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Abstract— In this paper, we investigate control strategies for
a scalar, one-step delay system in discrete time, i.e., the system’s
state is the input delayed by one time unit. We allow control
policies that are memoryless functions of noisy measurements
of the state of the delay system. We adopt a first order state-
space representation for the delay system, where the initial
state of the system is a Gaussian and zero mean random
variable. In addition, we assume that the measurement noise is
drawn from a white and Gaussian process with zero mean and
constant variance. Performance evaluation is carried out via
a finite-time quadratic cost that combines the second moment
of the control signal, and the second moment of the difference
between the initial state and the state at the final time. We
show that if the time-horizon is one or two then the optimal
control is a linear function of the plant’s output, while for a
sufficiently large horizon a control taking only two values will
outperform the optimal linear solution. This paper complements
the well known counterexample by Hans Witsenhausen, which
showed that the solution to a linear, quadratic and Gaussian
optimal control paradigm might be nonlinear. Witsenhausen’s
counterexample considered an optimization horizon with two
time-steps (two stage control). In contrast to Witsenhausen’s
work, the solution to our counterexample is linear for one and
two stages but it becomes nonlinear as the number of stages is
increased. Existing tests for linearity of the optimal memoryless
control consider only the two-stage problem. The fact that our
paradigm leads to non-linear solutions, in the multi-stage case,
could not be predicted from prior results. In particular, the fact
that the optimal solution for the two stage problem is linear,
but the multiple stage might not be, also shows that dynamic
programming principles cannot be used for our paradigm. Our
paper provides analytical proofs which hold for any number of
stages.

Index Terms— Decentralized noise cancellation, limited in-
formation, estimation

I. INTRODUCTION
Consider the following discrete-time delay system:

X(k + 1) = U(k), k ≥ 0 (1)

Y (k) = X(k) + V (k), k ≥ 0 (2)

where W (k), U(k), X(k), and Y (k) take values on the
reals, and they represent the measurement noise, input, state,
and output of the plant, respectively. In addition, we assume
that the initial state X(0) is a Gaussian random variable,
with zero mean and variance σ2

0 . The measurement noise
{V (k)}∞k=0 is white, Gaussian, zero mean and with constant
variance given by σ2

V .
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In this paper, we will investigate the following problem:
Problem 1.1: Let a positive integer m, and positive real

constants σ2
0 and σ2

V be given. Consider that the system de-
scribed by (1)-(2) accepts a control strategy of the following
form:

U(k) = Fk(Y (k)), k ∈ {0, . . . ,m− 2} (3)

X(m) = Fm−1 (Y (m− 1)) (4)

where, for each k in the set {0, . . . ,m − 1}, Fk : R →
R is a Lebesgue measurable function. Given a positive
real parameter %, we wish to select Lebesgue measurable
functions {Fk}m−1

k=0 that minimize the following cost:

J ({Fk}m−1
k=0 , σ

2
0 , σ

2
V )

def
= E[(X(m)−X(0))2]

+ %

m−2∑
k=0

E[U(k)2] (5)

Notice that Problem 1.1 can be viewed as an optimal
control problem aimed at the design of a memory element
capable of storing a zero mean Gaussian random variable
X(0) over multiple time-steps. The memory element must
be constructed using a one-step delay and memoryless com-
ponents {Fk}m−1

k=0 , which are used in a feedback configu-
ration. In addition, the memoryless control has access to
noisy measurements of the delay’s state. Minimizing the
cost function defined in (5) amounts to finding the minimal
energy memoryless control that leads to the optimal recovery
of X(0) from Y (m − 1), in a mean square sense. Our
paradigm is identical to the problem of conservation of
analog recodings. Indeed if the stored values are subject to
noise due to degradation over time, then the problem of what
should be recorded in successive copies, so as to increase
fidelity, is exactly what we adress here.

Paper organization and overview of main results: The
following is the organization of this paper (introduction not
included):
• In Section II , we derive the optimal solution to

Problem 1.1, subject to the constraint that the feedback
functions {Lk}m−1

k=0 are affine. We also show that if m
is one or two then affine solutions are optimal.

• In Section III, we adopt a class of functions {Fk}m−1
k=0

that take on only two values. Given σ0 and σV , we
show that there exist m for which the aforementioned
class of functions outperforms the best optimal affine
solution and we provide also numerical examples.

• In Section IV , we discuss conclusions and open issues.
• The paper ends with Section V , where we provide

proofs of Lemmas presented in the paper.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuC12.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1628



Fig. 1. Alternative interpretation to Problem 1.1.

A. Comparison with related work

The paradigm described in Problem 1.1 is a linear
quadratic and Gaussian optimal control problem. We show
that, for up to two stages (m ∈ {1, 2}), an optimal solution
is attained via affine memoryless control. However, affine
solutions are not optimal for all m. In fact, we show that
a memoryless control strategy taking on only two values
may outperform the optimum, within the class of memoryless
affine controllers. The fact that a memoryless policy taking
on only two values outperforms the best afine control shows
that, for m sufficiently large, the optimal solution to Problem
1.1 is nonlinear. In fact, for m larger than two, we do
not know the optimal solution to Problem 1.1. This is not
surprising, since the similar two stage problem suggested by
Hans Witsenhausen [1] remains open after exactly forty years
after its publications. Moreover, it was reported in [6] that
the discretized version of Witsenhausen’s counter-example is
NP-complete. This fact has motivated the numerical studies
in [7], [8], [9], [10].

