
  

  

Abstract—A material handling (MH) system of a general 
assembly line dispatching parts from inventory to working 
buffers could be complicated and costly to operate.  Generally it 
is extremely difficult to find the optimal dispatching policy due 
to the complicated system dynamics and the large problem size.  
In this paper, we formulate the dispatching problem as a 
Markov decision process (MDP), and use event-based 
optimization framework to overcome the difficulty caused by 
problem dimensionality and size.  By exploiting the problem 
structures, we focus on responding to certain events instead of 
all state transitions, so that the number of aggregated potential 
function (i.e., value function) is scaled to the square of the 
system size despite of the exponential growth of the state space.  
This effectively reduces the computational requirements to a 
level that is acceptable in practice.  We then develop a sample 
path based algorithm to estimate the potentials, and implement 
a gradient-based policy optimization procedure.  Numerical 
results demonstrate that the policies obtained by the 
event-based optimization approach significantly outperform the 
current dispatching method in production. 

I. INTRODUCTION 
ENERAL Assembly (GA) is one of the most important 
steps and almost the last step in production [1][2][3].  A 

schematic layout of GA is shown in Fig. 1.  During GA, parts 
are assembled through a series of assembling stations.  At 
each station operators assemble certain types of parts onto the 
semi-product, which is then delivered to the next station.  
This procedure continues until all the parts are assembled and 
a final product is produced.  Since each station consumes 
certain types of parts during the assembly, the replenishment 
of these parts are provided by a material handling (MH) 
system [4].  The MH system delivers the parts from the 
inventory at central docking area to the lineside buffers at 
assembling stations.  In order to have smooth production, part 
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delivery should be in time to prevent “starvation” of the 
assembly line.  On the other hand, in fact, how to dispatch 
MH system is extremely important to production efficiency 
since 20-50% of manufacturing costs may be related to 
material handling [5].  
 
Semi-products 
 

 
 

  
       

 
 
 
                    Dollies  
 
 
 
Fig. 1.  Sketched general assembly line with material handling. 
 

The dynamic transition of this MH system is triggered by 
the events including operation completion, part delivery, etc. 
It can be considered as a discrete event dynamic system 
(DEDS).  The MH system follows a dispatching policy to 
determine when to send out the driver, which buffers to serve 
in each trip, and the serving sequences.  The dispatching cost 
consists of three parts: the starving penalty of lineside buffers, 
the transportation cost and the inventory cost.  We want to 
find the optimal dispatching policy. 

The above dispatching problem is very difficult in the 
following senses: 
1) Uncertainty.  The major uncertainty in this MH system is 

the part consumption rates of the lineside buffers.  The 
parts requirements are different for the products with 
different options, etc.  This is the typical case in mixed 
assembly lines where different types of products are 
mixed and assembled in one line.  This is the common 
practice in automotive industry [1][2][3].  Due to the 
requirements on high accuracy and flexibility, most 
operations in this GA line are manual, leading to an even 
larger variation in the consumption rate.  

2) Policy space.  A dispatching policy determines when to 
serve which buffers in what order.  The policy space 
increases exponentially with the problem size 
determined by the number of buffers and the number of 
parts in the buffers, etc., and could become extremely 
large for the problems with practical sizes.  In fact, a 
driver would supply dozens of buffers with sizes ranging 
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from tens to hundreds.  With little structure information 
of the policy space, it is in general computationally 
intractable to find the optimal policy by enumeration.  

3) Policy evaluation. Due to the uncertainties and 
complicated dynamics in MH systems, it is very difficult 
to obtain a closed form expression for evaluating the 
performance of a dispatching policy [1][6].  Usually time 
consuming Monte Carlo simulation is the only way. 

