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Abstract— Leveraging research by psychologists on human
decision-making, we present a human-robot decision-making
problem associated with a complex task and study the cor-
responding joint decision-making dynamics. The collaborative
task is designed so that the human makes decisions just as
human subjects make decisions in the two-alternative, forced-
choice task, a well-studied decision-making task in behavioral
experiments. The human subject chooses between two options at
regular time intervals and receives a reward after each choice;
for a variety of reward structures, the behavioral experiments
show convergence to suboptimal choices. We propose a human-
supervised robot foraging problem in which the human super-
visor makes a sequence of binary decisions to assign the role of
each robot in a group in response to a report from the robots
on their resource return. We discuss conditions under which
the decision dynamics of this human-robot task is reasonably
well approximated by the kinds of reward structures studied
in the psychology experiments. Using the Win-Stay, Lose-
Switch human decision-making model, we prove convergence to
the experimentally observed aggregate human decision-making
behavior for reward structures with matching points. Finally,
we propose an adaptive law for robot reward feedback designed
to help the human make optimal decisions.

I. INTRODUCTION

For highly complex tasks with many elements and many
scales, there is an important role for automation, where fast,
dedicated data processing and feedback responsiveness can
be exploited, see, e.g., cooperative control of multi-agent
systems [1]. In many complex tasks, such as air traffic control
[2] or missions where the environment changes with time and
unanticipated events are frequent, it can also be critically
important to keep humans in the loop and engaged in the
overall decision-making. This allows to exploit their superior
ability to handle the unexpected and to recognize pattern and
extract structure from data.

It is thus of great interest to investigate how humans and
robots can best jointly contribute to decision-making [3].
Research in human-robot interaction [4] makes clear that
profitable integration of human and robot decision-making
dynamics should take advantage of strengths of human
decision-makers and of robotic agents. A major challenge
is understanding how humans make decisions and what are
their associated strengths and weaknesses.

Our approach is to leverage the experimental and modeling
work of psychologists and behavioral scientists on human
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decision-making. To do this we seek commonality in the
kinds of decisions humans make in complex tasks and the
kinds of decisions humans make in psychology experiments.
We consider a class of sequential binary decision-making
called the two-alternative forced-choice task for which there
is ample research [5], [6], [7], [8], [9], [10]. In this task,
the human subject in the psychology experiments chooses
between two options at regular time intervals and receives a
reward after each choice that depends on recent past deci-
sions. Interestingly, these experiments show convergence of
the aggregate behavior to rewards that are often suboptimal.

To apply the behavioral research we introduce a joint
human-robot decision-making task associated with a com-
plex task in which the human’s role can be mapped into
the two-alternative forced-choice task. We assume an en-
vironment where human decision-making is needed, i.e., a
fully automated decision-making system could potentially
fail. The setting is a human-supervised collective robotic
foraging problem, where a group of robots moves around
in a highly uncertain field and collects a distributed resource
and a human supervisor sequentially assigns the role of each
of the robots, either to be an explorer or an exploiter of
resource. The human and robots work as a team to maximize
resource collected.

In our framework the human decision-making takes the
form of a two-alternative forced-choice task where the
reward report is a feedback from the robots. We discuss
conditions under which the reward structures used in the
psychology experiments provide reasonable approximations
of the human-robot task so that we can apply the results
from the psychology literature to study how the human
will behave in the complex task. Using the Win-Stay, Lose-
Switch (WSLS) human decision-making model together with
a model of the two-alternative forced-choice task, we prove
convergence of the human behavior to the observed aggregate
decision-making for reward structures with matching points.
Since behavior converges to suboptimal performance, we
propose an adaptive law for the robot feedback that uses
only local information but helps the human make optimal
decisions.