The work in [2], [3], considered the case where a linear
information pattern is defined by a directed graph. Using
the notion of partially nested information structure, the
authors of [2], [3] characterize when the optimal solution
can be found, while bounds are derived when the optimal is
unknown. In [18], it is shown that, if the induced norm is
used then, the linear controllers are optimal.

II. OPTIMAL AFFINE MEMORYLESS CONTROL

In this section, we find the solution of Problem 1.1 with
the constraint that the functions {Fk}m−1

k=0 are affine. The
section starts with Proposition 2.1, which solves a special
case Problem 1.1, with the initial noise dropped, when the
number of stages is equal to 2. Lemma 2.2 solves Problem
1.1 given that the functions {Fk}m−1

k=0 are affine, as a problem
with constraints and gives the optimal affine functions, which
solve Problem 1.1. Lemmas 2.3 and 2.4 are supporting results
for Lemma 2.2. The main result of the section is given in
Theorem 2.5, in which the optimal cost of Problem 1.1 is
computed under the constraint that the functions {Fk}m−1

k=0

are affine. In subsection II-A, we show that for the number
of stages equal to 2, the affine functions solve Problem 1.1
among all measurable functions.

Proposition 2.1: For σ2
X and σ2

W positive numbers, let X
and W be zero mean Gaussian random variables with vari-
ance σ2

X and σ2
W respectively. For a positive real number σ2,

define the optimal cost:

J∗
def
= min
G0,G1

E
[
(X − Z(1))2

]
(6)

s.t.E
[
Z(0)2

]
≤ σ2 (7)

where the search space of G0 and G1 is the space of
Lebesque measurable functions and Z(0) and Z(1) are
random variables defined as Z(0)

def
= G0 (X) and Z(1)

def
=

G1 (Z(0) +W ) respectively. Then the following hold:

J∗ = σ2
X

(
1− σ2

σ2 + σ2
W

)
and the functions G∗0 and G∗1 , which minimize the cost, are
linear and

G∗0 (x) =
σ

σX
x and G∗1 (x) =

σX · σ
σ2 + σ2

W

x

or

G∗0 (x) = − σ

σX
x and G∗1 (x) = − σX · σ

σ2 + σ2
W

x

Proof: See Appendix. We note that a similar problem
was solved by Bansal and Basar in [7] although their problem
had no constraint, but the cost function consisted from sum
of the cost function in this proposition and the constraint
multiplied by some positive constant. Our proof was inspired
by the proof in [7].

Lemma 2.2: Let all parameters defining Problem 1.1 be
given. Adopt the following class of affine memoryless control
strategies:

U(k) = λ(k)Y (k) + β(k), k ∈ {0, . . . ,m− 2} (8)

X(m) = λ(m− 1)Y (m− 1) + β(m− 1) (9)

where {λ(k)}m−1
k=0 and {β(k)}m−1

k=0 are real numbers. In
addition, consider the following cost:

CA
(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ

2
0 , σ

2
V

)
def
= E[(X(m)−X(0))2] (10)

which must be computed with the control (8) applied to (1)-
(2). Given real a positive constant γ, define the following
optimal cost:

C∗A
(
m,σ2

0 , σ
2
V

) def
=

min
{(λ(k),β(k))}m−1

k=0

CA
(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ

2
0 , σ

2
V

)
(11)

s.t.
m−2∑
k=0

E[U(k)2] ≤ (m− 1)γσ2
V (12)

The following holds:

C∗A
(
m, γ, σ2

0 , σ
2
V

)
= σ2

0

(
1− σ2

0

σ2
0 + σ2

V

γm−1

(1 + γ)m−1

)
(13)

In order to prove the Lemma 2.2, we need the following two
lemmas.
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Lemma 2.3: Let all parameters and cost function defining
Lemma 2.2 be given. Given the positive numbers

{
σ2
i

}m−1

i=1
,

define the optimal cost:

C∗σ
(
m,σ2

0 , σ
2
V ,
{
σ2
i

}m−1

i=1

)
def
=

min
{(λ(k),β(k))}m−1

k=0

CA
(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ

2
0 , σ

2
V

)
(14)

s.t. E[U(k)2] = σ2
k+1, k ∈ {0 . . .m− 2} (15)

Then the following holds:

C∗σ
(
m,σ2

0 , σ
2
V ,
{
σ2
i

}m−1

i=1

)
= σ2

0

(
1−

m−1∏
i=0

σ2
i

σ2
i + σ2

V

)
(16)

E[X(m)2] = σ2
0

m−1∏
i=0

σ2
i

σ2
i + σ2

V

and the optimum is reached by selecting the following affine
functions:

