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Abstract— This paper addresses the problem of predicting
future outputs of an unknown Linear Time Invariant System
based solely on past input/output data corrupted by noise, and
an a-priori bound on the system order. This situation arises in
many scenarios of practical interest where an explicit a-priori
model of the system is not available. The main result of the
paper is a simple, computationally efficient tracking algorithm
that does not entail identifying first the unknown dynamics.
Rather, the problem of estimating the next value of the output
is recast into a rank minimization problem and solved using
some recently introduced convex relaxations. The potential of
the proposed approach is illustrated using as an example the
problem of tracking multiple targets in video sequences in the
presence of occlusion.

I. INTRODUCTION

A situation commonly arising in many practical applica-

tions involves predicting future outputs of an unknown linear,

possibly slowly time-varying, plant based on noisy past

input/output observations. In the case of LTI dynamics this

problem can be solved using a two-tiered approach where

a suitable dynamics is identified first and then propagated

using a standard filter. However, extending this approach

to the case of slowly varying dynamics requires an on-line

implementation–either re-identifying the plant at each instant

or performing on-line model (in)validation and re-identifying

only when necessary–which could be problematic given the

relatively high computational complexity entailed in both

processes. Finally, in addition to divergence problems that

could arise from errors in estimating the dynamics, Kalman-

filtered based approaches can fail (e.g. lead to unbounded

error covariance) in the presence of intermittent observations

[22]. This effect can be mitigated by resorting to a Receding

Horizon based approach [23], but this further increases the

computational complexity and does not address divergence

issues due to miss-identified dynamics.

To avoid these difficulties, in this paper, motivated by

earlier work on subspace identification [18], [20], rank-

minimization based track matching [4] and receding horizon

based estimation ([17], [16], [9], [1] and references therein),

we propose a simple approach for interpolating/extrapolating

trajectories of a (piecewise) linear plant that does not neces-

sitate identifying first the dynamics of the plant. Instead, the

main idea is to recast the problem into a rank minimization
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form, where unknown data points are estimated by minimiz-

ing on-line the rank of a Hankel matrix constructed from

the past n available measurements. In turn, this rank mini-

mization problem is solved by using the convex relaxation

proposed in [6]. Since the rank of the Hankel matrix is an

estimate of the order of the underlying dynamical system,

intuitively this approach amounts to adding the new data in

such a way that the complete trajectory can be explained by

the same model that explains the existing measurements. As

we show in the paper, in the case of noiseless measurements,

under mild assumptions this approach indeed leads to the

correct values for the missing data. Measurements corrupted

by unknown-but-bounded noise can be easily handled by

simply adding more variables and convex constraints to the

optimization. Finally, since the optimization is carried out

based on a sliding window, it automatically accommodates

(slowly) time varying dynamics.

In the second portion of the paper we illustrate these re-

sults in a problem that has been the object of considerably at-

tention in the computer vision community: tracking multiple

objects in a sequence of frames in the presence of occlusion.

During the past decade extensive research has been carried

out in this area, leading to several techniques (see for instance

[2], [10], [11], [21], [24], [13] and references therein). In

particular, a class of dynamics based trackers has been

developed that combine a-priori assumed dynamic models of

the target motion with optimal filtering –(unscented) Kalman,

particle– [19], [14], [15] to track in the presence of occlusion.

While successful in many scenarios, a mismatch between

the actual and assumed dynamics can result in divergence

of the estimates, leading to tracking failure in the presence

of occlusion. As shown in [3], this effect can be avoided

by using the two tiered approach –identification followed

by filtering– mentioned above. Further, implementing this

approach on–line and updating the models as needed can,

in principle, accommodate slowly time varying dynamics.

However, since the entailed computational complexity of this

step is not small, it may fail in the case of targets with

moderately fast dynamics. Finally, identifying the dynamics

of the plant requires the availability of a sufficiently long

unoccluded trajectory during the training phase. On the other

hand, as we illustrate with several examples, using the rank

minimization based estimators proposed in this paper leads to

trackers capable of handling fragmented trajectories, slowly
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varying dynamics and substantial occlusion and clutter.

II. NOTATION AND BACKGROUND RESULTS

x real–valued vector.

xk kth element of a vector x.

A
T conjugate transpose of matrix A.

A > 0 A = A
T is positive definite.

A < (≤)B (A − B) < (≤)0
σi(A) ith singular value of matrix A.

σ (A) maximum singular value of A.

σ(A) minimum singular value of A.

rank(A) rank of matrix A.

