
Optimal Control Problems with Nonsmooth Mixed Constraints

M.d.R. de Pinho and G. N. Silva

Abstract— In this paper we present a weak maximum prin-
ciple for optimal control problems involving mixed constraints
and pointwise set control constraints. Notably such result
holds for problems with possibly nonsmooth mixed constraints.
Although the setback of such result resides on a convexity
assumption on the “extended velocity set”, we show that if the
number of mixed constraints is one, such convexity assumption
may be removed when an interiority assumption holds.

I. INTRODUCTION

The interest in constrained optimal control problems has

witnessed a significant growth in areas like robotics, eco-

nomics and process systems engineering. In this respect opti-

mal control problems with mixed constraints are of particular

importance. One area of application of optimality conditions

for such problems is the control of devices modelled by

differential algebraic equations (DAE systems). DAE models

are nowadays of interest in mechanics and economics and

widespread in chemical process engineering ([8], [22], [16]).

As the number of applications increases so does the need

to broaden the scope of optimality conditions to cover larger

classes of problems ([25], [6], [24]). Necessary conditions in

the form of maximum principles for optimal control prob-

lems with mixed constraints have been addressed by a num-

ber of authors; see for example [13], [18], [19], [12], [15],

to name but a few. Maximum principles covering problems

with nonsmooth dynamics and some smoothness imposed on

mixed constraints have also been considered in [19], [8], [9]

and recently in [6] and [10]. To the best of our knowledge

the derivation of necessary conditions for nonsmooth mixed

constraints remains a largely unexplored area (an exception

may be found in [14] where autonomous problems are

considered), a surprising fact taking into account the fast

development of nonsmooth methods for optimal control since

the publication of the seminal book [2].

In this paper we investigate the possibilities of deriving

nonsmooth maximum principles for optimal control prob-

lems with nonsmooth inequality mixed constraints. Our main

result is a weak nonsmooth maximum principle. Although it

is obtained under a convexity assumption, we show how, for

some special cases, such assumption may be weakened. The
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problem of interest is (P )




Minimize l(x(0), x(1))
subject to

ẋ(t) = f(t, x(t), u(t), v(t)) a.e. t ∈ [0, 1]
0 > g(t, x(t), u(t), v(t)) a.e. t ∈ [0, 1]

v(t) ∈ V (t) a.e. t ∈ [0, 1]
(x(0), x(1)) ∈ C.

Here the given functions f : [0, 1] × R
n × R

ku × R
kv →

R
n, g : [0, 1] × R

n × R
ku × R

kv → R
m, and multifunction

V : [0, 1] ⇉ R
kv describe the system dynamics and control

constraints, while the given set C ⊂ R
n × R

n and function

l : R
n ×R

n → R specify the endpoint constraints and costs.

A process is a triple (x, u, v) comprising a function x ∈
W 1,1([0, 1]; Rn) and measurable functions u : [0, 1] → R

ku

and v : [0, 1] → R
kv . An admissible process for (P ) is a

process satisfying the constraints. Here W 1,1(T ; Rn) denotes

the space of absolutely continuous functions mapping T to

R
n.

An admissible process (x̄, ū, v̄) is a minimizer (also known

as weak minimizer) for (P) if there exists δ′ > 0 such that

l(x̄(0), x̄(1)) 6 l(x(0), x(1))

holds for all admissible processes (x, u, v) satisfying the

following conditions for almost every t ∈ [0, 1]:

|x(t) − x̄(t)| 6 δ′, (1)

|u(t) − ū(t)| 6 δ′, |v(t) − v̄(t)| 6 δ′.

To simplify the exposition, we shall sometimes refer to

the control as w = (u, v) ∈ R
k, where k = ku + kv , taking

values in w(t) ∈W (t) = R
ku × V (t).

II. PRELIMINARIES

For g in R
m, inequalities like g 6 0 are interpreted

componentwise. We focus on a particular process (x̄, w̄),
and write φ̄(t) instead of φ(t, x̄(t), w̄(t)) for both φ = f
and φ = g.

Here and throughout, B represents the closed unit ball

centered at the origin regardless of the dimension of the

underlying space and | · | the Euclidean norm or the induced

matrix norm on R
p×q. For each t in [0, 1] and some δ > 0,

we define

Tδ(t) = x̄(t) + δB = {y ∈ R
n : |y − x̄(t)| 6 δ} . (2)
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Likewise we set

Vδ(t) = V (t) ∩
(
v̄(t) + δB

)
, (3)

Uδ(t) = ū(t) + δB, (4)

Wδ(t) = Uδ(t) × Vδ(t). (5)

The Euclidean distance function with respect to a given set

A ⊂ R
k is

dA : R
k → R, y 7→ dA(y) = inf {|y − x| : x ∈ A} .