The above difficulties, together with the economic impact, 
attract a lot of research on dispatching policies for MH 
systems in the past decades.  Most work focuses on moving 
semi-products along the serial line, assuming that the initial 
inventories of parts at lineside buffers are infinite [1][4][5].  
Various dispatching rules [7][8] and heuristic algorithms 
[9][10] are well studies, based on simulation models easy to 
implement [11].  However, the systems with finite inventory 
at lineside buffers did not get enough attentions, and 
stochastic and dynamic dispatching problems of real-world 
MH systems were generally not formulated and well studied.   

Markov decision process (MDP) are used to characterize 
sequential decision problems with Markovian properties 
[12][13].  However, two well-known difficulties, the large 
state and action spaces, prevent policy and value iterations 
used in traditional approaches.  There are many efforts to 
overcome these difficulties, such as neuro-dynamic 
programming [14] (also known as adaptive or approximate 
dynamic programming [15]), state aggregation [16], time 
aggregation [17], and action aggregation [23].  Nevertheless, 
there are still no systematic formulations and solutions for the 
above MH dispatching problem.  

In this paper, we consider the MH system of the GA line in 
a practical car manufacturing system.  There are three salient 
features of our research:  

1) we focus on supplying parts from the central docking 
area to the lineside buffers with finite inventory sizes;  

2) we have a systematical MDP formulation for the 
stochastic and dynamic dispatching problem of a MH system;  

3) we develop an Event-Based Optimization (EBO) 
approach [18][19] to address the aforementioned difficulties 
in traditional MDP approaches. 

Our EBO approach is based on the structure of the MH 
system.  By exploiting the problem structures, we focus on 
policies responding to certain events instead of all state 
transitions, so that the number of aggregated potential 
function (i.e., value function) is scaled to the square of the 
system size despite of the exponential growth of the state 
space [20][21].  This effectively reduces the computational 
requirements to a level that is acceptable in practice.  We then 
develop a sample path based algorithm to estimate the 
potentials, and implement a gradient-based policy 
optimization procedure.  Numerical results demonstrate that 
the policies obtained by the event-based optimization 
approach significantly outperform the current dispatching 
method in production.  

II. PROBLEM FORMULATION 
This section presents a discrete MDP formulation for a 

2-dolly MH system of a GA line.  To simplify the discussion, 
we assume the following assumptions throughout the paper. 
A1. There is one driver with a 2-dolly train in the MH system, 

i.e., the driver can supply two buffers at most in one trip. 
A2. The number of parts consumed at each buffer at each 

unit time has the Bernoulli distribution, and the average 
consumption rate is a constant, which may be different 
for different buffers.  

A3. To simplify the expression, we assume that the 
inventory level of buffers will be increased within the 
same time unit as the replenishment action is taken. 

These assumptions have been approved by our industry 
partners according to the practical requirements in factories. 

A. Notations 
N, i  number and index of lineside buffers, i = 1, 2, …, N.  
T(i, j) travel time from point i to j, where i, j = 1, 2, …, N 

denote the lineside buffers; i, j = 0 denotes the central 
docking area. 

Ci inventory capacity (i.e., the size) of lineside buffer i. 
Qi supplying quantity of parts for buffer i in one dolly.  

That is, if the driver uses one dolly of the train to 
supply buffer i, the amount of parts hold in the dolly is 
predetermined by the content of one package, i.e., Qi.  

Ui average usage rate of parts at buffer i, i.e., the average 
amount of parts consumed at buffer i at each time unit. 

l decision epoch of the MDP formulation, l = 0, 1, 2, .  
The conveyor moves step by step in every unit time, 
transferring semi-products from one station to the 
next. We choose the decision epoch at each time unit, 
i.e., the time when the conveyor moves.   

nl,i  inventory level of buffer i at time l.   
Ml,i  a random variable indicating the consumption amount 

of parts at lineside buffer i between time l and l+1. 
yl  status of the driver at time l, i.e., how many time units 

left for the driver to come back to the central docking 
area.  For example, yl = 0 denotes that the driver is idle 
at time l; yl = 3 shows that the driver is on trip at time l 
and will be back to central docking area at time l+3. 