We review the two-alternative forced-choice tasks in Sec-
tion II. In Section III we present a map from the decision-
making task of the human supervisor of a robotic foraging
team to the two-alternative forced-choice task. In Section IV
we present our model. We prove convergence of the model
in Section V. In Section VI we present our adaptation law
for computational aid to human decision-making.
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II. BINARY DECISION MAKING PROBLEMS

Real-world decision-making problems are difficult to study
since the reward for a decision usually depends in a nontrivial
way on the decision history. Many studies have considered
decision-reward relationships that are fixed; however, these
have limited value in addressing problems associated with
complex, time-varying tasks. Here, we briefly review a class
of decision-making tasks called the two-alternative forced-
choice task, where reward depends on past decisions.

Montague et al. [9], [6] introduced a dynamic economic
game with a series of decision-reward relationships that
depend on a subject’s decision history. The human subject is
faced with a two-alternative sequential choice task. Choices
of either A or B are made sequentially and a reward for
each decision is administered directly following the choice.
Without knowing the reward structure, the human subject
tries to maximize the total reward (sum of sequence of
rewards).

Two reward structures considered are the matching shoul-
der (shown in Figure 1) and rising optimum (shown in Figure
2). In each of these figures, the reward (fA) for choosing A
and the reward (fB) for choosing B is plotted as a function
of the fraction of times A was chosen in the previous N = 20
trials (y = #A’s/20). For example, in Figure 1, if the
subject always chooses A, the reward drops to below 0.2.
Subsequently, if B is chosen, the reward jumps up close
to 1.0. However, continued choices of B lead to declining
reward. The average reward, plotted as a dashed line on each
figure, is computed as yfA(y) + (1− y)fB(y). The optimal
strategy is the one that maximizes the average reward curve.

Herrnstein [5], [11] pointed out that, in experiments,
human subjects tend to adopt strategies that bring them
close to the matching point of the reward curves (where
fA = fB). This is reasonable since near the matching point
the reward for choosing A or B is about the same. However,
this implies that humans do not necessarily converge on
the optimal strategy, since the matching point does not
necessarily correspond to the optimal average reward.

Fig. 1. The matching shoulder reward structure [6]. The dotted line depicts
fA, the reward for choice A. The solid line depicts fB , the reward for choice
B. The dashed line is the average value of the reward. Each is plotted against
the proportion of choice A made in the last 20 trials.

In Figure 1 the optimal reward is to the right of the
matching point. The rising optimum reward structure of
Figure 2 is an even more dramatic case. The optimal strategy
for the rising optimum case corresponds to choosing option
A 100% of the time. The reward at the matching point
is significantly suboptimal and to reach the optimum, the
human subject must first endure very low rewards.

Fig. 2. The rising optimum reward structure [10]. Note that, in this case,
the value of the reward at the matching point is significantly lower than the
optimal reward value.

III. HUMAN-SUPERVISED ROBOTIC FORAGING PROBLEM

In this section we formulate a human-supervised robotic
foraging problem where the human makes sequential binary
decisions and we define an explicit map from the human-
supervised robotic foraging problem to a two-alternative
forced-choice task. We assume that the environment is
changing with time and unanticipated events are frequent so
that we need a human in the loop, engaged in the decision-
making. Our focus is on integrating decision-making dynam-
ics of the human and the robots; development of collective
foraging strategies for the robots is not covered in this paper.

Consider a team of N = 20 autonomous robots, foraging
in a spatially distributed field S, that are remotely supervised
by a human. Each robot forages in one of two modes: to
collect resources while moving around or to collect resources
at its current position. We say that a robot is exploring
if it is in the former mode or exploiting otherwise. The
role of the human supervisor is to make the choice for
each individual robot, sequentially in time, as to whether it
should explore or exploit. At time t = 0, 1, 2, . . ., the human
supervisor chooses one of the two modes for a robot: to
explore or to exploit. The robot then provides the supervisor
with an estimate of the amount of resource to be collected
in the next time period under the assigned foraging mode.
That estimate represents the reward for the supervisor’s
decision at time t. By reading robots’ reports and making
sequential decisions, the human supervisor allocates each of
the 20 robots to foraging modes, one at a time, with the
objective of maximizing the total resource collection. The
human continues to re-assign robots’ foraging modes as long
as necessary; for example, in a changing environment re-
allocation may be critical.
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There are alternative possibilities for representation of
the reward reported by the robots. For example, the reward
could be the total amount of resource collected after some
time period. This introduces a time delay in the decision-
making process which differs from the fast time-scales in the
psychology studies of [7] and [10]. However, the influence
of the timing has been studied experimentally and it has been
shown that the convergence to matching behavior is actually
enhanced with slower time-scales [5].