β(k) = 0, k ∈ {0 . . .m− 1} (17)

λ(k) =

√
σ2
k+1

σ2
k + σ2

V

, k ∈ {0 . . .m− 2} (18)

λ(m− 1) =
m−1∏
i=0

√
σ2
i

σ2
i + σ2

V

·

√
σ2

0

σ2
m−1 + σ2

V

(19)

Proof: See Appendix
Lemma 2.4: Let {αi}ni=1 be positive real numbers. Con-

sider the following cost function:

C ({αi}ni=1)
def
=

n∏
i=1

αi
1 + αi

Given a positive real number P, define the following optimal
cost:

C∗ def= max
{αi}ni=1

C ({αi}ni=1)

subject to:
∑n
i=1 αi ≤ P

αi ≥ 0, i ∈ {1, . . . n}

Then the following hold:

C∗ =

(
P
n

)n(
1 + P

n

)n
α∗i =

P

n
, i ∈ {1, . . . , n}

where {α∗i }
n
i=1 are the optimal values of {αi}ni=1 for which

the problem is solved.
Proof: See Appendix
Proof: Lemma 2.2 The initial optimization problem :

C∗A
(
m,σ2

0 , σ
2
V

) def
=

min
{(λ(k),β(k))}m−1

k=0

CA
(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ

2
0 , σ

2
V

)

m−2∑
k=0

E[U(k)2] ≤ (m− 1)γσ2
V

is equivalent to the following optimization problem:

C∗A
(
m,σ2

0 , σ
2
V

) def
= min
{σ2

i}m−1

i=1

C∗σ
(
m,σ2

0 , σ
2
V ,
{
σ2
i

}n
i=1

)
s.t.

m−1∑
i=1

σ2
i ≤ (m− 1)γσ2

V

Taking into consideration that σ2
i ’s are the variances of some

random variables so they must be positive, the results of
Lemma 2.2 follow directly from Lemma 2.3 and Lemma
2.4.

Theorem 2.5: Let all parameters defining Problem 1.1 be
given, with m, the number of stages greater than 3. Denote
by J ∗A

(
m,σ2

0 , σ
2
V

)
as the solution to Problem 1.1 subject to

affine strategies of the form (8). The following statements
hold:

J ∗A
(
m,σ2

0 , σ
2
V

)
= min

γ≥0
C∗A
(
m, γ, σ2

0 , σ
2
V

)
+ (m− 1)%γσ2

V

(20)
where C∗A

(
m, γ, σ2

0 , σ
2
V

)
is given by (13). Consider the

following conditions:

(a) % = σ4
0

(σ2
0+σ2

V )σ2
V

γm−2

(1+γ)m

(b) m < γ + 2
If % and m are chosen such that there exists a positive
real number γ%,m, such that conditions (a) and (b) are
satisfied, then γ%,m minimizes the problem from equation
(20), otherwise γ = 0 minimizes the problem in equation
(20).

Proof: The first statement of the theorem , i.e. equation
20, is immediate. From Lemma 2.2, we know that:

C∗A
(
m, γ, σ2

0 , σ
2
V

)
= σ2

0

(
1− σ2

0

σ2
0 + σ2

V

γm−1

(1 + γ)m−1

)
Define:

f(γ)
def
= C∗A

(
m, γ, σ2

0 , σ
2
V

)
+ %(m− 1)γσ2

V

Then, the derivative of the function f(γ) is:

∂f(γ)
∂γ

= −(m− 1)
σ4

0

(σ2
0 + σ2

V )
γm−2

(1 + γ)m
+ %(m− 1)σ2

V

The function γm−2

(1+γ)m has a single stationary point, which is
a point of maximum at m−2

2 , for γ > 0. This means that
∂f
∂γ is decreasing until γ = m−2

2 and increasing afterwords.

We note that lim
γ→∞

γm−2

(1 + γ)m
= 0, and also γm−2

(1+γ)m = 0, for

γ = 0. If exists a positive γ1, such that ∂f
∂γ (γ1) = 0, then

there exists a γ2 such that ∂f
∂γ (γ2) = 0, with γ1 = γ2 if

and only if they are both equal to m−2
2 . Let γ1 ≤ m−2

2 and
γ2 ≥ m−2

2 . Then, on [0, γ1], the function f(γ) is increasing,
since its derivative is positive, on [γ1, γ2], f is decresing,
and on [γ2,∞), f is increasing. This means that the function
f(γ) has 2 points of local minimum, one for γ = 0 and the
second one is γ = γ2, so in order to compute the minimum,
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one has to compute f(0) and f(γ2) and take the minimum
between these two.