Y upper bound for total travel time of all possible trips.   
lsG  state vector of the Markov system at decision epoch l, 

 ,1 ,2 ,( , , , , )l l l l N ls n n n yG � " .                                        (1) 
S  state space of the Markov system, which is defined as 

, ,{   :  0 ,0 , , }l l i i l l i lall s n C y Y n y≤ ≤ ≤ ≤ ∈
G� ]S    (2) 

laG  action vector of the Markov system at epoch l, 

 ( , ')l l la a aG � ,                                                           (3) 
where al and al’ denote the index of the buffer to 
supply with the first and second dolly respectively at 
epoch l, al, al’ = 0, 1, , N.  al’ = 0 means that the 
second dolly is not used at epoch l.  Obviously, al’ = 0 
if al = 0, indicating a virtual trip supplying no buffers.  
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A  action space of the Markov system, defined as 
{  ( , ') : , ' 0,1, , }all a a a a N=� "A .                            (4) 

( )lsGA  set of all possible actions at decision epoch l with 
system state lsG .  al = al’ = 0, if yl > 0, since the driver 
can only be sent out when he/she is available at central 
docking area; al, al’ = 0, 1, , N, if yl = 0. 

L  dispatching policy of the MH system, which is a 
mapping form state space S  to action space A .  We 
only consider the stationary Markov policies here. 

( , )l l lf s aG G  cost function at epoch l with state lsG and action laG . 

ηL  long-run average cost under policy L . 

B. Markov Decision Model 
This problem can be formulated as an infinite-horizon 

discrete-time Markov decision process.   

System dynamics 
Based on the system state and the dispatching actions at 

decision epoch l, the state transition is:  
1, , ( ) ( ' ) ,max{min{ ( ), } ,0}

l ll i l i i a i a i i l in n Q I I C M+ = == + ⋅ + −           (5) 

1 max{ (0, ) ( , ' ) ( ' ,0) 1,0}l l l l l ly y T a T a a T a+ = + + + −⎡ ⎤⎢ ⎥          (6) 

where I(•) is an indicator function which is defined as I(•) = 1 
(or 0) if logic expression (•) is true (or false); ⎡•⎤ is a ceiling 
function rounding a number upwards.  With assumption A2, 
we have the following probability functions: 

,( 1)l i iP M U= = , ,( 0) 1l i iP M U= = − , with 0 < Ui < 1.        (7) 
From the above description of the system dynamics, we can 
get transition probabilities.  

Cost Structure 
The cost function at epoch l contains three aspects: the 

starving penalty of lineside buffers, the transportation cost, 
and the inventory cost at buffers, which is calculated as: 

,1 ( 0) 2 ( 0) 3 ,
1 1

( , )
l i l

N N

l l l n y l i
i i

f s a w I w I w n= >
= =

= ⋅ + ⋅ + ⋅∑ ∑G G ,                  (8) 

where 1 2 3w w w� � . The priority is predetermined by our 
industry partners according to practical requirements. 

To save the average dispatching cost of the MH system 
over a long period, the problem is formulated as to minimize 
the long-run average cost.  That is: 

1

0

1min   lim ( , ( ))
L

l l lL l

E f s s
L

η
−

→∞
=

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭
∑ G GL

L
L .             (9) 

From the above formulation, the challenge of large 
problem size is obvious.  The size of the state space is 

1
( 1) ( 1)N

i i
C Y== Π + ⋅ +S , where |•| indicates the 

cardinality of the set argument.  The size of the action space 
is 2N=A .  With typical data from a practical system, the 
size of the state space is larger than 1020, and the size of the 
action space is larger than 102.  Thus the size of the traditional 
stated-based policy space, SA , is extremely huge, which 

makes it difficult to optimize the dispatching policies through 
traditional approaches.  

III. EVENT-BASED OPTIMIZATION 
To address the above challenge of large problem size, this 

section presents a novel Event-Based Optimization (EBO) 
approach to optimize the dispatching policies in a MH system 
of a GA line. The terms used in this section follows the 
traditions in EBO literatures [18][19]. 