The role of the human supervisor in the robotic foraging
problem is analogous to the role of the human subject in the
psychology studies reviewed in Section II. By assumption,
however, the human-supervised robot foraging task is more
complex than the tasks that the human subjects carry out;
notably the dependence of the reward on the past N = 20
decisions in the complex task may be more dynamic than
reflected in the reward structures shown in Figures 1 and 2.
We are exploring conditions under which the task from the
psychology studies provides a good enough approximation
to the complex task so that we can apply results from
the psychology studies and our corresponding models and
analysis to understand the human-robot decision dynamics
in the complex task. Below we discuss plausible scenarios
in the robotic foraging task that map to the the matching
shoulder and rising optimum reward structures of Figures
1 and 2. A stronger justification of the map can be found
in [12] where we derive a reward curve from numerical
experiments of a robot foraging team collecting resource in
a simulated environment with multiple high-density patches
of resource; the reward curve averaged over a large number
of experiments takes the shape of the rising optimum reward
structure of Figure 2.

We take N = 20 in the rest of the paper since this is
a common choice in the psychology experiments. However,
the concepts, models and analysis are valid for general N .

A. Matching shoulder

Assume that there are sufficient resources in S that are
uniformly distributed, allowing a robot to collect resources
whether exploring or exploiting. We denote the number of
robots that are exploring at time t, t = 0, 1, 2, . . ., by nA(t).
When nA(t) > 0 and the mode of a robot i, 1 ≤ i ≤ 20, is
changed from exploiting to exploring, robot i has to spend
some time planning its path to avoid competing with the
nA(t) foraging robots. As a result, the amount of resource
expected to be collected during (t, t+1] is less than one and
is reasonably well described by

1− wA(nA(t) + bA) (1)

where wA is a weight on the number of exploring robots
and bA is a bias term. The number of exploiting robots at
time t is 20 − nA(t). It is assumed that if at time t robot
i’s mode is changed from exploring to exploiting there is
a cost associated with communicating with the 20 − nA(t)
exploiting robots to register its own current position and as
a result the expected amount of resource to be collected by

robot i during (t, t+ 1] is reasonably well described by

1− wB((20− nA(t)) + bB) (2)

where wB is a weight on the number of exploiting robots
and bB is a bias against exploring robots.

Reward reports corresponding to equations (1) and (2) map
to matching shoulder reward curves. For example, for wA =
1
50 , bA = 150

7 , wB = 3
80 , and bB = 20

9 , the reward curves are
fA = − 2

5y + 4
7 and fB = 3

4y + 1
6 , plotted in Figure 1.

B. Rising optimum

As shown in Figure 2, the reward curves in the rising
optimum task rise quickly and monotonically after the frac-
tion of choice A becomes greater than 1

2 . This reward struc-
ture describes reasonably well a robotic foraging situation
in which the cost of collaboration outweighs the reward
from collaboration up to some threshold in the fraction
of explorers, after which cooperation comes with a higher
reward. For example, suppose the resources collected by an
exploring robot decreases when nA(t) grows and nA(t) ≤
10. When nA > 10, suppose that exploring robots benefit
from collaboration in a way that outweighs the cost of
collaborating. In this case the reported reward will map to
rising optimum reward curves.

IV. DECISION-MAKING MODEL

Experimental studies of human subjects performing the
two-alternative, forced-choice task with matching shoulder
and rising optimum reward structures show consistent ag-
gregate behavior that converges to the allocation of A’s
that corresponds to the matching point, see, e.g., [9]. Such
matching tendency in humans and animals was first identified
by Herrnstein [5], [11], whose related work has been influen-
tial in quantitative analysis of behavioral and mathematical
psychology. However, few mathematically provable results,
which describe the tendency for matching behavior, have
been obtained and reported. This is, in part, due to the
difficulty in modeling the dynamics of human and animal
decision-making. Montague and Berns [6] show that the
matching point is an attracting point, although their argument
requires a limiting assumption. In [13] the authors perform
a related analysis.