A function h : [0, 1] → R
p lies in W 1,1([0, 1]; Rp) if and

only if it is absolutely continuous; in L1([0, 1]; Rp) iff it is

integrable; and in L∞([0, 1]; Rp) iff it is essentially bounded.

The norm of L1([0, 1]; Rp) is denoted by ‖·‖1 and the norm

of L∞([0, 1]; Rp) is ‖·‖
∞

.

We make use of standard concepts from nonsmooth anal-

ysis. Let A ⊂ R
k be a closed set with x̄ ∈ A. The limiting

normal cone to A at x̄ is denoted by NA(x̄).
Given a lower semicontinuous function f : R

k → R ∪
{+∞} and a point x̄ ∈ R

k where f(x̄) < +∞, ∂f(x̄)
denotes the limiting subdifferential of f at x̄. When the

function f is Lipschitz continuous near x, the convex hull

of the limiting subdifferential, co ∂f(x), coincides with the

(Clarke) subdifferential. Properties of Clarke’s subdifferen-

tials (upper semi-continuity, sum rules, etc.), can be found

in [2].

For details on such nonsmooth analysis concepts, see [2],

[21], [3], [25] and [17].

III. AUXILIARY RESULTS

A weak nonsmooth Maximum Principle given by Propo-

sition 6.1 in [7] will play a crucial rule in our analysis.

It provides unmaximized Hamiltonian Inclusion (UHI) for

standard optimal control problems of the form

(S)





Minimize l(x(1)) +

∫ 1

0

G(t, x(t), u(t)) dt

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0, 1]
u(t) ∈ U(t) a.e. t ∈ [0, 1]
x(0) ∈ C0,

where U : [0, 1] ⇉ R
k is a given multifunction.

For the above problem consider the following assumptions

which make reference to a reference process (x̄, ū) and a

parameter δ > 0:

(A1) For each (x, u) ∈ R
n × R

k, the function t →
(f(t, x, u), G(t, x, u)) is Lebesgue measurable, and

there exist a function L ∈ L1 such that both φ = f
and φ = G obey this inequality for almost every t
in [0, 1]:

|φ(t, x, u) − φ(t, y, w)| 6 L(t) |(x, u) − (y, w)|

for all x, y ∈ Tδ(t), u, w ∈ U(t).
(A2) The multifunction U has Borel measurable graph.

The set Uδ(t), defined in (4), is closed for almost

every t ∈ [0, 1].

(A3) The endpoint constraint set C0 is closed; the cost

function l is locally Lipschitz in a neighbourhood

of x̄(1).

Proposition 3.1: Assume that (x̄, ū) is a local minimizer

for (S) and assume that there exits a scalar δ > 0 such that

A1 – A3 are satisfied. Set

H(t, x, p, u) = p · f(t, x, u) − L(t, x, u).

Then there exist an absolutely continuous function

p : [0, 1] → R
n and an integrable function ξ : [0, 1] → R

k

such that

(−ṗ(t), ξ(t)) ∈

co ∂x,uH(t, x̄(t), p(t), ū(t)) a.e. t ∈ [0, 1],

ξ(t) ∈ β(t) co ∂dUδ(t)(ū(t)) a.e. t ∈ [0, 1],

p(0) ∈ NC0
(x̄(0)

−p(1)) ∈ ∂l(x̄(1)).

where β ∈ L1 depends only on δ, L, Kf (Kf (t) = | ˙̄x(t)|)
and the Lipschitz constant of l (defined in A1–A3).

IV. MAIN RESULT

Next we focus on (P ).

A. Hypotheses

Define the function

g+(t, x, w) = max {0, g1(t, x, w), . . . , gm(t, x, w)} .

The following two sets of hypotheses on the data of (P ),
which make reference to a parameter δ > 0 and a reference

process (x̄, ū, v̄), will be important:

(H1) For each (x, u, v) ∈ R
n × R

k, the function t →
(f(t, x, u, v), g(t, x, u, v)) is Lebesgue measurable.