If there exists a positive γ%,m, which satisfies conditions
(a) and (b) from the statement of the theorem, it means that
∂f
∂γ (γ) = 0 has two solutions. Let γ1 ≤ m−2

2 ≤ γ2, be the
solutions. Since γ%,m > m− 2, it follows that γ%,m = γ2.

f(γ%,m) = σ2
0

(
1− σ2

0

σ2
0 + σ2

V

(
γ%,m

γ%,m + 1

)m−1
)

+
m− 1
γ%,m + 1

σ2
0

σ2
0 + σ2

V

(
γ%,m

γ%,m + 1

)m−1

< σ2
0 = f(0)

where the inequality takes place because m < γ%,m + 2.
If exists γ% such that condition (a) is satisfied, but for none

of these γ% condition (b) is not satisfied, then

f(γ%,m) = σ2
0

(
1− σ2

0

σ2
0 + σ2

V

(
γ%,m

γ%,m + 1

)m−1
)

+
m− 1
γ%,m + 1

σ2
0

σ2
0 + σ2

V

(
γ%,m

γ%,m + 1

)m−1

< σ2
0 = f(0)

If no positive γ exists, such that such that condition (a) is
satisfied, it means that ∂f∂γ (γ) = 0, has no solution, and since
∂f
∂γ (γ) is continuous in γ and ∂f

∂γ (0) > 0, for all γ ≥ 0, which
implies that f is increasing for γ ≥ 0 and f(γ) ≥ f(0), for
all positive γ. �

Remark 2.1: From Lemmas 2.2, 2.3 and 2.4 we can
compute the Lagrange multiplier of the constraint problem
in Lemma 2.2. The Lagrange multiplier for a fixed γ has the
value λ = σ4

0

(σ2
0+σ2

V )σ2
V

γm−2

(1+γ)m . So, whenever the condition
on %, m and γ%,m from theorem 2.5 is satisfied, then % is
actually the Lagrange multiplier of the problem in Lemma
2.2, for the optimal γ.

A. The optimal solution to Problem 1.1 is linear for m = 2
Proposition 2.6: Let all the parameters defining Prob-

lem 1.1 be given and assume that m = 2. Given a positive
real constant γ, let F0 be Lebesgue measurable function
satisfying: E[U(0)2] ≤ γσ2

V . The following holds:

E[(X(2)−X(0))2] ≥ C∗A
(
2, γ, σ2

0 , σ
2
V

)
(21)

where C∗A(2, γ, σ2
0 , σ

2
V ) is given by (13).

Proof: Let:

X̃(1) = E[X(0)|Y (0)] =
σ2

0

σ2
0 + σ2

V

Y (0)

The cost function can be written:

E[(X(2)−X(0))2] = E[(X(2)− X̃(1) + X̃(1)−X(0))2]

= E[(X(2)− X̃(1))2] + E[(X̃(1)−X(0))2]

+ 2E[(X(2)− X̃(1))(X̃(1)−X(0))]

= E[(X(2)− X̃(1))2] + E[(X̃(1)−X(0))2]

= E[(X(2)− X̃(1))2] +
σ2

0σ
2
V

σ2
0 + σ2

V

The cross term is zero because of the orthogonality principle.
We note that X̃(1) is a linear function of Y (0), which means

that Y (0) can be written as a linear function of X̃(0) and also
X(1) = U(0) is a function of X̃(0). Then, by proposition
2.1:

E[(X(2)−X(0))2] = E[(X(2)− X̃(1))2] +
σ2

0σ
2
V

σ2
0 + σ2

V

≥ σ4
0

σ2
V + σ2

0

(
1− σ2

V γ

σ2
V + σ2

V γ

)
+

σ2
0σ

2
V

σ2
0 + σ2

V

= σ2
0

(
1− σ2

0

σ2
0 + σ2

V

γ

1 + γ

)
= C∗A

(
2, γ, σ2

0 , σ
2
V

)
The inequality can be reached with equality by selecting the
functions F0 and F1 like in Lemma 2.2, for m = 2

III. TWO VALUED MEMORYLESS CONTROL

In this section, we show that, in general affine functions
do not solve Problem 1.1. In Lemma 3.1, we compute the
cost when are functions {Fk}m−1

k=0 take only 2 values. The
main result in this section is Theorem 3.2, in which we show
that the two valued functions reach a lower cost than affine
functions. The section ends with some numerical results,
which show that two valued functions can be better than
affine functions.

Lemma 3.1: Let the parameters in Problem 1.1 be given.
Given the positive real numbers

{
σ2
i

}m
i=1

, define the follow-
ing class of functions {Fi}m−1

i=0 , which take only two values:

Fi(x) = σi+1sgn(x), i ∈ {0, . . . ,m− 1} (22)

Adopt the functions {Fi}m−1
i=0 as control strategies for Prob-

lem 1.1, as it follows:

U(k) = Fk (Y (k)) , k ∈ {0, . . .m− 2}

X(m) = Fm−1 (Y (m− 1))

Consider the following cost:

CL({σ2
k}mk=1, σ

2
0 , σ

2
V )

def
= E

[
(X(m)−X(0))2

]
Then, the following holds:

CL({σ2
k}mk=1, σ

2
0 , σ

2
V ) = σ2

0 + σ2
m

− 4
σmσ

2
0√

2π(σ2
0 + σ2

V )

m−1∏
i=1

(2P (V (i) ≤ σi)− 1)