A. Events and event-based policies 
Based on the problem structure, two most urgent buffers 

are more likely to be supplied in each trip since there are only 
two dollies for the driver in the MH system.  For buffer i at 
decision epoch l, we define the estimated remaining life xl,i as 
the expected length of time it can maintain without supplying: 

,
, (0, )l i

l i
i

n
x T i

U
⎢ ⎥

= −⎢ ⎥
⎣ ⎦

.                (10) 

We sort the series of estimated remaining life ascendingly as 
xl,(1), xl,(2), …, xl,(N), and focus on the first two numbers, i.e., 
xl,(1), xl,(2), when making decisions. 

An event e0(x(1), x(2)) is defined as a set of state transitions 
that the driver becomes idle and the first and second shortest 
estimated remaining lives turn into x(1) and x(2), respectively, 
where subscript (1) and (2) denote the indices of the two most 
urgent buffers.  After the observation of an event e0(x(1), x(2)) 
at time l, there are three types of actions in event-based 
policies: action (al = (1), al’ = (2)) dispatches the driver to 
supply both of the buffers (1) and (2); action (al = (1), al’ = 0) 
only supplies buffer (1); action (al = al’ = 0) supplies neither 
of them.  These three types of actions are denoted as a+2, a+1 
and a+0 hereafter.  

In event-based policies, we can take an action only when 
one of the events happens, and the actions are simplified.  The 
size of action space becomes 'A = 3, and the size of the 

event space is 2( 1)N N C= − ⋅E , where C = max{Ci, i = 1, 
2, …, N}.  Still take the typical data from the same practical 
system as before, we have E =104.  Comparing with 

previous S = 1020 and A = 102, the size of the event-based 

policy space, A ' E , has been greatly reduced.  It is important 

to note that the size of event space is scale to square of the 
system size despite of the exponential growth of the state 
space.  Although the event-based policies cannot guarantee to 
preserve the optimality as a tradeoff, it is consistent with 
intuitions of the problem structure.  Numerical results in 
Section IV demonstrate its effectiveness and efficiency when 
dealing with large scale practical problems.  

B. Performance sensitivity formula 
A parameterized event-based policy γ can be denoted this 

way: γ1(x(1), x(2)) is the probability of taking action a+1 when 
event e0(x(1), x(2)) happens; γ2(x(1), x(2)) is the probability of 
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taking a+2; 1- γ1(x(1), x(2)) - γ2(x(1), x(2)) is the probability of a+0.  
Let π(e0(x(1),x(2))) denote the steady-state probability of e0(x(1), 
x(2)).  Let π( sG |e0(x(1), x(2))) be the conditional steady-state 
probability that system state is sG when e0(x(1), x(2)) happens.  

Following the construction method in references [18][19], 
we can get the performance sensitivity formulas.  Here we 
denote the original policy as γ and the perturbed policy as γ’.  
On a perturbed sample path of policy γ’ with L 1 transitions, 
there are approximately Lπ’(e0(x(1), x(2))) transitions at which 
event e0(x(1), x(2)) happens.  Among them there are Lπ’(e0(x(1), 
x(2)))π’( sG |e0(x(1), x(2))) transitions from state sG .  At these 
points, the probability that the system transits from state 
sG to 2s+

G is γ’2(x(1), x(2)).  However it would transit to states 

1s+
G or 0s+

G with probability γ1(x(1), x(2)) or probability 1- γ1(x(1), 
x(2)) - γ2(x(1), x(2)) respectively, on the original sample path 
where policy γ is taken.  Here 2s+

G , 1s+
G and 0s+

G  are states after 
action a+2, a+1 and a+0 are taken at state sG , respectively.  
Therefore, after an event e0(x(1), x(2)) happens with the system 
state sG , two types of jumps may happen; the probabilities of 
jumps from 1s+