Tr(A) trace of matrix A.

card(I) cardinality of the set I.

III. STATEMENT OF THE PROBLEM

In the sequel we consider (unknown) single input single

output linear shift invariant plants with McMillan degree n:

xk+1 = Axk + Buk

ζk = Cxk

yk = Cxk + vk

(1)

where x ∈ Rn, u, ζ and y represent the states, inputs, outputs

and measurements corrupted by noise v, respectively, and

where the realization (A, B,C) is minimal. Alternatively, we

will also represent the system by its transfer function:

ζ(z) = G(z)u(z)

G(z)
.
=

∑n

i=0 biz
−i

1 +
∑n

i=1 aiz−i

(2)

In its simplest form, the problem addressed in this paper

can be stated as:

Problem 1: Given:

1) a priori information consisting of a set membership

description of the measurement noise v ∈ N and an

upper bound N of n.

2) a posteriori experimental information consisting of nm

input/output measurements {ui, yi}
k
i=k−nm+1,

estimate the value of the ζi, i = k + 1 − nm, . . . , k + 1.

That is, we want to predict the next value of the output ζ and

estimate its past nm values based on the noisy measurements

yi. Variations of this problem that will be discussed later in-

clude multiple steps ahead prediction and data interpolation,

e.g. the case where the goal is to estimate ζk, kℓ ≤ k ≤ ku

based on measurements yi, i = kℓ − 1, . . . , kℓ − n1 and

i = ku + 1, . . . , ku + n2, with n1 + n2 = nm.

IV. REDUCING THE PROBLEM TO RANK MINIMIZATION

Next, we show how Problem 1 can be reduced to a

rank minimization form. We begin by introducing a result

that provides the theoretical underpinning of the proposed

algorithm.

Proposition 1: Given an input sequence {uk}, k = 0, . . .,

denote by u(z)
.
= ru(z)

du(z) its corresponding z–transform, and

assume that du(z) has degree nu ≤ n and that there are no

pole/zero cancellations between u(z) and G(z). Then, given

2nu + n + 1 consecutive values of the input {ui}
n+2nu+1
i=1

and the first 2n + nu values of the corresponding output

{ζi}
2n+nu

i=1 , the output value ζ2n+nu+1 is the unique solution

to the following rank minimization problem:

ζ2n+nu+1 = argmin
x

{
rank

[
H(n+1,nu)(x)

]}
(3)

where

Hn+1,nu
(x)

.
=

[
Hζ

Hu

]

Hζ
.
=




ζ1 ζ2 · · · ζn+nu+1

ζ2 ζ3 · · · ζn+nu+2

...
...

. . .
...

ζn+1 ζn+2 · · · x




Hu
.
=




u1 u2 · · · un+nu+1

u2 u3 · · · un+nu+2

...
...

. . .
...

unu
unu+1 · · · un+2nu+1




(4)

Proof: Consider the Hankel matrix

H̃(r,s)
.
=

[
H̃

ζ

(r,s)

H̃
u
(r,s)

]

where

H̃
ζ

(r,s)

.
=




ζ1 ζ2 · · · ζr+s

ζ2 ζ3 · · · ζr+s+1

...
...

. . .
...

ζr ζr+1 · · · ζ2r+s−1




H̃
u
(r,s)

.
=




u1 u2 · · · ur+s

u2 u3 · · · ur+s+1

...
...

. . .
...

ur ur+1 · · · u2r+s−1




(5)

Note that for each k, the vector (ζk uk)T corresponds to the

kth element of the impulse response of a single input, two

output system with transfer matrix

G(ζ, u)
.
=

[
G(z)u(z)

u(z)

]

Since by assumption G(z) and u(z) have degrees n and nu

respectively and there are no pole/zero cancellations between

G and u, it follows that rank[H̃(n,nu)] = n + nu. Since

for any choice of ζ2n+nu+1, H̃(n,nu) is a a submatrix of

H̃(n+1,nu), it follows that the latter also has rank greater

than or equal to n + nu. Finally, since u(z) has degree nu,

it follows that the first nu rows of H̃
u
(n+1,nu) are linearly

independent and, from Cayley–Hamilton theorem, its last n−
nu rows can be written as a linear combination of these first

nu rows. Thus we have that:

no .
= min

x

{
rank[H(n+1,nu)(x)]

}

= min
x

{
rank[H̃(n+1,nu)(x)]

}

≥ rank[H̃(n,nu)] = n + nu

(6)
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To show that no = n+nu, simply set xo = ζ2n+nu+1. From

(2) we have that

ζn+k +
n∑

i=1

aiζn+k−i−
n∑

i=0

biun+k−i = 0, k = 1, 2, . . . (7)

Hence n(xo)
.
= rank[H̃n+1,nu

(xo)] ≤ n + nu since its n +
1 row can be written as a linear combination of the other

rows. The equality no = n + nu follows now from (6).

