problem will be called original (OCP). We also
consider a relaxed problem (RCP) in which the control takes
values in the set

Dr =
{
v ∈ RM : vi ≥ 0, i = 1, ...,M,

∑M

i=1
vi = 1

}
.

(3)
There are obvious relationships between optimal solutions of
the OCP and RCP. First, inf{S(u) : u ∈ PC(0, T ;Do)} =
inf{S(u) : u ∈ PC(0, T ;Dr)}. Secondly, suppose that u is
an optimal control of the RCP. If u has only boundary arcs,
then it is also optimal in the OCP. If u has interior arcs, then
the OCP has an optimal sliding regime û whose chattering
arcs coincide with the interior arcs of u, and besides, û is
identical with u. Moreover, u and û generate identical state
trajectories.

Define the hamiltonian for both control problems

H(ψ(t), x(t), u(t)) = ψ(t)>f(x(t))u(t).

The adjoint function ψ is a solution of the terminal value
problem

ψ̇(t) = −∇xH(ψ(t), x(t), u(t)), t ∈ [0, T ]
ψ(T ) = −∇q(x(T )). (4)

The Maximum Principle says that if u is optimal, then for
every t ∈ [0, T ]

H(ψ(t), x(t), u(t)) ≥ H(ψ(t), x(t), v) ∀v ∈ D

where D = Do for the OCP and D = Dr for the RCP. Let
φ(x, ψ) = f(x)>ψ be the switching function and

Kt = {i : φi|t = max{φj |t, j = 1, ...,M}}.

Then, for every optimal control u∑
i∈Kt

ui(t) = 1 .

In particular, if φi|t > φj |t for every j ∈ {1, ...,M}\{i},
then ui(t) = 1.

The ith optimal control component is singular on a time
interval σ, if #Kt > 1 and i ∈ Kt for every t ∈ σ. To
characterize singular controls one can use a set of equations
valid for every t ∈ σ

φi(x(t), ψ(t)) = φj(x(t), ψ(t)), i, j ∈ Kt, i 6= j (5)

together with equations produced from (5) by subsequent
differentiations w.r.t. t, with substitutions of the right-hand

sides of (2) and (4) for ẋ(t) and ψ̇(t). In typical cases the
resulting set can be solved w.r.t. the singular controls and so
they can be expressed in terms of x(t) and ψ(t). Sometimes it
is possible to eliminate ψ(t) and obtain the singular controls
in a state feedback form, which is particularly desirable for
analytical and computational purposes.

The control problems can be stated in a reduced form.
For every admissible control we have uM = 1 −

∑M−1
i=1 ui

and the state equation can be written as ẋ = f(x)u+fM (x)
where u = col(u1, ..., uM−1), f = [f1−fM ... fM−1−fM ].
The hamiltonian reads H(ψ, x, u) = ψ>f(x)u+ψ>fM (x).
In the reduced relaxed problem (RRCP), the control takes
values in

Dr ={
v ∈ RM−1 : vi ≥ 0, i = 1, ...,M − 1,

∑M−1

i=1
vi ≤ 1

}
.

III. MONOTONE STRUCTURAL EVOLUTION
Let us recall a few basic ideas of the MSE which will be

used in this work [16]. The control structure is a sequence
of procedures Pi, i = 1, ..., N which determine the control u
in successive time intervals [τi−1, τi[, u(t) = Pi(x(t), t, pi)
where x is the state trajectory generated by u and pi is
a vector of parameters. The points τ0, τ1, ..., τN are called
structural nodes, 0 = τ0 ≤ τ1 ≤ ... ≤ τN = T . The
restrictions of controls to intervals [τi−1, τi[ are called arcs.
The procedures (taken from a fixed, finite set P), their num-
ber, order and parameters, as well as the nodes τ1, ..., τN−1

and, possibly, τN are decision variables. The contents of
the set P may be suggested by the optimality conditions
of the Maximum Principle, and by general approximation
techniques.