Also, there exists a function L ∈ L1 such that both

φ = f and φ = g obey this inequality for almost

every t in [0, 1]:

|φ(t, x, u, v) − φ(t, x′, u′, v′)| 6

L(t) |(x, u, v) − (x′, u′, v′)|

for all x, x′ ∈ Tδ(t), (u, v), (u′, v′) ∈ R
k.

(H2) The endpoint constraint set C is closed; the cost

function l is locally Lipschitz in a neighbourhood

of (x̄(0), x̄(1)).
(H3) Both Kf (t) := |f(t, x̄(t), ū(t), v̄(t))| and Kg(t) :=

|g(t, x̄(t), w̄(t), v̄(t))| are integrable on [0, 1].
(H4) There exist a constant K1 > 0 and a function

h ∈ L∞([0, 1]; Rk), with |h(t)| = 1 a.e., such that

the following condition is satisfied for almost every

t ∈ [0, 1], all (x, u, v) ∈ Tδ(t) × Uδ(t) × Vδ(t),
all j ∈ {1, . . . ,m} and all vectors (γj , ψj , φj) ∈
co ∂x,u,vgj(t, x, u, v):

(ψj , φj) · h(t) > K1.
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(H5) The multifunction V has Borel measurable graph.

The set Vδ(t) as defined in (3), is closed for almost

every t ∈ [0, 1].

Consider additionally the following convexity assumption:

(CC) For almost every t ∈ [0, 1], each of the following

sets is convex:

V +(t, x) = {(f(t, x, u, v), g+(t, x, u, v) + s)
u ∈ Uδ(t), v ∈ Vδ(t), s > 0} .

Hypothesis H4, essential in our setup, is a nonsmooth

version of regularity assumptions on the mixed constraints.

Assuming smoothness of the function g, H4 coincides with

the well known positive linear independence of the gradients

∇vgi. In this respect we refer the reader to [12], [20], [6]

and [10]).

B. Weak maximum principle

In the context of problem (P ), the unmaximized Hamil-

tonian is the function H : R
n ×R

n ×R
m ×R

ku ×R
kv → R

defined by

H(t, x, p, r, u, v) := p · f(t, x, u, v) + r · g(t, x, u, v). (6)

It appears throughout our main result, which describes prop-

erties enjoyed by every local minimizer for (P ):

Theorem 4.1: Let (x̄, ū, v̄) be a minimizer for prob-

lem (P ). Assume H1–H5 and CC. Then there exist an

absolutely continuous function p : [0, 1] → R
n, integrable

functions ξ : [0, 1] → R
kv and r : [0, 1] → R

m, and a scalar

λ > 0 such that

‖p‖
∞

+ λ > 0, (7)

(−ṗ(t), 0, ξ(t)) ∈ (8)

co ∂x,u,vH(t, x̄(t), p(t), r(t), ū(t), v̄(t)) a.e. t,

ξ(t) ∈ β(t) co ∂dVδ
(v̄(t)) a.e. t, (9)

r(t) · g(t, x̄(t), ū(t), v̄(t)) = 0 and r(t) 6 0 a.e. t, (10)

(p(0),−p(1)) ∈ NC(x̄(0), x̄(1)) + λ∂l(x̄(0), x̄(1)), (11)

where β ∈ L1 depends only on δ, L, Kf (Kf (t) = | ˙̄x(t)|)
and the Lipschitz constant of l.

The main setback to the application of the above theorem

is that hypothesis CC is quite restrictive. The removal of such

hypothesis will be the focus of future research. However, as

we will see next, in the special case of (P ) when the in-

equality mixed constraint is reduced to one, this assumption

can easily be removed.

C. Scalar valued Mixed Constraints

We now consider (P ) when the number of inequality

mixed constraints is one (i.e., g : [0, 1]×R
n ×R

ku ×R
kv →

R). Consider the following condition:

(INT) For almost every t in [0, 1], we have

{w ∈Wδ(t) : g(t, x, w) 6 0} 6= ∅,

for all x ∈ Tδ(t).

Theorem 4.2: Let (x̄, w̄) be a minimizer for problem (P )
when m = 1 (i.e., g : [0, 1] × R

n × R
k → R). Assume

H1–H5 and INT. Then there exist an absolutely continuous

function p : [0, 1] → R
n, integrable functions r : [0, 1] →

R
m, ξ : [0, 1] → R

kv and a scalar λ > 0 such that (7)–(11)

are satisfied.

V. PROOF OF THEOREM 4.2

We provide an outline of the proof. Details are omitted.