Proof: See Appendix
In Problem 1.1, there is no constraint on the final function
Fm−1. In the problem given in Lemma 3.1, the cost can be
minimized with respect to σm. Define the following cost:

C∗L({σ2
k}m−1
k=1 , σ

2
0 , σ

2
V )

def
= min

σm
CL
(
{σ2

k}mk=1, σ
2
0 , σ

2
V

)
(23)

Since the cost function defined in Lemma 3.1 is a quadratic
function of σm, it is straightforward that:

C∗L
(
{σk}m−1

k=1 , σ
2
0 , σ

2
V

)
= σ2

0

− 4
2π
σ2

0

m−1∏
i=1

(2P (V (i) ≤ σi)− 1)2 · σ2
0

σ2
0 + σ2

V
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Theorem 3.2: Let all the parameters defining Problem 1.1
be given. There exists a positive real number %, an integer
m and measurable nonlinear functions {Fi}m−1

i=0 such that:

J ({Fk}m−1
k=0 , σ

2
0 , σ

2
V ) <

CA({λ(k)}m−1
k=0 , {β(k)}m−1

k=0 , σ
2
0 , σ

2
V ) + %

m−2∑
k=0

E[U(k)2]

for any choice of {λ(k)}m−1
k=0 , {β(k)}m−1

k=0
Proof: Choose a positive real number γ, big enough

such that
(
2Q
(√
γ
)
− 1
)2

> γ
1+γ , where Q(x) is the

cumulative distribution function of a normal random variable
with zero mean and unit variance. Note that such γ always
exists, for example take any real number greater than 1.5.
Then, there exists m0, such that for any integer m greater
than m0: (

2Q
(√
γ
)
− 1
)2(m−1)(

γ
1+γ

)m−1 >
2π
4

Choose an integer m, such that, m ≥ m0 and m < γ+2. To
prove that such pair of γ and m exists, pick m = bγ + 1c.
Then by noticing that:

lim
γ→∞

(
γ

1 + γ

)γ+1

= e−1

lim
γ→∞

(
2Q(

√
(γ))− 1

)2(γ+1)

= 1

and e > 2π
4 , it follows that for a big enough γ and m =

bγ + 1c, the pair (γ,m) satisfies both conditions m ≥ m0

and m < γ + 2.
Choose Fk(x) =

√
γσ2

V sgn(x), k ∈ {0, . . .m− 2}.
Choose Fm−1 = σmsgn(x). Choose σ2

m in order to min-
imize the cost defined in (23) for which σ2

k = γσ2
V , k ∈

{0, . . .m− 2}. It is clear that by this choice of functions,∑m−2
k=0 E

[
U(k)2

]
= (m − 1)γσ2

V . For this choice of func-
tions, the cost becomes:

E
[
(X(0)−X(m))2

]
= σ2

0

− 4
2π
σ2

0

m−1∏
i=1

(2P (V (i) ≤ σi)− 1)2 σ2
0

σ2
0 + σ2

V

= σ2
0 −

4
2π

m−1∏
i=1

(
2P
(
V (i)
σV
≤ σi
σV

)
− 1
)2

σ4
0

σ2
0 + σ2

V

= σ2
0 −

4
2π

m−1∏
i=1

(
2P
(
V (i)
σV
≤ √γ

)
− 1
)2

σ4
0

σ2
0 + σ2

V

= σ2
0 −

4
2π

(2Q (
√
γ)− 1)2(m−1) σ4

0

σ2
0 + σ2

V

It follows then, that for m ≥ m0:

E
[
(X(0)−X(m))2

]
=

= σ2
0

(
1− 4

2π
(2Q (

√
γ)− 1)2(m−1) σ2

0

σ2
0 + σ2

V

)
< σ2

0

(
1− σ2

0

σ2
0 + σ2

V

γm−1

(1 + γ)m−1

)
= C∗A(m, γ, σ2

0 , σ
2
V )

Pick % = σ4
0

(σ2
0+σ2

V )σ2
V

γm−2

(1+γ)m . We note that with thes % and
m, the conditions of theorem 2.5 are satisfied, so the cost
of problem 1.1 subject to affine strategies of the form (8)
is given by equation (20). Since m > m0, for the nonlinear
functions chosen above, it follows that:

C∗A
(
m, γ, σ2

0 , σ
2
V

)
+ %(m− 1)γσ2

V >

> σ2
0 −

4
2π
σ2

0 (2Q (
√
γ)− 1)2(m−1) σ2

0

σ2
0 + σ2

V

+%(m− 1)γσ2
V

This shows that, the nonlinear cost is smaller than the
linear cost, so the optimum of problem 1.1 is reached in
general by nonlinear functions rahter then affine functions.

We can also provide a simple numerical example, by solving
numerically the problems defined in Theorem 2.5 and in
Lemma 2.2. Let σ0 = 1, σV = 0.4, m = 7 and % = 0.0858.
Then by running a numerical algorithm for optimization we
obtain γopt = 6. The cost with linear functions is 0.9485,
while the cost with the two-valued functions chosen like in
the Theorem 3.2 is 0.8222. Using then the γopt, we can
compute the Lagrange multiplier, and we obtain the result
equal to 0.0858, which is the same as the value of %. One
important issue, is that the proof theorem 3.2 gives means
how to provide counterexamples. Most of the work done on
the Witsenhausen problem restricts itself only to some of
the values of the problem parameters in order to give valid
counterexamples.