G  to 2s+
G  and from 0s+

G  to 2s+
G are determined by 

(11) and (12), respectively. 
'
2 (1) (2) 1 (1) (2)( , ) ( , )x x x xγ γ⋅ ;                (11) 
'
2 (1) (2) 1 (1) (2) 2 (1) (2)( , ) (1 ( , ) ( , ))x x x x x xγ γ γ⋅ − − .        (12) 

Similarly, the probabilities of jumps from 2s+
G  to 1s+

G , from 

0s+
G  to 1s+

G , from 2s+
G  to 0s+

G , and from 1s+
G  to 0s+

G  are 
determined by (13)-(16), respectively: 

'
1 (1) (2) 2 (1) (2)( , ) ( , )x x x xγ γ⋅ ,                 (13) 
'
1 (1) (2) 1 (1) (2) 2 (1) (2)( , ) (1 ( , ) ( , ))x x x x x xγ γ γ⋅ − − ,        (14) 

' '
1 (1) (2) 2 (1) (2) 2 (1) (2)(1 ( , ) ( , )) ( , )x x x x x xγ γ γ− − ⋅ ,      (15) 
' '
1 (1) (2) 2 (1) (2) 1 (1) (2)(1 ( , ) ( , )) ( , )x x x x x xγ γ γ− − ⋅ .      (16) 

Each jump from state sG  to 'sG  contributes to performance 
difference LFΔ  an amount measured by the realization factor 

( , ') ( ') ( )d s s g s g s= −
G G G G .  Finally, we add up the effects due to 

all the jumps through (11) to (16) together and obtain: 

0 (1) (2) 0 (1) (2)

0 (1) (2) 0 (1) (2) 2
( , ) [ ( , )]

' '
2 (1) (2) 2 (1) (2) 1 1 (1) (2) 1 (1) (2)

'
0 1 (1) (2) 1 (

( ) ( ' ) ( )
'( ( , )) '( | ( , )) { ( )

( ( , ) ( , )) ( )( ( , ) ( , ))

( )( ( , ) (

L L L

e x x s I e x x

E F E F E F
L e x x s e x x g s

x x x x g s x x x x

g s x x x

π π

γ γ γ γ

γ γ

+
∈ ∈

+

+

Δ = −

= ⋅

− + −

− −

∑ ∑G

G G

G

G

E

'
1) (2) 2 (1) (2) 2 (1) (2), ) ( , ) ( , ))}x x x x xγ γ+ −

 (17) 

where E  is the event space; I[e0(x(1), x(2))] denotes the input 
set of event e0(x(1), x(2)), which is defined as the set of states 
when event e0(x(1), x(2)) happens.  Dividing both sides of 
equation (17) with L and letting L → ∞, we get: 

0 (1) ( 2) 0 (1) ( 2)

0 (1) (2) 0 (1) (2)
( , ) [ ( , )]

' '
2 2 (1) (2) 2 (1) (2) 1 1 (1) (2) 1 (1) (2)

' '
0 1 (1) (2) 1 (1) (2) 2 (1

' '( ( , )) '( | ( , ))

{ ( )( ( , ) ( , )) ( )( ( , ) ( , ))

( )( ( , ) ( , ) (

e x x s I e x x
e x x s e x x

g s x x x x g s x x x x

g s x x x x x

η η π π

γ γ γ γ

γ γ γ

∈ ∈

+ +

+

− = ⋅

− + −

− − +

∑ ∑G

G

G G

G

E

) (2) 2 (1) (2), ) ( , ))}x x xγ−

(18) 

From (18), we have the sensitivity formulas:  

0 (1) (2) 1 0 (1) (2) 0 0 (1) (2)
1 (1) (2)

( ( , ))[ ( ( , )) ( ( , ))]
( , )

e x x g e x x g e x x
x x

η π
γ + +

∂
= −

∂
� � (19) 

0 (1) (2) 2 0 (1) (2) 0 0 (1) (2)
2 (1) (2)