Several models have been proposed to describe the dynam-
ics of human decision-making. In this paper we analyze the
Win-Stay, Lose-Switch (WSLS) model, also known as Win-
Stay, Lose-Shift, which is used in psychology, game theory,
statistics and machine learning [14], [15].

Let x1(t) ∈ {A,B} denote the decision for the binary
choice A or B at time t and let xi(t) = x1(t − i + 1),
i = 2, . . . , 20, denote the decisions of the finite past. Here,
the “sliding window” of the last 20 trials is big enough, as
validated by experimental data, to include all the past choices
that may affect the subject’s current decision. Let y denote
the fraction of choice A in the last 20 trials, and thus

y(t) =
1
20

20∑
i=1

δiA(t) (3)
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where
δiA(t) =

{
1 if xi(t) = A
0 if xi(t) = B.

(4)

Note that y can only take value from a finite set Y of twenty-
one discrete values:

Y = {jc, j = 0, 1, . . . , 20} where c =
1
N

=
1
20
.

The reward at time t is given by

r(t) =
{
fA(y(t)) if x1(t) = A
fB(y(t)) if x1(t) = B .

(5)

The matching shoulder decision-reward relationship is de-
scribed by

fA = kAy + cA (6)
fB = kBy + cB (7)

where kA and kB are the slopes and cA and cB are the
constant terms of the two given linear reward curves.

From the definitions of xi, 2 ≤ i ≤ 20, we also have

xi(t+ 1) = xi−1(t), i = 2, . . . , 20, t = 0, 1, 2, . . . (8)

Thus, the human decision-making process in the matching
shoulder case can be modeled as a twenty-dimensional,
discrete-time dynamical system described by equations (3)-
(8) where xi(t), 1 ≤ i ≤ 20, is the state of the system and
y(t) is the output of the system.

The human subject’s decisions may be affected by all the
decisions and rewards in the past trials. In fact, a goal of
the studies of two-alternative forced-choice tasks is to de-
termine the decision-making mechanism through experiment
and behavioral and neurobiological investigations. Here we
consider the WSLS model. This model assumes that human
decisions are made with information from the rewards of the
previous two choices only and that a switch in choice is made
when a decrease in reward is experienced. To summarize,

x1(t+ 1) =
{
x1(t) if r(t) ≥ r(t− 1);
x̄1(t) otherwise, t = 1, 2, 3, . . .

(9)
where ·̄ denotes the “not” operator; i.e. if x1(t) = A (resp.
x1(t) = B), then x̄1(t) = B (resp. x̄1(t) = A).

This model is especially interesting in the setting of
human-supervised robotic foraging tasks, which has been
discussed in Section III, because a similar decision rule is
used in [16] to explain the ability of foraging predators to
converge to the ideal free distribution, the optimal allocation
of density of individuals to territories with various resource
levels [17]. Individuals visit a territory and immediately de-
termine the profitability, q, specific to that area. Profitability
of a territory is assumed to decrease monotonically with
respect to density. If q is greater than, or equal to, the
environmental average γ, individuals remain in that territory.
Otherwise, they leave and visit another territory. Individuals
must, however, learn the environmental average as they visit
territories using the following algorithm:

γ(t+ 1) = αq(t) + (1− α)γ(t) (10)

where α is a constant in the interval [0, 1]. When α is equal
to 1 the decision rule is equivalent to WSLS.

In the sequel, we give a rigorous analysis of the dynamics
of human performance in tasks with matching shoulder re-
wards. It is shown that for the human decision-making model
(9), the fraction of choice A converges to a neighborhood of
the matching point. We note that the result applies locally
to the rising optimum curves, which have the same structure
as the matching shoulder curves in a neighborhood of the
matching point.