In [7], Bansal and Basar made a classification of the
problems with 2-stages with respect to the cost function to
be minimized. They show that the Witsenhausen counter
example falls into one category of problems, which they
define. We can show that the cost function to be minimized in
this paper can be put in a form similar to the form of Bansal
and Basar, where the solution in nonlinear. Just like in the
proof of lemma 2.3, let X̃(m − 1) = E[X(0)|Y (m − 2)],
then by the same arguments like in the proof of lemma 2.3:

E[(X(m)−X(0))2]

= E[(X(0)− X̃(m− 1))2] + E[(X̃(m− 1)−X(m)2]

We note that this cost can be compared to the cost in the
Witsenhausen problem. It is true that is not exactly the
Witsenhausen cost since X̃(m − 1) is a function of X(0),
but also of V (k), k = 0, . . .m− 2.

IV. CONCLUSIONS

In this paper, we have discussed the finite horizon opti-
mal memoryless control of a delay in gaussian noise with
quadratic cost and showed that in general, affine functions
are not optimal for this kind of problems. By writing the
cost in a different way, we showed that the qudratic cost
can be written as a cost which resembles the cost in the
Witsenhausen problem [1]. We showed that the class of
functions which take only two values are better than the
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affine functions in some cases. This led to the belief that, just
like in the numerical studies over the Witsenhausen problem,
the optimal functions for this given problem are functions
which take only discrete values. For future work, a more
thorough investigation, both analytical and numerical, of the
functions taking discrete values is necessary.
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V. APPENDIX

A. Proof of Propostion 2.1

We use in the proof notions from information theory, like
mutual information and differential entropy. By taking G0

and G1 to be both identically zero, then the cost function will
be σ2

X . Since the cost function is positive then, we can restrict
our search only to functions which give a bounded cost.
This is required, so no problem will appear with respect to
the existence of differential entropy. The differential entropy

exists for random values with finte second moment, as it was
proved in [17].

I(X,Z(1)) ≤ I(Z(0), Z(0) +W )

I(Z(0), Z(0) +W ) ≤ 1
2

log
(

1 +
σ2

σ2
W

)

The first inequality is because X , Z(0), Z(0)+W and Z(1)
form a Markov chain. The second inequality is because of
the definition of the channel capacity.

h (X|Z(1)) = h (X)− I(X,Z(1))
h (X − Z(1)|Z(1)) = h (X)− I(X,Z(1))
h (X − Z(1)) ≥ h (X)− I(X,Z(1))

h (X − Z(1)) ≥ h (X)− 1
2

log
(

1 +
σ2

σ2
W

)
h (X − Z(1)) ≥ 1

2
log
(
2πeσ2

X

)
− 1

2
log
(

1 +
σ2

σ2
W

)
1
2

log (2πeV ar[X − Z(1)])

≥ 1
2

log
(
2πeσ2

X

)
− 1

2
log
(

1 +
σ2

σ2
W

)
log (V ar[X − Z(1)]) ≥ log

(
σ2
X

)
− log

(
1 +

σ2

σ2
W

)
V ar[X − Z(1)] ≥ σ2

Xσ
2

σ2 + σ2
W

The first inequality appears due to the fact that conditioning
reduces entropy, the second inequality was proved in the
beginning, the third, firth and fifth inequalityies appear
because of the properties of the differential entropy with
respect to the variance of the random variables. The last
two inequalities are obtained from the fifth one, through
direct manipulation. All the inequalities can be reached with
equalities if the random variables X , Z(0), Z(0) + W and
Z(1) are Gaussian. X is Gaussian from the problem and
the other can be gaussian if G0 and G1 are affine functions.
Once we established the fact that G0 and G1 are affine, by
straightforward computation, we get that the functions are in
fact linear and the results of the proposition follow.

B. Proof of Lemma 2.3

One easy way to show it, it to notice that the affine
functions at each step with k ∈ {0, . . .m− 2} act only as
scale factors. Because of linearity the values of the λ(k)’s
k ∈ {0, . . .m− 2} appear immediately the way they are
written in equation (18), λ(m−1) can be computed using the
fact that Y (m− 1) is gaussian, so X(m) = E[X(0)|Y (m−
1)], and with the values of β(k) = 0,∀k. It is true that the
values of λ(k) are not unique. It is straightforward to show
that if we take a even number of parameters λ(k), when
β(k) = 0 and flip their sign the value of the cost function
remains the same. But in order to be more rigorous, we will
prove the claims in the lemma by induction. First we show
that for a general m, there is no k for which λ(k) = 0.
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Assume that exists such a k, then U(k) = β(k), which will
be just a constant. Then all the Y (l), l ≥ k + 1 will be
independent of X(0), which will make X(m) independent
of X(0). The cost function becomes E[(X(0)−X(m))2] =
E[X(0)2] + E[X(m)2] ≥ σ2

0 but the parameters assumed
above give a value of the cost function less then σ2

0 , which
means that the λ’s are always non zero.