( ( , ))[ ( ( , )) ( ( , ))]
( , )

e x x g e x x g e x x
x x

η π
γ + +

∂
= −

∂
� � (20) 

This is the derivatives with respect to the dispatching 
probabilities with a give event, where the aggregated 
potential functions denote potential cost-to-go if taking some 
action when an event happens: 

0 (1) ( 2)

0 0 (1) (2) 0 (1) (2) 0
( ( , ))

( ( , )) ( | ( , )) ( )
s I e x x

g e x x s e x x g sπ+ +
∈

= ⋅∑G

G G�  (21) 

0 (1) ( 2 )

1 0 (1) (2) 0 (1) (2) 1
( ( , ))

( ( , )) ( | ( , )) ( )
s I e x x

g e x x s e x x g sπ+ +
∈

= ⋅∑G

G G�  (22) 

0 (1) ( 2)

2 0 (1) (2) 0 (1) (2) 2
( ( , ))

( ( , )) ( | ( , )) ( )
s I e x x

g e x x s e x x g sπ+ +
∈

= ⋅∑G

G G�  (23) 

C. Sample-path-based estimation 
The aggregated potential functions for events in (21)-(23) 

can be estimated based on a sample path of the original 
system.  As an example, detailed estimation method for 

0 0 (1) (2)( ( , ))g e x x+�  in (21) is explained here.  Consider an 
original sample path: 

0 1{ , , , }Ls s sG G G"  with L 1.                (24) 
Denote the sequence of the time instants at which action a+0 is 
taken when the event e0(x(1), x(2)) is observed on the sample 
path as l1, l2, … , lL(x(1),x(2),+0).  Next, we group the set 

(1), (2), 0x x +T := {lk, k = 1,2, …, L(x(1), x(2), +0)}       (25) 
into sub-groups  

0 (1) ( 2)

(1), (2), 0 , 0
[ ( , )]

x x s
s I e x x

+ +
∈

= G
G ∪T T ,             (26) 

such that before the action a+0 is taken at , 0sl +∈ GT , the system 

state is sG  when event e0(x(1), x(2)) is observed.  Let , 0sL +
G be the 

number of instants in set , 0s +GT .  Then we have: 

L(x(1), x(2), +0) =
0 (1) ( 2 )

, 0
[ ( , )]

s
s I e x x

L +
∈

∑ G
G

.               (27) 

Choose a large integer K.  Set 

( )
k K

k l
l k

g f s
+

=

= ∑ G .                  (28) 

From the above definitions, we have 
(1) ( 2)

0 (1) ( 2) , 0

( , , 0)

1(1) (2)

, 0

[ ( , )] (1) (2) , 0

1
( , , 0)

1
( , , 0)

k

k
s

L x x

l
k

s
l

s I e x x ks

g
L x x

L
g

L x x L
+

+

=

+

∈ ∈+

+

⎡ ⎤
= ⋅ ⎢ ⎥

+ ⎢ ⎥⎣ ⎦

∑

∑ ∑
G

G

G G T

.      (29) 

By definition, we have 

, 0
, 0

0
, 0

1lim lim ( )
k

s
s

lK L ks

g g s
L+

+

+→∞ →∞
∈+

=∑G
GG

G
T

;           (30) 

(1) ( 2)

, 0
0 (1) (2)( , , 0)

(1) (2)

lim ( | ( , ))
( , , 0)

s

L x x

L
s e x x

L x x
π+

+ →∞
=

+

G G .     (31) 

Thus, with equations (28) - (31), we can estimate the 
aggregated potential 0 0 (1) (2)( ( , ))g e x x+�  based on the sample 
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path this way: 
(1) ( 2)

(1) ( 2)

( , , 0)

0 0 (1) (2)( , , 0) 1(1) (2)

1lim ( ( , ))
( , , 0) k

L x x

lL x x k

g g e x x
L x x

+

++ →∞
=

=
+ ∑ � (32) 

Similarly, we can develop the sample path based 
estimation algorithm for aggregated potential functions 

1 0 (1) (2)( ( , ))g e x x+�  and 2 0 (1) (2)( ( , ))g e x x+�  in (22) and (23).   