Finally, uniqueness of the minimizer follows from the fact

that since H̃n,nu
has rank n + nu, the coefficients of this

linear combination are unique.

Remark 1: By simply proceeding in a sequential fashion,

it can be easily shown that the results above hold for the

case of multiple step ahead predictions, that is, ζk, k =
2n+nu+1, . . . , 2n+nu+np can be obtained by minimizing

the rank of the associated Hankel matrix. A similar reasoning

shows that missing data can be correctly interpolated via

rank-minimization, provided that enough contiguous data is

available so that the corresponding Hankel submatrix has full

rank. If this condition fails, then Hankel rank minimization

amounts to interpolating the data using the lowest order

interpolant that is consistent with the available data.

V. RECEDING HORIZON PREDICTORS/INTERPOLATORS

The results of section IV show that both future and missing

values of the data can be obtained, provided that enough data

points are available, by minimizing the rank of a Hankel

matrix. This suggest the following (conceptual) Receding

Horizon type algorithm:

Algorithm 1: (CONCEPTUAL) RANK MINIMIZATION

BASED PREDICTION/INTERPOLATION

Input at time k: Nh: Horizon length; Ia ⊆ [k − Nh, k]: set

of indices of available measurements (with card(Ia) ≥ n);

Ie ⊆ [k − Nh, k + 1]: set of indices of data to be estimated,

with Ia ∪ Ie = I
.
= [k − Nh, k + 1]; input/ output data ζℓ,

ℓ ∈ Ia, uℓ, ℓ ∈ I

Output: Estimates ζ̂ℓ of ζℓ, ∀ℓ ∈ Ie

1. Let ζ∗ denote the following sequence, where x are free

variables: ζ∗i =

{
ζi if i ∈ Ia

xi if i ∈ Ie

and form the matrix H(x)
.
=

[
Hζ

Hu

]
where:

Hζ
.
=




ζ∗i1 ζ∗i2 · · · ζ∗in+nu+1

ζ∗i2 ζ∗i3 · · · ζ∗in+nu+2

...
...

. . .
...

ζ∗in+1
ζ∗in+2

· · · ζ∗i2n+nu+1




Hu
.
=




ui1 ui2 · · · uin+nu+1

ui2 ui3 · · · uin+nu+2

...
...

. . .
...

uinu
uinu+1

· · · uin+2nu+1




2. Estimate the missing data by solving:

ζ̂ℓ = argmin
xi, i∈Ie

{rank [H(x)]}

The algorithm above is a conceptual, rather than a practical

one since it takes into account neither the presence of mea-

surement noise nor the fact that rank minimization problems

are generically NP-hard. The latter issue can be solved by

replacing the rank minimization by the convex relaxation

introduced by Fazel et. al. [7], [6], [5], [8], while (bounded)

noise can be taken into account by replacing ζk in Hζ by

ζk + vk, subject to a constraint of the form vk ∈ N . These

considerations lead to the following algorithm.

Algorithm 2: RECEDING HORIZON RANK MINIMIZATION

BASED PREDICTION/INTERPOLATION

Input at time k: Nh: Horizon length; Ia ⊆ [k − Nh, k]: set

of indices of available measurements (with card(Ia) ≥ n);

Ie ⊆ [k − Nh, k + 1]: set of indices of data to be estimated;

with Ia ∪ Ie = I; input/output data yℓ, ℓ ∈ Ia, uℓ, ℓ ∈ I;

set membership description of the noise v ∈ N .

Output: Estimates ζ̂ℓ of ζℓ, ∀ℓ ∈ Ie ∪ Ia

1. Let ζ∗ denote the following sequence:

ζ∗i =

{
yi − vi if i ∈ Ia

xi if i ∈ Ie
where v, x are free

variables, and form the matrix

H(x, v)
.
=

[
Hζ

Hu

]
where

Hζ
.
=




ζ∗i1 ζ∗i2 · · · ζ∗in+nu+1

ζ∗i2 ζ∗i3 · · · ζ∗in+nu+2

...
...

. . .
...

ζ∗in+1
ζ∗in+2

· · · ζ∗i2n+nu+1




Hu
.
=




ui1 ui2 · · · uin+nu+1

ui2 ui3 · · · uin+nu+2

...
...