In the sequel we only use procedures where control
components in every interval [τi−1, τi[ are either constant
on a boundary or candidate singular, determined from the
singularity conditions in a state feedback form. For a given
control structure, we can thus write

u(t) = Pi(x(t)), t ∈ [τi−1, τi[, i = 1, ..., N .

The internal structural nodes are the only decision variables,
d = col(τ1, ..., τN−1). Let

gi(x) = f(x)Pi(x), i = 1, ..., N

g(x, t) = gi(x), t ∈ [τi−1, τi[, i = 1, ..., N .

The system equation (2) takes the form

ẋ(t) = g(x(t), t), t ∈ [0, T ].

The respective hamiltonian is defined as Ĥ(ψ̂(t), x(t), t) =
ψ̂(t)>g(x(t), t) where ψ̂ is the solution of the adjoint bound-
ary problem

˙̂
ψ(t) = −∇xĤ(ψ̂(t), x(t), t), t ∈ [0, T ]
ψ̂(T ) = −∇q(x(T )).

The adjoint ψ̂ is identical with ψ determined by (4) if the
control u is purely bang-bang, or its every candidate singular
arc is singular.
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An optimal control approximation in the direct approach
is a value of an approximation mapping A : Da → U ,
from the admissible set Da in a finite-dimensional space
of decision variables D, Da ⊂ D into a functional control
space U . Once D, Da ⊂ D and A are chosen, the cost
functional may be redefined as a function of the decision
vector Σ(d) = S(A(d)), d ∈ Da. In the MSE, the decision
space is gradually adapted to the accumulated knowledge on
optimal solution in a series of structural changes, separated
by periods of gradient optimization in a constant space.
Assume that ∆ is a given family of decision spaces D.
Each structural change is determined by a function (D, d) 7→
(D̄, d̄) where d∈Da⊂D, d̄∈ D̄a⊂ D̄, D, D̄∈∆. Let the
approximation mappings A and Ā be assigned to D and
D̄, respectively. It is required that the condition of control
preservation holds:

Ā(d̄) = A(d), d ∈ Da, d̄ ∈ D̄a.

Thus, the control as an element of U is not immediately af-
fected, and in consequence, the cost functional monotonously
decreases.

To define the efficiency E of a structural change, denote
Σ̄ = S(Ā( · )). If the antigradient γ = −∇Σ(d) points to
intDa and γ̄ = −∇Σ̄(d̄) to intD̄a, the efficiency is given by

E = || γ̄||2 − || γ ||2. (6)

In the general case the antigradients are replaced by their
orthogonal projections onto the local conical approximations
of the admissible sets.

Two kinds of structural changes are typical for the MSE:
the set of decision variables increases in generations, and
is diminished in reductions. A driving generation takes
place when its efficiency E exceeds a given threshold,
E > ε(|| γ ||) where ε : R → R is a continuous strictly
increasing function vanishing at 0. Additional rules limit
the number of new decision variables and, possibly, impose
selected regularity properties on controls, such as continuity
or smoothness. The MSE also admits saturation generations,
enforced by the requirement that at the moment of gradient
computation each control component arc has to be either
purely boundary or purely interior.

Typical reductions consist of eliminating arcs of zero
length when they are not promising, or unification of two
adjacent arcs described by identical procedures. To facilitate
the detection of optimal control structure, we sometimes
admit reductions which slightly violate the condition of
control preservation. Very short control arcs can be reduced
even if it brings a temporary increase of cost. If a cost
improvement does not follow in a prescribed, small number
of iterations, the reduction is withdrawn.

IV. BASIC MSE ALGORITHM AND SPIKE
GENERATIONS

The basic algorithm of the MSE consists of the following
steps.

10 Selection of initial decision space D and starting point
d ∈ Da ⊂ D.

20 Termination, if optimality conditions in U are satisfied.
30 Generation, if it is sufficiently promising or needed.
40 Iteration of gradient optimization in current decision

space D.
50 Reduction, if necessary.
60 Return to 20.