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence behavior of
the system (3)-(9). We assume that the matching shoulder
reward curves (6) and (7) satisfy

kA < 0, kB > 0, and fA, fB intersect. (11)

Let y∗ denote the value of y at the matching point, namely
the intersection of the two lines (6) and (7). We consider the
general case when

y∗ /∈ Y. (12)

As shown in [12], limit cycles can occur when y∗ < 1
3

or y∗ > 2
3 for certain reward structures with the WSLS

model. This behavior, however, has not been observed in
the decision-making studies. Nonetheless, to formally rule
out these limit cycles with the WSLS model, we require that
the reward curves fA and fB satisfy

1
3
≤ y∗ ≤ 2

3
. (13)

The linear curves used in the experiments [6] satisfy the
conditions (11), (12) and (13), so the analysis in this section
provides an analytical understanding of human decision-
making dynamics in two-alternative forced-choice tasks of
the same type.

A. Convergence of WSLS

The following result describes the oscillating behavior of
y(t) near y∗. Let yl denote the greatest element in Y that is
smaller than y∗ and let yu denote the smallest element in Y
that is greater than y∗.

Theorem 1: For system (3)-(9) satisfying conditions (11)-
(13), if y(t1) ∈ L = [yl, yu] for some t1 > 0, then y(t) ∈
L′ = [yl − c, yu + c] for all t ≥ t1.
Remark 1: In this paper we consider N = 20 robots for
accurate correspondence with [10]. This can be generalized
and the convergence result applies for arbitrary N ≥ 6. We
present a proof of this, and a discussion of the effect of larger
or smaller N on convergence rate, in [12].
Remark 2: Condition (11) can be relaxed to include non-
linear fA and fB which satisfy the property that fA and fB

decrease monotonically with fraction of choice A and choice
B, respectively. In [12] we prove convergence for this case.
Remark 3: Some nonlinear reward structures, such as the
rising optimum of Figure 2, have local regions with the
structure of Remark 2. In such examples, convergence to
a region containing the matching point applies locally.
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Remark 4: Condition (12) is not necessary for convergence.
In fact, in the case that y∗ ∈ Y , a tighter convergence result
applies. This result is presented in [12].

To prove Theorem 1, we need the following four lemmas,
the proofs of which are presented in [12].

Lemma 1: For system (3)-(9), with conditions (11)-(13)
satisfied, if x1(t1) = A, x1(t1 + 1) = A and y(t1) < 1
for some t1 ≥ 0, then there exists 0 ≤ τ ≤ 20 such that
y(t) = y(t1) for t1 ≤ t ≤ t1+τ and y(t1+τ+1) = y(t1)+c.

Lemma 2: For system (3)-(9), with conditions (11)-(13)
satisfied, if x1(t1) = B, x1(t1 + 1) = B and y(t1) > 0
for some t1 ≥ 0, then there exists 0 ≤ τ ≤ 20 such that
y(t) = y(t1) for t1 ≤ t ≤ t1+τ and y(t1+τ+1) = y(t1)−c.

Lemma 3: For system (3)-(9), with conditions (11)-(13)
satisfied, if y(t1) < y∗ and y(t1 + 1) = y(t1) − c > 0 for
some t1 ≥ 0, then there exists 0 ≤ τ ≤ 20 such that

y(t) = y(t1)− c for t1 ≤ t ≤ t1 + τ (14)

and
y(t1 + τ + 1) = y(t1). (15)

Lemma 4: For system (3)-(9), with conditions (11)-(13)
satisfied, if y(t1) > y∗ and y(t1 + 1) = y(t1) + c for some
t1 ≥ 0, then there exists 0 ≤ τ ≤ 20 such that

y(t) = y(t1) + c for t1 ≤ t ≤ t1 + τ (16)

and
y(t1 + τ + 1) = y(t1). (17)