It is a standard computation to show that the claims
hold for m = 1 and for m = 2. For m = 1, X(1) =
E[X(0)|Y (0)], due to the Gaussianity of X(0) and the noise,
and the result is immediate. The results for m = 2 are
found also in the proof for proposition 2.6. Assume that
the claim holds for m ≥ 2. We need to prove that it holds
also for m + 1. Let it be the m + 1 stage problem. Let
X̃(m) the best affine estimator of X(0) given Y (m − 1).
By the properties of the affine estimators X̃(m) is an affine
function of Y (m− 1) and E[X̃(m)] = E[X(0)] = 0. Since
all the λ(k) 6= 0, k ∈ {0 . . .m− 2} it follows that X̃(m) is
an invertible affine function of Y (m − 1). This means that
X(m), being an affine function of Y (m − 1), is an affine
function of X̃(m). Then by orthogonality principle we can
write the cost function:

E[(X(0)−X(m+ 1)2] =

= E[(X(0)− X̃(m) + X̃(m)−X(m+ 1)2]

= E[(X(0)− X̃(m))2] + E
[
(X̃(m)−X(m+ 1)2

]
+ 2E[(X(0)− X̃(m))(X̃(m)−X(m+ 1)]

= E[(X(0)− X̃(m))2] + E[(X̃(m)−X(m+ 1)2]

The value E[(X̃(m)−X(m+1)2] can be bounded from be-
low using Proposition 2.1, since X(m) is an affine function
of X̃(m) and E[X(m)2] = σ2

m. We know that X̃(m) is the
best affine estimator of X(0) given Y (m − 1). Then using
the orthogonality principle we get:

E[X(0)2] = E[(X(0)− X̃(m) + X̃(m))2]

= E[(X(0)− X̃(m))2] + E[X̃(m)2]

+ 2E[(X(0)− X̃(m))X̃(m)]

= E[(X(0)− X̃(m))2] + E[X̃(m)2]

Looking back at the inital cost:

E[(X(0)−X(m+ 1)2] =

= E[(X(0)− X̃(m))2] + E[(X̃(m)−X(m+ 1)2]

≥ E[(X(0)− X̃(m))2] + E[X̃(m)2]
(

1− σ2
m

σ2
m + σ2

V

)
= E[X(0)2]

(
1− σ2

m

σ2
m + σ2

V

)
+ E[(X(0)− X̃(m))2]

− E[(X(0)− X̃(m))2]
(

1− σm
σm + σV

)
= σ2

0

(
1− σ2

m

σ2
m + σ2

V

)
+ E[(X(0)− X̃(m))2]

σ2
m

σ2
m + σ2

V

≥ σ2
0

(
1−

m−1∏
i=0

σ2
i

σ2
i + σ2

V

)
σ2
m

σ2
m + σ2

V

+ σ2
0

(
1− σ2

m

σ2
m + σ2

V

)
= σ2

0

(
1−

m∏
i=0

σ2
i

σ2
i + σ2

V

)
The first inequality takes place due to the fact that X(m)
is an affine function of X̃(m) and E[X2(m)] = σ2

m, so
the second term can be lower bounded using Proposition
2.1 and the second inequality appears due to the induction.
Both inequalities can be reached with equality by selecting
the paramters λ(k), k ∈ {0, . . .m− 2} and β(k), k ∈
{0, . . .m− 2} for the m stage problem and the values for
λ(m− 1), λ(m), β(m− 1), β(m) and E[X(m+ 1)] follow
from Proposition 2.1 and straightforward computation.�

C. Proof of Lemma 2.4

First we show that the optimization problem is equivalent
to the following problem:

maxC ({αi}ni=1)

where the maximum is subject to the following constraints:
n∑
i=1

αi ≤ P

αi ≥ ε, i = 1, . . . n

for some ε > 0.
The cost function is positive for any choice of positive αi ≥ 0
and is zero if ∃i, s.t.αi = 0. Choose any αi > 0 such that∑n
i=1 αi ≤ P . For this choice, let

∏n
i=1

αi
αi+1 = ε̄ > 0. Then

for any k ∈ {1, . . . , n}
n∏
i=1

αi
αi + 1

≤ αk
αk + 1

≤ αk

Choose ε = ε̄
2 , then if αk ≤ ε, then

∏n
i=1

αi
αi+1 <

ε̄ no matter what are the values of the other αi, i ∈
{1, . . . , k − 1, k + 1, . . . , n}. This shows that the first prob-
lem and the second problem are equivalent. Moreover it
shows that for the second problem, the inequality constraints
αi, i ∈ {1, . . . n}are inactive. Then the second problem can
be solved by solving the equivalent problem:

maximize log
n∏
i=1

αi
αi + 1

n∑
i=1

αi ≤ P

αi ≥ ε i = 1, . . . , n

which is the same with:

maximize
n∑
i=1

log
αi

αi + 1
n∑
i=1

αi ≤ P

αi ≥ ε i = 1, . . . , n
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We note that the optimization function is strictly concave
on the maximization domain and the inequality constraints
are affine functions, which means that values for {αi}ni=1

which reach the maximum are unique. From the argument
of the previous problem the inequality constraints αi ≥ ε, i ∈
{1, . . . n} are inactive, so the Lagrange multipliers for these
constraints are 0. Let µ be the Lagrange multiplier of the
remaining inequality constraint. Then for the optimization
problem the first order optimality conditions can be written:

∂
∑n
i=1 log αi

αi+1

∂αk
+ µ = 0, k = 1, . . . n

1
αk
− 1
αk + 1

+ µ = 0, k = 1, . . . n

First we note that µ < 0 and that the inequality constraint is
active. Then αk can be written as a function of µ:

αk =
−1 +

√
1− 4

µ

2

We obtain that the αk, k = 1, . . . n are equal and:

αk =
P

n

and the result follows.

D. Proof of Lemma 3.1

Before proving the claim in Lemma 3.1, one needs to
prove the following.

P (X(m) = σm) =
1
2

P (U(k) = σk+1) =
1
2
,∀k ∈ {0, . . .m− 2}

One can proove this claim by induction. Due to space
constraints, we omit the proof of this claim.

We need to prove that:

E [X(m)|Y (m− k − 1) < 0] = −σm
m−1∏
i=m−k

(2P (V (i) ≤ σi)− 1)

E [X(m)|Y (m− k − 1) > 0] = σm
m−1∏
i=m−k

(2P (V (i) ≤ σi)− 1)

for 1 ≤ k ≤ m. We prove this by induction. For k = 1, the
proof is done by straightforward computation. Assume that
the claim holds for all i, 1 ≤ i ≤ k. We need to prove it for
k + 1.

E [X(m)|Y (m− k − 2) < 0]
= E [X(m)|Y (m− k − 1) < 0, Y (m− k − 2) < 0]
· P (Y (m− k − 1) < 0|Y (m− k − 2) < 0)

+ E [X(m)|Y (m− k − 1) > 0, Y (m− k − 2) < 0]
· P (Y (m− k − 1) > 0|Y (m− k − 2) < 0)

= E [X(m)|Y (m− k − 1) < 0]
· P (V (m− k − 1) < σm−k−1)
+ E [X(m)|Y (m− k − 1) > 0]
· P (V (m− k − 1) > σm−k−1)

= −σm
m−1∏
i=m−k

(2P (V (i) ≤ σi)− 1)

· P (V (m− k − 1) < σm−k−1)

+ σm

m−1∏
i=m−k

(2P (V (i) ≤ σi)− 1)

P (V (m− k − 1) > σm−k−1)

= σm

m−1∏
i=m−k−1

(2P (V (i) ≤ σi)− 1)

In the same way, one can show that the claim holds for
E [X(m)|Y (m− k − 2) > 0]. The cost function defined in
the lemma is:

E
[
(X(0)−X(m))2

]
= σ2

0 + σ2
m − 2E [X(0)X(m)]

E [X(0)X(m)] = E [E [X(0)X(m)|X(0), V (0)]]

=
∫ ∞
−∞

∫ ∞
−∞

E [X(0)X(m)|X(0) = x0, V (0) = v0]

1
2π
√
σ2
V σ

2
0

e
−
(
x20
2σ2

0
+

v20
2σ2
V

)
dx0dv0

=
∫ ∞
−∞

∫ −v0
−∞

x0E [X(m)|X(0) = x0, V (0) = v0]

1
2π
√
σ2
V σ

2
0

e
−
(
x20
2σ2

0
+

v20
2σ2
V

)
dx0dv0

+
∫ ∞
−∞

∫ ∞
−v0

x0E [X(m)|X(0) = x0, V (0) = v0]

1
2π
√
σ2
V σ

2
0

e
−
(
x20
2σ2

0
+

v20
2σ2
V

)
dx0dv0

= −σm
m−1∏
i=1

(2P (V (i) ≤ σi)− 1)
∫ ∞
−∞

∫ −v0
−∞

x0

1
2π
√
σ2
V σ

2
0

e
−
(
x20
2σ2

0
+

v20
2σ2
V

)
dx0dv0

+ σm

m−1∏
i=1

(2P (V (i) ≤ σi)− 1)
∫ ∞
−∞

∫ ∞
−v0

x0

1
2π
√
σ2
V σ

2
0

e
−
(
x20
2σ2

0
+

v20
2σ2
V

)
dx0dv0

= 2σm
m−1∏
i=1

(2P (V (i) ≤ σi)− 1)
σ2

0√
2π(σ2

0 + σ2
V )

It follows then that:

E
[
(X(0)−X(m))2

]
= σ2

0 + σ2
m

− 4σm
m−1∏
i=1

(
2P
(
V (i) ≤

√
σ2
i

)
− 1
)

σ2
0√

2π(σ2
0 + σ2

V )
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