D. Performance optimization 
Gradient-based optimization procedure can be developed 

based on the performance sensitivity formulas (19) and (20) 
as Box 1 shows.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Box 1.  The gradient-based policy optimization procedure with EBO.  
 

Similar to the standard gradient-based optimization 
method, such as hill climbing, this novel EBO approach with 
the performance sensitivity formulas is guaranteed to 
converge to local optimal.  Additionally, the following 
distinguished features make our EBO approach outstanding. 

1) The potential functions are aggregated with events and 
the number of potentials to be estimated is reduced 
significantly.  With aggregation, the number of potential 
functions of events to be estimated scales to the square of the 
system size, while the number of system states grows 
exponentially in the system size.  Thus the policy space is 
reduced and significant computations are saved.   

2) The aggregated potential functions can be estimated on a 
sample path under original policy, since they depend only on 
the original policy as (21)-(23) show.  Note that estimation of 
aggregated potential functions of events requires the same 
computation and has the same accuracy as estimation of 
potential functions of states [18]. 

3) In our EBO approach, the potential aggregation is 
carried out by directly using the structure property of the 
system, and avoids the tedious effort in finding and storing 
the large transition probability matrix. 

IV. NUMERICAL RESULTS 

A. Comparison with practical method in industry 
The practical dispatching policy currently applied in 

automotive industry is the so called Reorder-Point (RP) 
policy. r denotes a predefined threshold (reorder point) of 
remaining life, i.e., the time length a buffer can maintain 
without replenishment.  When the remaining life of buffer i at 
decision epoch l is less than this threshold, i.e., nl,i /Ui < r, it 
generates a request to the driver.  The driver serves the 
requests with the First Come First Serve (FCFS) principle.  If 
there is more than one request when the driver is dispatched, 
use both the dollies in one trip; otherwise, use only one dolly. 

Based on our previous work on building a simulation 
platform for a practical MH system of a GA line in 
automotive industry [22], here we test EBO approach with 16 
sets of typical and representative data from a world-famous 
automotive manufacturer. We compare its performance with 
the current used reorder point (RP) policy in factories and an 
optimized RP policy with optimal r* obtained through 
enumeration. The numerical results are illustrated in table I. 

 
TABLE I, PERFORMANCE COMPARISON WITH PRACTICAL DATA 

Data set  
index 

CURRENT 
RP 

OPTIMIZED 
 RP EBO Saving % 

#1 15185.2 15050.7 13837.5 8.06 
#2 60487.5 59835.9 55213.2 7.73 
#3 10697.9 10658.6 9985.47 6.32 
#4 29061.5 28243.2 25367.2 10.2 
#5 17617.6 17202.4 16949.7 1.47 
#6 9694.37 9692.04 9180.24 5.28 
#7 13501.8 13325.2 12551.6 5.81 
#8 11881.5 11728.2 9867.74 15.9 
#9 12006.8 11742.2 11045.8 5.93 

#10 6125.65 5737.96 5670.71 1.17 
#11 10506.7 9914.34 9580.43 3.37 
#12 21272.7 19987.3 16499.4 17.5 
#13 9416.74 9269.58 8518.74 8.10 
#14 15781.6 15441.9 12868.5 16.7 
#15 13891.5 13460.3 12401.5 7.87 
#16 7106.89 6668.03 6105.7 8.43 

Mean    8.11 

In this table (and following table II), the columns “Current RP”, “Optimized 
RP” and “EBO” indicate the system performance under the RP policy with 
factory used r, RP policy with optimized r and the policy obtained from EBO 
approach, respectively; the column “saving” is relative difference between 
our approach and the optimized RP i.e., (Optimized RP – EBO) / Optimized 
RP*100%. A maximum iteration number is previously setup as 200 in order 
to make the experiment within computational acceptable time. 
 