. . .
...

uinu
uinu+1

· · · uin+2nu+1




2. (approximately) minimize rank[H(x, v)] by solving

the following convex problem in x, v, R, S:

minimize Tr(R) + Tr(S)

subject to

[
R H(x)

H(x)
T

S

]
≥ 0

subject to: {vℓ} ∈ N .

3. Estimate/predict the output ζℓ from the noisy

measurements yℓ by:

ζ̂i =

{
yi − vi if i ∈ Ia (estimation)
xi if i ∈ Ie (interpolation/prediction)

In the case where N admits an LMI description, then

step 2 reduces to an LMI optimization problem. Examples
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of these descriptions are balls in ℓ∞, e.g. N
.
= {v : |vk| ≤ ǫ}

or constraints on the norm of Hv , the Hankel matrix of the

noise sequence. Note that the (i, j) element of H
T

v
Hv is

given by:

H
T

v
Hv(i, j) =

nv∑

r=1

v(i + r)v(j + r)

Hence, under mild ergodicity assumptions H
T

v
Hv is an

estimate of the noise covariance matrix. Thus constraints on

‖Hv‖ are (approximately) equivalent to constraints on the

magnitude of the noise covariance.

Remark 2: Intuitively, the algorithm above attempts to

predict the missing data by finding the lowest order system

that interpolates the given data within the noise levels. Since

Hy = Hζ + Hv , it follows that σ(Hζ) ≥ σ(Hy) − σ(Hv).
Hence, in cases where the Hankel matrix of the measured

data satisfies σ(Hy) ≥ σ(Hv) (essentially an empirical

observability/controllability condition), then the data is inter-

polated using a model with the same order as the (unknown)

system generating the data.

VI. APPLICATION: MULTIFRAME TRACKING

In this section we illustrate the application of the proposed

receding horizon filters to the problem of tracking a target

in a sequence of frames, in the presence of occlusion. In

all cases the measurements, –the location of nf features of

the object– were obtained using conventional feature based

(e.g. color, shape, appearance) algorithms. Further, following

[3], we assumed that the position of these features can be

modelled as the output of an unknown (piecewise) linear

time invariant system driven by a stochastic input. Finally,

by absorbing, if necessary, the spectrum of this input into the

unknown plant, we assumed, without loss of generality, that

this input is an impulse. Thus, we used the values nu = 1
and H

u =
[
1 0 . . . 0

]
. For ease of reference, the tracking

algorithm is summarized below:

Algorithm 3: RANK MINIMIZATION BASED TRACKING

Input: nf , number of features being tracked; the measu-

rements matrix W ∈ R2nf×Nw , where wi,k = ri
k and

wi+1,k = si
k are the ith feature position in the kth frame;

length of the observation window, Nw; prediction horizon

Np; noise bound ǫ.

Output: Estimated target location wi,k at time {k ≥ t}

1. While {tracking continues} {
for all i ∈ {1, · · · , 2nf} do

Apply Algorithm 2 on {wi,k}
t−1
k=t−Nw

to compute {w∗
i,k}

t+Np−1
k=t .

end for

2. Locate target around the predicted position and

update {wi,t}, otherwise use the value {w∗
i,t}

instead (target is occluded).

3. t=t+1

}

Next we illustrate the use of the proposed tracking algo-

rithm with several examples and compare the results against

existing techniques.

Example 1: Trajectory Prediction. In this example we con-

sider the problem of predicting the location of the centroid

of the jumping person shown in Fig. 1, from past measure-

ments of its coordinates, (rk, sk), corrupted by uncorrelated

measurement noise, ‖v‖ ≤ 2. In this case we used 31 past

measurements of the centroid position (green dots), to predict

its next 14 values (blue dots). As shown in the Figure,

the rank-minimization based filter successfully predicts the

location of the target. For comparison, a Kalman filter based

tracker (trajectory labeled 2 in the right figure) fails due to

the substantial occlusion.

Example II: Improving Robustness of a CamShift Tracker.

This example illustrates the combination of receding horizon

rank minimization and CamShift [12] algorithms to improve

tracking robustness against occlusion. The data consist of

36 frames of a sequence where the target is not occluded,

followed by 13 frames with varying degrees of occlusion.

Fig. 2 shows a comparison of using Camshift alone (top)

versus a combination of Camshift and receding horizon

rank minimization (bottom). As shown there, while the

former fails, the combination successfully tracks the target

throughout the entire sequence.