In step 20 it is verified if the condition of hamiltonian
maximization of the Maximum Principle is fulfilled with suf-
ficient accuracy. This can be also formulated as a condition
of existence of appropriately efficient generations. Step 30

is distinctive for the MSE algorithms and crucial for their
convergence. The algorithm is equipped with procedures for
gradient computation and evaluation of efficiency of genera-
tions, based on the solutions of the adjoint equations. While
the gradients ∇Σ(d) can be computed by other techniques,
such as variational equations or discrete approximation, the
adjoint trajectories are indispensable for the estimation of
accuracy of fulfillment of the Maximum Principle condi-
tions, as well as for choosing generations with satisfactory
efficiency.

In this application of the MSE to switched problems we
only use spike generations, in which the new control arcs
are of zero length, and saturation generations. To explain
the technique of spike generations, recall that the control
structure is defined by a sequence of procedures (P1, ..., PN ),
Pi ∈ P for i = 1, ..., N . The gradient of the cost is given
by [11]

∇τiΣ(d) =

H(ψ̂(τi), x(τi), Pi+1(x(τi)))−H(ψ̂(τi), x(τi), Pi(x(τi))) =

φ(x(τi), ψ̂(τi))>(Pi+1(x(τi))− Pi(x(τi))) =

ψ̂(τi)>Gi(x(τi)), i = 1, ..., N − 1 (7)

where Gi = gi+1 − gi. If τi−1 = τi < τi+1, formula (7)
determines the right partial derivative, and if τi−1 < τi =
τi+1, it determines the left partial derivative. The case τi−1 =
τi = τi+1 is excluded from consideration. Let HP (τ) =
H(ψ̂(τ), x(τ), P |τ ) for every P ∈ P and τ ∈ [0, T ]. Define
π(τ) ∈ P by the equality

Hπ(τ)(τ) = min{HP (τ) : P ∈ P, HP (τ) > Ĥ|τ}. (8)

This recipe for selecting control procedures is called the
rule of minimum positive efficiency. If the set {P ∈ P :
HP (τ) > Ĥ|τ} is empty, we put π(τ)=Pi with i such that
τ ∈ [τi−1, τi[. Assume 0 = τ0 < τ1 < ... < τN = T and
define e(τ) = (Hπ(τ)(τ)− Ĥ|τ )2.

Let us first consider a generation in which only one
spike is inserted. We wish it located at a point τ∗ where
the function e attains a possibly large value, and not at
the internal structural nodes τi, 0 < i < N . Addition-
ally, it is required that e(τ∗) > ε0||γ||4 where γ is the
current gradient of Σ and ε0 > 0, a case dependent
constant. A spike generation at τ∗ changes the control
structure to (P1, ..., Pi, π(τ∗), Pi, ..., PN ) if τ∗ ∈] τi−1, τi[,
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(π(τ∗), P1, ..., PN ) if τ∗ = τ0, and (P1, ..., PN , π(τ∗)) if
τ∗ = τN . Respectively, the sequence of structural nodes
becomes (τ0, ..., τi−1, τ

∗, τ∗, τi, ..., τN ), (τ0, τ∗, τ1, ..., τN ),
or (τ0, τ1, ..., τN , τ∗). Note that e(τ∗) is the efficiency E(τ∗)
of a spike generation for τ∗ = 0 and τ∗ = T , and is equal
to 1

2E(τ∗) for τ∗ 6= τi, i = 0, ..., N (see (6) and (7)). The
factor 1

2 is introduced to give some preference to inserting
spikes at 0 and T since the number of decision variables is
then increased only by one. It should be observed that for a
spike thus generated at any point of positive efficiency, the
cost is a strictly decreasing (increasing) function of the right
(left) structural node of this spike.