Now we are in a position to prove Theorem 1.
Proof of Theorem 1: If y(t) ∈ L for all t ≥ t1, then the

conclusion holds trivially. Now suppose this is not true. Let
t2 > t1 be the first time for which y(t) /∈ L. Then it suffices
to prove the claim that the trajectory of y(t) starting at y(t2)
stays at y(t2) for a finite time and then enters L. Note that
y(t2) equals either yl− c or yu + c. Suppose y(t2) = yl− c,
then the claim follows directly from Lemma 3; if on the
other hand, y(t2) = yu + c, then the claim follows directly
from Lemma 4. �

Theorem 1 gives the convergence analysis in the neigh-
borhood L of the matching point y∗. Our next step is to
present the global convergence analysis for the system (3)-
(8). It is easy to check that if the system starts with the initial
condition y(0) = 0 and x1(1) = B or the initial condition
y(0) = 1 and x1(1) = A, then the trajectory of y(t) will
stay at its initial location. In what follows, we show that if
the trajectory of y(t) starts in (0, 1) and conditions (11)-(13)
are satisfied, then the trajectory always enters L after a finite
time.

Proposition 1: For any initial condition of the system (3)-
(9) satisfying 0 < y(0) < 1 and suppose conditions (11)-(13)
are satisfied, there is a finite time T > 0 such that y(T ) ∈ L.

To prove Proposition 1, we need the following four
lemmas, the proofs of which are also contained in [12].

Lemma 5: For system (3)-(9), with conditions (11)-(13)
satisfied, if y(t1) < y∗, y(t1 + 1) = y(t1) and x1(t1 + 1) 6=
x1(t1) for some t1 ≥ 0, then there exists a finite τ > 0 such
that

y(t1 + τ) = y(t1) + c. (18)

Lemma 6: For system (3)-(9), with conditions (11)-(13)
satisfied, if y(t1) > y∗, y(t1 + 1) = y(t1) and x1(t1 + 1) 6=
x1(t1) for some t1 ≥ 0, then there exists a finite τ > 0 such
that

y(t1 + τ) = y(t1)− c. (19)
Lemma 7: For system (3)-(9), with conditions (11)-(13)

satisfied, if 0 < y(t1) < yl and y(t1 + 1) = y(t1) − c for
some t1 ≥ 0, then there exists a finite τ > 0 such that

y(t1 + τ) = y(t1) + c. (20)
Lemma 8: For system (3)-(9), with conditions (11)-(13)

satisfied, if yu < y(t1) < 1 and y(t1 + 1) = y(t1) + c for
some t1 ≥ 0, then there exists a finite τ > 0 such that

y(t1 + τ) = y(t1)− c. (21)
Now we are in a position to prove Proposition 1.
Proof of Proposition 1: For any 0 < y(0) < 1, either

y(1) = y(0) + c, or y(1) = y(0), or y(1) = y(0) − c. We
will discuss these three possibilities in each of two cases.
First consider the case where y(0) < yl. If y(1) = y(0)− c,
according to Lemma 7, there is a finite time t1 for which
y(t1) > y(0). If y(1) = y(0) and x1(1) 6= x1(0), according
to Lemma 5, there is a finite time t2 for which y(t2) >
y(0). If y(1) = y(0) and x(1) = x(0) = A, according to
Lemma 1, there is a finite time t3 for which y(t3) > y(0).
If y(1) = y(0) and x(1) = x(0) = B, according to Lemma
2, there is a finite time t̄4 for which y(t̄4 − 1) = y(0) and
y(t̄4) = y(t̄4−1)−c. Then according to Lemma 7, there is a
finite time t4 for which y(t4) > y(0). So for all possibilities
of y(1) there is always a finite time t̄ ∈ {1, t1, t2, t3, t4} for
which y(t̄) > y(0). Using this argument repeatedly, we know
that there exists a finite time T1 at which y(T1) = yl ∈ L.
Now consider the other case where y(0) > yu, then using
similar arguments, one can check that there exists a finite
time T2 for which y(T2) = yu ∈ L. Hence, we have proven
the existence of T which lies in the set {T1, T2}. �

Combining the conclusions in Theorem 1 and Proposition
1, we have proven the following theorem, which describes
the global convergence property of y(t).