Example III: Multi-target Tracking. This example compares

the tracking results obtained using a Kalman filter, a com-

bination identification via Caratheodory-Fejer/ Particle Fil-

ter (CF-PF) [3], and the proposed receding horizon rank-

minimization filters (RHRMF). The goal is to track the two

individuals shown in Figure 3 through the occlusion, using

video-data obtained with a moving camera. In this case, as

standard in the field, the Kalman filter used an assumed

simple model of the dynamics, in this case constant velocity,

together with the observed data, to estimate and propagate

the states and estimate the positions during occlusion. The

CF-PF combination used the unoccluded data to identify first

the dynamics of the target, followed by the use of these

dynamics in conjunction with a particle filter [15] to estimate

the target position during occlusion. Finally, the receding

horizon rank minimization filter was implemented using

Algorithm 3 with the values Nw = 35, Np = 6, and ǫ = 2.

The results after processing are shown in the bottom portion

of Figure 3. As shown there, the receding horizon filter yields

the lowest prediction error. This is due to the fact that the

simple model used in the Kalman filter does no completely

capture the target dynamics. These dynamics are captured

by the CF-based identification (since it is interpolatory).

However, this approach leads to high order dynamics (the

order of the central interpolator coincides with the number

of data points used in the identification), necessitating the use

of a model reduction step. The resulting identification error

leads to the position prediction error. On the other hand, this

effect is not present when using the receding horizon filter,

since it automatically identifies the lowest order dynamics

consistent with the experimental data record.

Example IV: Track Matching. This example illustrates the
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Fig. 1. Trajectory prediction. Left: training data. Right: Rank Minimization (1) versus Kalman Filtering (2)

Fig. 2. Top: CamShift based tracking. Bottom: combination CamShift/Receding Horizon Rank Minimization using N = 30, Np = 8, and ǫ = 2.

frame: 106 frame: 118 frame: 148 frame: 169

Fig. 3. Tracking two individuals through occlusion using a moving camere. (a-d) frame 106, 118, 148, and 169. ’Triangle’ denotes the faster person,
’Circle’ denotes the slower person. ’Blue’ denotes the track predicted by a Kalman Filter, ’yellow’ denotes the track predicted by the combination CF-PF,
and ’red’ and ’cyan’ denote the tracks (one for each target) predicted by the RHRMF. Frame 169 compares the final position estimated by each method
against the ground truth.
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Fig. 4. Track estimation by constant velocity, CF, and rank minimization approach in frame 501∼515. Left: frames 456, 500, 516, and 550. Right:
estimated versus actual position.
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ability of Algorithm 2 to interpolate missing data from exist-

ing measurements. The existing data consists of a sequence

of frames taken from a video clip of a street intersection

showing a turning car (see Figure 4). In order to test the

algorithm against ground truth, we assumed that the data

in frames 501∼515 is missing and attempted to recreate it

using a Kalman filter, a combination identification/filtering

and rank minimization. The first two methods used data

prior to frame 501 only (frames 460 ∼ 500), since they

cannot easily accommodate fragmented data, while rank

minimization used both data pre-frame 501 and post-frame

515 (frames 470 ∼ 500 and 516 ∼ 525). As shown in Fig-

ure 4 (b), receding horizon rank minimization substantially

outperforms the other methods.

VII. CONCLUSIONS AND FURTHER RESEARCH

Many problems of practical interest require predict-

ing/interpolating the value of a given output based solely

on existing experimental data and some minimal a-priori

information about the underlying dynamical process. In

this paper, motivated by some earlier work on subspace

identification methods and rank-minimization based track

matching we show that this problem can be solved, without

explicitly identifying the dynamics of the plant by recasting

it into a rank minimization form, which in turn can be

relaxed to a convex optimization problem. Advantages of

this approach include avoiding the need for an intermediate

identification step (and the entailed identification errors)

and the ability to automatically generate the lowest order

interpolant consistent with the available information. Further,

by carrying out the optimization on-line, based on a sliding

window of data, the approach can accommodate slowly time

varying dynamics. The potential of this approach to outper-

form existing techniques was illustrated using a non-trivial

problem arising in the context of computer–vision based

applications: robust multiframe tracking in the presence of

clutter and occlusion. On going research seeks to extend

the techniques above to classes of nonlinear dynamics, such

as Hammerstein and Wiener systems. In the context of the

computer vision applications discussed above, this situation

arises when, in order to avoid dimensionality problems, the

data is compressed using non-linear embeddings.
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