Computational practice shows that the convergence of the
algorithm is faster, if several spikes are allowed in one
generation. In the numerical implementation of the MSE we
use the following rules. Let Θ1 = [ 0, τ1[ , Θi = ] τi−1, τi[ ,
1 < i < N and ΘN = ] τN−1, T ]. Define I as the set
of all integers i in {1, ..., N} such that e(τ∗i ) > ε0||γ||4
where τ∗i is a maximizer of e in Θi. Let θ and θ0 be strictly
increasing sequences built of all elements of {τ∗i : i ∈ I} and
{τ∗i : i ∈ I}\{0, T}, respectively. To obtain the sequence of
the new structural nodes (τ̄0, ..., τ̄N̄ ), sort the concatenation
of the sequences (τ0, ..., τN ), θ and θ0 in a nondecreasing
order. The new control structure (P̄1, ..., P̄N̄ ) which includes
all the procedures Pi, i ∈ {1, ..., N} and π(τ∗i ), i ∈ I is
characterized as follows. Let j ∈ {1, ..., N̄}. If τ̄j−1 = τ̄j =
τ∗i for some i ∈ I , then P̄j = π(τ∗i ). If τ̄j 6= τ∗k ∀k ∈ I ,
there is exactly one i in {1, ..., N} such that τ̄j = τi. Then
P̄j = Pi, and P̄j+1 = Pi+1 for j < N̄ .

The rule of minimum positive efficiency (8), introduced
in [15], [16] is an essential element of the MSE approach.
This rule may be suppressed in early stages of optimization,
but becomes vital in the final stage to avoid convergence
to chattering modes, when singular arcs are expected in the
optimal solution.

V. HESSIAN OF COST, AND NEWTON METHOD
We determine the hessian of cost for the non-reduced

relaxed problem RCP (1) – (3), assuming that all necessary
functions are of class C2. The hessian is not indispensable
for the MSE, but allows the Newton method for optimization
which considerably speeds up convergence. It can be also
used for verification of sufficient conditions of optimality.
We compute the second derivatives of the cost analytically,
using formulas adapted from [14]. In a different framework,
similar results were independently obtained in [17]. Define
for i = 1, ..., N − 1
πi =

ψ̂(τi)>
(
∇gi+1(x(τi))>gi(x(τi))−∇gi(x(τi))>gi+1(x(τi))

)
ρi = V1(τi)>∇Gi(x(τi)) ψ̂(τi) + V2(τi)>Gi(x(τi))

σi = V1(τi)−1Gi(x(τi))

where V1 and V2 are n×n matrix functions determined from
the terminal value problem

V̇1(t) = A(t)V1(t), V1(T ) = I

V̇2(t) = B(t)V1(t)−A(t)> V2(t) V2(T ) = −∇2q(x(T ))

A(t) = ∇>x g(x(t), t)

B(t)= −∇2
x(ψ̂(t)>g(x(t), t))= −∇x((∇xg(x(t), t)) ψ̂(t)).

The hessian is a symmetric (N − 1)× (N − 1) matrix h =
∇2Σ(d). Its diagonal elements satisfy

hii = πi − ρ>i σi, i = 1, ..., N − 1.

The elements above the main diagonal are calculated from

hij = −ρ>j σi, j = 2, ..., N − 1, i = 1, ..., j − 1.

For gradient optimization, we use the Newton method with
analytical hessians, and compare its performance with the
BFGS method. In the case when the hessian has some nega-
tive eigenvalues, the Newton method performs a curvilinear
search along a path y(σ) = τ + arg min{ 1

2z
>h z + γ>z :

z ∈ K(σ)}, σ > 0 where τ = y(0) is the current point, γ
is the gradient of the cost and K(σ) denotes the ball with
radius σ, centered at the origin [5].

VI. FISHING PROBLEM
We first illustrate the MSE method with the fishing

problem [9] where the state equations take two forms.
The corresponding reduced optimal control problem can be
written as follows

ẋ1(t) = x1(t)− x1(t)x2(t)− c1x1(t)u(t), x1(0) = 0.5
ẋ2(t) = −x2(t) + x1(t)x2(t)− c2x2(t)u(t), x2(0) = 0.7

S(u) = 1
2

T∫
0

((x1(t)− 1)2 + (x2(t)− 1)2) dt

c1 = 0.4, c2 = 0.2, T = 12.