The proof breaks in three steps. We first prove the theorem

under the interim hypotheses

(IH) For almost every t ∈ [0, 1], each of the following

sets is convex:

F (t, x) = {(f(t, x, w), g(t, x, w)) : w ∈Wδ(t)}

for all x ∈ Tδ(t).
(ECS) l(x(0), x(1)) = l(x(1)) and C = C0 × R

n where

C0 ⊂ R
n is a closed set.

Step 1: Show that IH imply CC.

Take any w,w′ ∈ Wδ(t) and any α ∈ [0, 1]. Hypothesis

IH asserts the existence of w̃ ∈Wδ(t) such that

f(t, x, w̃) = αf(t, x, w) + (1 − α)f(t, x, w′), (12)

g(t, x, w̃) = αg(t, x, w) + (1 − α)g(t, x, w′). (13)

Now take any s, s′ > 0. We claim that there exists a ŝ > 0
and ŵ ∈Wδ(t) such that

f(t, x, ŵ) = αf(t, x, w) + (1 − α)f(t, x, w′), (14)

g+
0 (t, x, ŵ) + ŝ = (15)

αg+
0 (t, x, w) + (1 − α)g+

0 (t, x, w′) + s̄,

where s̄ = αs+ (1 − α)s′. Consider three cases:

1. If g(t, x, w), g(t, x, w′) > 0, then g(t, x, w̃) > 0,

g+
0 (t, x, w) = g(t, x, w), g+

0 (t, x, w′) = g(t, x, w′),
g+
0 (t, x, w̃) = g(t, x, w̃). By (12) and (13) we deduce

that taking ŵ = w̃ and ŝ = s̄, then (14) and (15) hold.

2. Consider now the case when g(t, x, w), g(t, x, w′) 6

0. It follows from (13) that g(t, x, w̃) 6 0. Since

g+
0 (t, x, w) = 0, g+

0 (t, x, w′) = 0, g+
0 (t, x, w̃) = 0 we

deduce that (14) and (15) hold with ŵ = w̃ and ŝ = s̄.
3. Suppose that g(t, x, w) < 0 and g(t, x, w′) > 0. Then

g+
0 (t, x, w) = 0 and g+

0 (t, x, w′) = g(t, x, w′). Set

A = g(t, x, w̃),
B = αg+

0 (t, x, w) + (1 − α)g+
0 (t, x, w′),
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where w̃ is such that (12) and (13) hold. Clearly we

have

B = (1 − α)g(t, x, w′) > 0.

In view of (13) two different things may happen.

(i) Suppose that we have A > 0. Then g+
0 (t, x, w̃) =

A. Since B > 0 and

A = αg(t, x, w) + (1 − α)g(t, x, w′),

we have, by (13), 0 6 A < B. Set σ = B − A.

Then

B = A+ σ = g+
0 (t, x, w̃) + σ.

Take ŵ = w̃ and ŝ = σ + s̄ > 0. Then (14) and

(15) hold.

(ii) Suppose that now A < 0. Then g+
0 (t, x, w̃) = 0.

Set σ = B. Take ŵ = w̃ and ŝ = σ + s̄ > 0. Then

(14) holds and, since

g+
0 (t, x, ŵ)+ŝ = αg+

0 (t, x, w)+(1−α)g+
0 (t, x, w′)+s̄,

(15) also holds.

4. The case when g(t, x, w) > 0 and g(t, x, w′) < 0 is

treated exactly like case 3.

Notice that the fact that g is a scalar valued function was

essential.

We conclude that CC holds. Applying Theorem 4.1 we

deduce that the conclusions of Theorem 4.2 are satisfied

under IH.

Step 2: Removal of IH.

By adjusting δ > 0 we can arrange that (x̄, w̄) is a

minimizer over all admissible processes (x,w) for (P ) such

that ‖x− x̄‖
∞

6 δ and ‖w − w̄‖
∞

6 δ.

Define

F̃ (t, x, y) = {(f(t, x, w), g(t, x, w) + s) :

w ∈Wδ(t), s > 0}
⋂

(Rn × {0}).

Under our assumptions F̃ (t, x, y) is nonempty for each

(t, xy, ) in the set

Ω = {(t, x, y) ∈ [0, 1] × R
n × R : (x, y) ∈ (x̄(t), 0) + δB} .

Write

R :=
{
x ∈W 1,1 : x(0) ∈ C0, (ẋ(t), 0) ∈ F̃ (t, x(t), 0)

}
.