Theorem 2: For any initial condition of the system (3)-(9)
satisfying 0 < y(0) < 1 and suppose conditions (11)-(13) are
satisfied, there exists a finite time T > 0 such that for any
t ≥ T , y(t) ∈ L′.

In the next section, we discuss how the local and global
convergence properties of matching behavior can be utilized
to improve performance of the robotic system with a human
decision-maker introduced as in Section III.

VI. ADAPTIVE REWARD FEEDBACK

In this section we propose a means to improve decision-
making performance using the integrated human-robot team
by taking advantage of the tendency for humans to converge
to the matching point in a class of reward curves. We
consider the human-supervised robot foraging problem in
the case that the robot reported reward has a convergent
matching point that does not coincide with the optimum (e.g.
Figure 1). Our approach is to have the robots manipulate their
reported reward, i.e., have them adapt their feedback, to aid
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the human in finding the optimal strategy. This adaptive law
requires only that the robots keep track of recent supervisor
decisions and corresponding rewards.

As proved in Section V, for a class of reward curves,
given a generic initial condition, a human decision-maker
will converge to a region L′ which contains y∗, the value
of y at the matching point. By recording decisions made
and rewards reported in L and L′, the robots can make a
local approximation of the reward curves fA and fB and, in
particular, estimate the gradient of the average reward defined
as g(y) = d

dy (yfA(y) + (1− y)fB(y)). Adaptive feedback
is used if g(y∗) 6= 0 and there does not exist yopt ∈ L such
that g(yopt) = 0, as this would mean that L contains a value
of y which maximizes the average reward. For example, in
the case of reward curves shown in Figure 1, y∗ and yopt

differ by more than 3c and the human decision-maker will
typically converge to a region L′ that does not contain yopt.

In such a scenario, we propose to have the robots use
adapted curves, f̄A and f̄B , to determine the reward. Specif-
ically, we vary f̄A and f̄B so that the matching point moves
in the direction of yopt. In this paper we present a strategy
that varies the slopes kA and kB . To ensure stability and
avoid confusing the supervisor, adapted curves are chosen
so that the new y∗ changes by no more than c = 1/N each
time an adaptation occurs. We denote the reward curves of
the qth adaptation by f̄A,q and f̄B,q with f̄A,0 = fA and
f̄B,0 = fB ; the value of y at the matching point is y∗q .
The slopes of f̄A,q+1 and f̄B,q+1 (k̄A,q+1 and k̄B,q+1) are
updated by increasing k̄A,q+1 and decreasing k̄B,q+1 both
by dk, where

dk =
1
2

(
(kA − kB)(cB − cA)
c(kA − kB) + cB − cA

+ kB − kA

)
.

This implies that y∗q+1 = y∗q + c. We use −dk in place of dk
to achieve y∗q+1 = y∗q − c.

Let Lq = [yl
q, y

u
q ] where yl

q = max{y ∈ Y|y < y∗q} and
yl

q = min{y ∈ Y|y > y∗q}. For rapid convergence to the new
y∗q+1, curves fA,q+1 and fB,q+1 are introduced only when
one of the following conditions is met:

y(t) = yu
q and g(y∗q ) > 0 (22)

y(t) = yl
q and g(y∗q ) < 0. (23)

The human decision-maker will subsequently converge to
the matching point of the adapted curves while the matching
point of the adapted curves approaches yopt. In [12] we prove
an upper bound on the time required to converge to y∗q+1

once f̄A,q+1 and f̄B,q+1 are introduced.

VII. CONCLUDING REMARKS

A natural extension to the framework developed in this
paper is to consider N clusters of M robots each, where the
reward curves will likely depend on M . Of similar interest is
to consider dynamically changing N . The latter will change
the resolution of the reward feedback and may serve as a use-
ful strategy in aiding a decision-maker to find the optimum.
In ongoing work, we are pursuing similar analyses with other
models that have been used successfully to describe human

behavior in two-alternative forced-choice tasks for a range of
decision-reward relationships. This framework will be useful
to consider multiple human decision-makers in concert with
the results discussed in [10].
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