The control is subject to a constraint u(t) ∈ {0, 1}. In the
relaxed problem RRCP, 0 ≤ u(t) ≤ 1. It can be shown
[9] that the original non-relaxed problem has no optimal
solution. The infimum of cost is attained on a ‘sliding
regime’, that is, a control with chattering on some time
intervals. To examine this phenomenon, consider now the
relaxed version. The hamiltonian is given by

H = ψ1x1(1− x2 − c1u) + ψ2x2(−1 + x1 − c2u)−
1
2 (x1 − 1)2 − 1

2 (x2 − 1)2

where the adjoint variables ψ1 and ψ2 satisfy

ψ̇1 = −ψ1(1− x2 − c1u)− ψ2x2 + x1 − 1, ψ1(T ) = 0

ψ̇2 = ψ1x1 − ψ2(−1 + x1 − c2u) + x2 − 1, ψ2(T ) = 0.

Define the switching function φ = −c1ψ1x1 − c2ψ2x2. The
optimal control u maximizes the hamiltonian H , whence
u(t) = 1

2 (1+sgnφ|t) for φ|t 6= 0. To characterize the optimal
control on a singular interval we use the fact that φ and its
time derivatives are equal to zero there. The resulting system
of equations can be solved yielding an expression for singular
control in a state feedback form (see [9])

us(x) =

5
8x3

1 − x3
2 − x1x2(6x2

1 + 3x1x2 − 3x2
2 − 8x1 + 13x2 − 4)

16x3
1 + 6x2

1x2 + 2x1x2 + x3
2

.
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In candidate singular intervals, we substitute us(x) for u in
the state equations. In consequence, the hamiltonian takes
the form

Ĥ = ψ̂1x1(1− x2) + ψ̂2x2(−1 + x1)−
1
2 (x1 − 1)2 − 1

2 (x2 − 1)2 + φ(x, ψ̂)us(x)

and the adjoint equations

˙̂
ψ1 = −ψ̂1(1− x2 − c1us)− ψ̂2x2 + x1 − 1− φ∇x1us

˙̂
ψ2 = ψ̂1x1 − ψ̂2(−1 + x1 − c2us) + x2 − 1− φ∇x2us.

The variables ψ̂1, ψ̂2 satisfy unchanged adjoint equations
outside these intervals and ψ̂1(T ) = ψ̂2(T ) = 0. The differ-
ential equations are solved by the Runge-Kutta 3/8 method
with moving mesh, consistent with rhs discontinuities. All
computations are performed in MATLAB.

In the first numerical experiment only bang-bang controls
are admissible. The maximum allowed number of switchings
is equal to 20. The history of optimization is illustrated by
Fig. 1. The initial approximation is u ≡ 0, and after 17
iterations of the Newton method (18 gradient and hessian
computations) the solution presented at the bottom is ob-
tained, with the cost value 0.672135. The situations at the
moments of the first three spike generations are shown in
the upper part of the figure. Note that the switching function
φ in all figures is normalized (divided by its maximum). A
blowup in Fig. 2 shows details of the control and switching
function on the final solution which prove that the infimum
of cost (without an upper limit on the number of switchings)
has not been achieved. The hessian w.r.t. switching times,
computed on the final solution is positive definite, with the
minimum eigenvalue equal to 1.09 · 10−5. The evolution of
control structure is depicted in Fig. 3.

The BFGS method finds the optimal solution in 84 itera-
tions (85 gradient evaluations), i.e., it needs 4.9 times more
iterations than the Newton method. It also requires 3.6 times
more cost evaluations and 2.9 times more CPU time.

In the second experiment, bang-bang and candidate sin-
gular arcs are admitted. After 46 iterations of the Newton
method, we arrive at the optimal solution depicted in Fig.
5, with the cost value 0.672041. Fig. 4 shows the history
of optimization, starting with iteration 10 when the first
candidate singular spikes appear, and ending with the optimal
control. The eigenvalues of the hessian on the optimal
solution are equal to 5.80·105 and 0.102. The evolution of
control structure is presented in Fig. 6.

The BFGS method finds the optimal solution in 114
iterations. It needs 2.5 times more iterations, 2.2 times more
cost evaluations and 2.0 times more CPU time.