By the Generalized Filippov Selection Theorem [25,

Thm.2.3.13]), x̄ is a minimizer for the problem
{

Minimize l(x(1))

over arcs x in R satisfying ‖x− x̄‖L∞ < δ.

A straightforward modification of the proof of the Relax-

ation Theorem (see, e.g., [25, Thm.2.7.2]) implies that any

arc x in the set

Rr :=
{
x ∈W 1,1 : x(0) ∈ C0, (ẋ(t), 0) ∈ coF (t, x(t).0)

}

which satisfies ‖x− x̄‖L∞ < δ can be approximated by an

arc z in R satisfying ‖z − x̄‖L∞ < δ. The continuity of the

mapping

x→ l(x(0), x(1))

on a neighborhood of x̄ implies that x̄ is a minimizer for the

optimization problem
{

Minimize l(x(1))

over arcs x ∈ Rr satisfying ‖x− x̄‖L∞ < δ.

By the Generalized Filippov Selection Theorem and

Carathéodory’s Theorem,

{x̄, (w̄0, . . . , w̄M ) ≡ (w̄, . . . , w̄),

(λ0, λ1, . . . , λM ) ≡ (1, 0, . . . , 0)}

is a minimizer for the optimal control problem (B) defined

as




Minimize l(x(1))
over x ∈W 1,1and measurable functions λ0, . . . , λM ,
w0, . . . , wM satisfying

ẋ(t) =
∑

i

λi(t)f(t, x(t), wi(t)), a.e.,

0 >
∑

i

λi(t)g(t, x(t), wi(t)), a.e.

(λ0(t), . . . , λM (t)) ∈ Λ,

wi(t) ∈Wδ(t), i = 0, . . . ,M a.e.

x(0) ∈ C.

Here

Λ := {λ′0, . . . , λ
′

M :

λ′i > 0 for i = 0, . . . ,M and

M∑

i

λ′i = 1

}
,

and (λ0, . . . , λM ), (w0, . . . , wM ) are regarded as control

variables.

Rewriting the conclusions of Theorem 4.1 when applied

to problem (C) gives necessary conditions for our problem

(P ) when ESC holds.

Step 3: Validation of the result obtained in Step 2 when

hypothesis ECS is removed.

Step 3. a): We show that the Theorem holds for a problem

in the form of (P ) but allowing end point constraints of the

form (x(0), x(1)) ∈ C0×C1 (we still consider l = l(x(1))).
Let D denote the set of pairs (w, s) such that w : [0, 1] →

R
k is a measurable function and s ∈ C1 for which there

exist absolutely continuous functions (x, y) such that




ẋ(t) = f(t, x(t), w(t)), a.e. t
ẏ(t) = 0, a.e. t

0 > g(t, x(t), w(t)), a.e. t
w(t) ∈ Wδ(t), a.e. t

(x(t), y(t) ∈ Tδ(t) × Tδ(t) for all t
(x(0), y(0)) ∈ C0 × C1

x(1) = s
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We provide D with the metric

∆((w,w′), (s, s′) =

∫ 1

0

|w(t) − w′(t)| dt+ |s− s′| ,

Choose a sequence εi such that εi ↓ 0 and
∑
εi < +∞,

and, for each i, define the function

li(x, y) = max
{
l(y) − l(x̄(1)) + ε2i , |x− y|

}
.

Consider

(Ri)

{
Minimize li(x(1), y(1))

subject to (w, s) ∈ D.

Since (w̄, x̄(1)) ∈ D, D is nonempty. It is a simple matter

to check that (D,∆) is a complete metric space on which

the functional li : D → R is continuous.

Notice that li(x̄(1), x̄(1)) = ε2i . Since li > 0, it follows

that (w̄, x̄(1)) is a “ε2i -minimizer for (Ri). Then we apply

Ekeland’s Variational Principle (Theorem 3.3.1 in [25]).

Rewriting the conclusions in control theoretical terms we

obtain a sequence of perturbed problems to which the nec-

essary conditions obtained in the previous step hold. Taking

limits we obtain the required conclusions.

Step 3. b): We now consider problem (P ) with cost

l(x(0), x(1)) and end point constraints (x(0), x(1)) ∈ C0 ×
C1. For such problem we consider the reformulated problem

in which the underlying time interval is [−1, 1].