From table I we can see that the system saves about 8.11% 
costs on average with the dispatching policy exploited by 
EBO approach, comparing with the optimized threshold 
policy in automotive industry.  This result demonstrates the 
effectiveness and efficiency of the EBO approach. 

B. Testing results of parameters sensitivities  
In order to test the parameter sensitivities of our EBO 

approach, we use the practical parameters from industry field 
as the base-data, and randomly generate the testing-data 
within a given range.  First, we uniformly generate x’ within a 

The gradient-based policy optimization procedure: 
 Step 1: initialization.  Randomly pick an initial policy 

0L  from the event-based policy space, set j = 0. 
 Step 2: policy evaluation.  Let  

{ }1 (1) (2) 2 (1) (2) 0 (1) (2)( , ), ( , ); ( , )j x x x x e x xγ γ= ∈L E  

denote the policy used in iteration j.  Obtain the 
aggregated potential functions for events in (21) (22) 
(23) by estimating on a sample path of the system 
under policy jL  as formula (32) explains. 

 Step 3: policy improvement.  Obtain the performance 
derivatives over policies with any event e0(x(1), x(2)) 
through formulas (19) and (20).  Update the policies 
to 1j +L  according to the routine gradient based 
optimization approach (such as hill climbing) with 
steepest descent direction and constant stepsize. 

 Step 4: stopping criterion.  If 
1j j

η η
+

− >L L ε , let j = j+1 

and go to step 2; otherwise, stop. 
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range [0.5x, 1.5x], where x’ denotes the testing parameter, 
and x indicates the practical parameter in data set #1.  The 
parameters here consists of T(i, j), Ci, Qi, and Ui.  Then we 
compare the performance of EBO approach with the currently 
used RP policy in industry, and show the results in table II.  

 
TABLE II, PERFORMANCE COMPARISON WITH RANDOM PARAMETERS 

Test 
index 

CURRENT  
RP 

OPTIMIZED 
 RP EBO Saving % 

1 157085 152598 146814 3.79 
2 267668 260623 249158 4.40 
3 19497.3 19453.7 18021.9 7.36 
4 13865.8 13125.7 12613.2 3.90 
5 17738.7 17491.8 16959.5 3.04 
6 10486.9 10410.2 9764.67 6.20 
7 10146.3 9750.75 9443.62 3.15 
8 12978.4 12721.4 12109 4.81 
9 13574.5 12458.6 12078.4 3.05 

10 12755.5 11637.9 11531.1 0.92 
Mean    4.06 
Var    3.22 

 
In this experiment, we repeat the tests for 10 repetitions 

with different parameters uniformly and randomly generated.  
Table II shows that the performance of policies obtained from 
the EBO approach outperforms that of RP policy in industry 
with optimized parameters obtained through enumeration.  
This result demonstrates that EBO approach is not sensitive 
to the system parameters and can be extendedly applied in 
various systems robustly and effectively.  

V. CONCLUSIONS 
This paper models and addresses a new optimization 

problem for dispatching a MH system of a GA line in a 
practical car manufacturing system.  An event-based 
optimization approach is first developed based on specific 
features of the system to meet the challenges of huge state and 
action space.  The overall optimization framework and our 
approach are effective and computationally efficient, and are 
verified by the numerical testing results in comparison with 
the dispatching method currently used in automotive industry.  
This paper provides a convincing application of the 
event-based optimization framework and shed new insight on 
overcoming the curse of dimensionality in traditional MDP 
based optimization approaches. 

Although the event-based policies do not guarantee the 
optimality, we believe the gap between our solution and the 
optimal one is not large since our approach is consistent with 
the problem structures and intuitions.  Investigating this gap 
is the next step of our work.  Our future work also includes 
the extension of the approach to the system with more than 
two dollies and the case where drivers can take actions in 
continuous time. 
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