VII. LINEAR SYSTEMS

Consider a linear switched system with M = 3 right-hand
sides. The state equation in the RCP reads

ẋ = (u1A1 + u2A2 + u3A3)x

where Ai, i = 1, 2, 3 are constant matrices. A cost functional
S is to be minimized,

S(u) = 1
2

T∫
0

x>xdt.

The controls satisfy u1 + u2 + u3 = 1, ui ≥ 0, i = 1, 2, 3.
We write the hamiltonian

H = ψ>(u1A1 + u2A2 + u3A3)x− 1
2x
>x,

and the adjoint equation (4)

ψ̇ = x− (u1A1 + u2A2 + u3A3)>ψ, ψ(T ) = 0.

Define the switching functions φi = ψ>Aix, i = 1, 2, 3. The
controls that maximize the hamiltonian can be characterized
as follows. Let i, j, k ∈ {1, 2, 3} be three pairwise different
integers. (i) If φi(t) > max{φj(t), φk(t)}, then ui(t) = 1,
uj(t) = uk(t) = 0. (ii) If φi(t) = φj(t) > φk(t), then
ui(t) + uj(t) = 1, ui(t), uj(t) ≥ 0, uk(t) = 0. (iii) If
φi(t) = φj(t) = φk(t), then every admissible control vector
is a hamiltonian maximizer. Cases (ii) and (iii) are singular
and will be further analyzed for second order systems and
systems with commuting matrices.

Assume that n = 2. Consider first the case (ii), that
is, φi(t) = φj(t) > φk(t) on some time interval. By
differentiating twice the identity φi(t) = φj(t) we arrive
at a system of algebraic equations

ψ>Aijx = 0

x>Aijx+ ψ>〈Ai, Aj〉x = 0

x>
(
(A>ij +Aij)(uiAij +Aj) + 〈Ai, Aj〉

)
x+

ψ>〈〈Ai, Aj〉, uiAij +Aj〉x = 0

where Aij = Ai − Aj and 〈Ai, Aj〉 = AiAj − AjAi.
Assuming that the vectors Aijx and 〈Ai, Aj〉x are linearly
independent (which is generically true), we can compute

ψ> = −[0 x>Aijx] [Aijx 〈Ai, Aj〉x]−1 (9)

u
(j)
si (x) =

−
x>

(
(Aij +A>ij)Aj + 〈Ai, Aj〉

)
x+ ψ>〈〈Ai, Aj〉, Aj〉x

x>(Aij +A>ij)Aijx+ ψ>〈〈Ai, Aj〉, Aij〉x
.

(10)
We use the convention that the subscript i denotes the number
of the (candidate) singular control component u(j)

si and the
superscripts are the indices of the remaining (candidate)
singular control components so that, e.g., u(j)

si + u
(i)
sj = 1

in the case of (10).
Suppose now that φi(t) = φj(t) = φk(t) on a time

interval, that is, case (iii) occurs. Then

ψ>Aijx = ψ>Aikx = ψ>Ajkx = 0. (11)

After differentiating the equality ψ>Aijx = 0 and using
ui + uj + uk = 1 we obtain

x>Aijx+ψ>〈Ai, Aj〉x+ukψ
> (〈Aij , Ak〉−〈Ai, Aj〉) x=0

(12)
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Fig. 1. History of optimization in experiment 1 (u in bold line)
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Fig. 2. Details of the last subplot of Fig. 1
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Fig. 4. History of optimization in experiment 2 (u in bold line)
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Fig. 5. Optimal state trajectories
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which generically yields an expression for the singular
control u(i,j)

sk . The singular controls u
(j,k)
si and u

(i,k)
sj are

easily found by symmetry. As (11) may include at most one
linearly independent equation for ψ>, the adjoints can be
fully eliminated from (12) only in special cases.

Let us now consider systems of an arbitrary order n,
with commuting matrices A1, A2, A3 which means that
〈A1, A2〉 = 〈A1, A3〉 = 〈A2, A3〉 = 0. The analysis in the
case (ii) does not change, giving the singular control

u
(j)
si (x) = −

x>(Aij +A>ij)Aj x

x>(Aij +A>ij)Aijx
.