Minimize l(z(1), x(1))
subject to

ż(t) = 0, t ∈ [−1, 0),
ż(t) = 0, t ∈ [0, 1],
ẋ(t) = 0, t ∈ [−1, 0),
ẋ(t) = f(t, x(t), w(t)),
t ∈ [0, 1]
0 > g̃(t, x(t), w(t)), t ∈ [−1, 0),
0 > g(t, x(t), w(t)), t ∈ [0, 1]
w(t) ∈ (−1, . . . ,−1) + 1/2B, t ∈ [−1, 0),
w(t) ∈Wδ(t), t ∈ [0, 1]
(z(−1), x(−1)) ∈ C ′

1

(z(1), x(1)) ∈ C0 × C1.

where g̃(t, x, w) = Dw, D is a m× k constant matrix such

that each column vector has all entries equal 0 except one

that is equal to 1 and C ′

1 = {(a, b) ∈ Rn × R
n : a = b}.

Applying the result as obtained in Step 3. a) we get the

required necessary conditions.

Step 3. c): Finally we generalize the Theorem to cover

the case when (x(0), x(1)) ∈ C for a closed subset C ⊂
R

n × R
n.

A standard state-augmentation trick converts problem (P)

as stated into a problem with separated endpoint constraints.

It suffices to introduce an additional state y ∈ R
n with

dynamics ẏ(t) = 0 and to impose the modified endpoint

constraints

(x(0), y(0)) ∈ C,

(x(1), y(1)) ∈
{
(x, y) ∈ R

2n : x = y
}
.

The results already obtained apply to the augmented prob-

lem, and the stated result for (P) is easily extracted from

them.

The proof is complete.

VI. SKETCH OF THE PROOF OF MAIN RESULT

We now present a brief sketch of the proof of Theorem

4.1. For details see [11].

Notice that the local minimality of (x̄, ū) provides some

δ′ > 0 as described in the paragraph containing (1). By

reducing this constant if necessary, we can also rely on the

properties in CC.

Step 1 First the Theorem is proved for problem Q:





Minimize l(x(1))
subject to

ẋ(t) = f(t, x(t), w(t)) a.e. t
0 > g(t, x(t), w(t)) a.e. t

w(t) ∈ W (t) a.e. t
x(0) ∈ C0.

Problem (Q) is a special case of (P ) in which C = C0 ×
R

n and l(x0, x1) = l(x1).
For each fixed i ∈ N, consider also the optimal control

problem

(Qi)





Minimize l(x(1)) + i

∫ 1

0

g+(t, x(t), w(t)) dt

subject to

ẋ(t) = f(t, x(t), w(t)) a.e. t
w(t) ∈ Wδ(t) a.e. t
x(0) ∈ C0.

This differs from (Q) by explicitly localizing the control

constraint around w̄, and by shifting the mixed constraints

into the objective function. The integral

i

∫ 1

0

g+(t, x(t), w(t)) dt.

penalizes violation of the mixed constraints. We temporarily

assume that

(IH2) lim inf
i→∞

(Qi) = inf(Q).

holds. In the final stage of this first step we show that CC

implies IH2.

Let E denote the set of pairs (u, s), where s ∈ R
n

and u : [0, 1] → R
k is measurable, for which there exist

absolutely continuous functions x such that




ẋ(t) = f(t, x(t), w(t)) a.e. t
w(t) ∈ Wδ(t) a.e. t
x(t) ∈ Tδ(t) a.e. t
x(0) ∈ C0

x(1) = s

We provide E with the metric

∆((w, s), (w′, s′)) =

∫ 1

0

|w(t) − w′(t)| dt+ |s− s′| ,
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and define Ji : W → R using the arc x mentioned above:

Ji(u, s) = l(x(1)) + i

∫ 1

0

g+(t, x(t), w(t)) dt.

Moreover, problem (Qi) above is closely related to the

abstract problem

(Ri)

{
Minimize Ji(w, s)

subject to (w, s) ∈ E.

Clearly (w̄, x̄(1)) is admissible for (Ri), with

Ji(w̄, x̄(1)) = l(x̄(1)) = infP

since g+(t, x̄(t), w̄(t)) = 0 for almost every t ∈ [0, 1].
Application of Ekeland’s Variational Principle to (Ri) leads

to a sequence of perturbed optimal control problems to which

Proposition 3.1 applies. Taking limits we obtain necessary

conditions for (Q). Finally we show that CC implies IH2.

Step 2: We extend the results obtained in the previous step

to cover the more general problem (P ). This is accomplished

by repeating the approach used in Step 3 of the proof of

Theorem 4.2.
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