In the case (iii), the differentiation of (11) gives x>Aijx =
x>Aikx = x>Ajkx = 0. After another differentiation and
substitution of uk = 1− ui − uj we arrive at[
x>A2

ikx x>AikAjkx
x>AjkAikx x>A2

jkx

][
ui

uj

]
=−

[
x>AikAkx
x>AjkAkx

]
which yields u(j,k)

si and u(i,k)
sj .
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Fig. 7. Optimal control with 40 switchings in experiment 3
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Fig. 8. Evolution of control structure in experiment 3

Consider now a numerical example (based on [4]) with

A1 =
[
−1 0
1 2

]
, A2 =

[
1 1
1 −2

]
, A3 =

[
1 −1
1 1

]
x1(0) = 0.5, x2(0) = 0.5, T = 1.

In experiment 3 only bang-bang controls are allowed,
with the number of switchings not greater than 40. The
optimization is started from u3 = 1, u1 = u2 = 0, and
after 16 Newton iterations we obtain the optimal control,
presented in Fig. 7 together with the normalized functions

δi(t) = φi(x(t), ψ̂(t))−max
j 6=i

φj(x(t), ψ̂(t)).

The optimal cost equals 0.494565. The hessian is positive
definite with the smallest eigenvalue 0.00011. The BFGS
method finds the optimal solution in 127 iterations. It needs
7.9 times more iterations, 8.2 times more cost evaluations
and 5.1 times more CPU time.

In experiment 4 we admit bang-bang and candidate sin-
gular controls. As case (iii) does not appear in the optimal
solution, we do not use candidate singular controls (12).
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Fig. 9. Optimal control in experiment 4
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Fig. 10. Evolution of control structure in experiment 4
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Fig. 11. Optimal state trajectories in experiment 4

The formulas (9) and (10) yield

u
(2)
s1 =

8x4
1 + 116x3

1x2 − 178x2
1x

2
2 − 123x1x

3
2 + 28x4

2

48x4
1 + 64x3

1x2 − 440x2
1x

2
2 − 136x1x3

2 + 83x4
2

u
(3)
s1 =

5x4
1 − 22x3

1x2 + 12x2
1x

2
2 − 14x1x

3
2 + x4

2

3x4
1 − 5x3

1x2 + 23x2
1x

2
2 − 13x1x3

2 + x4
2

u
(3)
s2 =

2x1 + 10x2

13x2
.

The Newton optimization takes 10 iterations. The pairs
of singular control components (u(2)

s1 ,u(1)
s2 ) and (u(3)

s2 ,u(2)
s3 )

appear in the optimal solution shown in Figs. 9 and 11.
The optimal cost value is 0.494562. The hessian is positive
definite with the smallest eigenvalue equal to 0.0168.

The BFGS method finds the optimal solution in 25 itera-
tions. It needs 2.5 times more iterations, 1.7 times more cost
evaluations and 1.5 times more CPU time.

VIII. CONCLUSIONS

The MSE method has proved relatively efficient for the
considered class of switched optimization problems, both
for the OCP and RCP. This is due to the fact that it uses,
whenever possible, a low-dimensional parameterization of
controls and incorporates the necessary optimality conditions
of the Maximum Principle. A particularly rapid convergence
is observed if the Newton method with analytical hessians
is used for gradient optimization. On the other hand, the
MSE requires analytical work for the derivation of adjoint
equations, especially for the candidate singular arcs.

The MSE, equipped with an appropriate set of procedures
P, has quickly found the optimal control structure in all
numerical experiments, which confirms earlier experience
with this method. The process of structure detection is
automatic, in contrast to other approaches known from the
literature where more or less heuristic procedures based
on homotopy or discrete approximations are used. Since in
many practical problems (e.g., in process engineering) the
knowledge of optimal structure gives way to economical and
exact representation of high quality control, the MSE may
be helpful in real time optimizing control.
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