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Abstract— This paper is focused on adapting symmetry
reduction, a technique that is highly successful in traditional
model checking, to stochastic hybrid systems. We first show
that performability analysis of stochastic hybrid systems can
be reduced to a stochastic reachability analysis (SRA). Then,
we generalize the notion of symmetry reduction as recently
proposed for probabilistic model checking, to continuous proba-
bilistic systems. We provide a rigorous mathematical foundation
for the reduction technique in the continuous case and also
investigate its observability perspective. For stochastic hybrid
systems, characterizations for this reduction technique are
provided, in terms of their infinitesimal generator.
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I. INTRODUCTION

Symmetry reduction is a well-investigated technique for

combatting the impact of state-explosion in temporal logic

model checking (see [8], [10] and the references therein).

This method exploits the occurrence of replication in a

model. It has been applied mainly to models of concurrent

systems of processes, such as communication and memory

consistency protocols. Symmetry reduction gives the possi-

bility to verify a model over a reduced quotient model, which

is not only much smaller, but also bisimulation-equivalent to

the original.

In the continuous setting, symmetry reduction techniques

appear in different contexts. The collection of the planar

motions that keep a geometric figure invariant form a group,

called the symmetry group of the figure (rectangle, triangle,

circle). It gives a measure for the symmetry degree of the

figure, and it might help to reconstitute it from its parts. For

an algebraic equation, a symmetry group is composed by the

base space transformations that permute solutions. In the case

of ordinary differential equations (ODE), all the special tech-

niques for solving certain classes of ODE have their origin

in a general method related to the existence of a continuous

invariance group for these ODE. A unifying framework that

carries out the hybrid geometric reduction of deterministic

hybrid systems, generalizing classical reduction to a hybrid

setting has been developed in [1], [7]. In the stochastic

continuous case, symmetry features have been also employed

in different frameworks. The symmetries of the Laplacian on

the Euclidean space are of great help for studying properties

of the Brownian motion. The diffusion processes having the

maximal symmetry properties are characterised in [9].
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In this paper, we generalize the symmetry reduction tech-

niques as recently proposed for probabilistic model check-

ing, to continuous probabilistic systems (briefly presented

in Section IV). The main purpose of our investigations

is to apply these techniques to stochastic hybrid systems

[4]. For continuous time/space Markov processes, when we

generalise the symmetry reduction technique from [8], we

obtain nothing else, but the space reduction using invariance

transformation groups beautifully exposed by Dynkin, E.B in

[6], Ch. 10 (see content of Section V). The main difficulty

in applying such a technique to stochastic hybrid systems

is to find out the appropriate invariance transformations that

act uniformly on the domains of different discrete modes

(with corresponding diffusion processes and guards), and is

compatible with the jumping part. This jumping part is given

by the discrete transitions between modes and is governed

by some rates and reset maps. To overcome this problem, we

propose a novel approach for the symmetry reduction of the

state space of a Markov process considering transformation

groups that preserve ‘observations’ over the trajectories. We

provide a rigorous mathematical foundation for this reduction

technique and also prove that the reduced quotient model is

bisimulation-equivalent to the original model (Section VI).

Section VII is dedicated to applying these techniques to

stochastic hybrid systems.

II. PROBABILISTIC MODELS

A probabilistic model is a transition system with the

state space X , whose behaviour is specified not by a tran-

sition relation on X , but a transition function. The most

known probabilistic models are: discrete-time Markov chains

(DTMC), continuous-time Markov chains (CTMC).

A. Discrete/Continuous-time Markov chains

DTMCs are defined by a function P : X × X → [0, 1]
satisfying

∑
x′∈X P (x, x′) = 1 for each x ∈ X . This

function is known as the transition probability matrix, gives

the probability P (x, x′) of making a transition from each

state x to any other state x′. CTMCs are defined by a

transition rate matrix R : X × X → R+ giving the rate

R(x, x′) at which transitions between state pairs (x, x′)
occur. This rate is interpreted as the parameter of a negative

exponential distribution, resulting in a dense model of time.

A CTMC is defined on a denumerable state space X and

with the stochastic transition matrix P (t) = (pxy(t)), where

x and y range over X . Let us denote by Q = (qxy) the right-

hand derivative at t = 0 of P (t), i.e. the generator matrix of

the chain. The entries of the infinitesimal generator matrix Q
are the rates at which the process jumps from state to state.
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B. Continuous time/space Markov processes

The stochastic processes we consider here are randomized

systems with a continuous state space, where the “noise” can

be measured using transition probability measures. Markov

processes form a subclass of stochastic systems for which,

at any stage, future evolutions are conditioned only by the

present state.

State Space The state space is denoted by X . Suppose that

X is a Polish or analytic space1. We consider X equipped

with its Borel σ-algebra B (i.e. the σ-algebra generated by

all open sets). The set of all bounded measurable numerical

functions on X is denoted by B(X). This set can be thought

of as an additive monoid S = (B(X),+, 0) or a Banach

space with the norm given by the supremum.

Sample Probability Space A probability space (Ω,F , P ) is

fixed and all X−valued random variables are defined on

this probability space. The trajectories in the state space

are modelled by a family of random variables (xt) where t
denotes the time. The reasoning about state change is carried

out by a family of probabilities Px one for each state x ∈ X .

With any state x ∈ X we can associate a natural probability

space (Ω,F , Px) where Px is a probability measure such

that Px(xt ∈ A) is B-measurable in x ∈ X , for each t ∈
[0,∞) and A ∈ B, and its initial probability distribution is

Px(x0 = x) = 1. An extra point ∂ (the cemetery or deadlock

point) is added to X as an isolated point, X∂ = X ∪ {∂}.

Let B(X∂) be the Borel σ-algebra of X∂ . The ‘termination

time’ ζ(ω) is the random time when the process M escapes

to and is trapped at ∂.

Strong Markov Property Formally, let M =
(Ω,F ,Ft, xt, P, Px) be a strong Markov process with

the state space X , and with underlying probability space

(Ω,F , P ). Ft describes the history of the process up to

the time t (Ft is the σ-algebra generated by the random

variables xs, s ≤ t). Strong Markov property means that the

Markov property is still true w.r.t. the stopping times of the

process M .

Transition Function A transition function pt(x,Γ) is a tran-

sition probability function for a time homogeneous Markov

process if P{xt+s ∈ Γ|Ft} = ps(xt,Γ), for all s, t ≥ 0 and

Γ ∈ B(X).

Semigroup of operators The base of Markov process analysis

is given by the concept of operator semigroup: Ptf(x) =
Exf(xt), t ≥ 0. The right-hand derivative of Pt for t = 0 is

called the infinitesimal operator (or generator) of the process.

The infinitesimal generator of P = (Pt) is the possibly

unbounded linear operator A defined by: Lf =lim
tց0

Ptf−f
t

.

The domain D(L) is the subspace of B(X) for which this

limit exists. Under very broad assumptions, the infinitesimal

operator uniquely determines the transition function of the

process.

Shift Operator For each t ≥ 0 there exists a map θt : Ω → Ω

1A Polish space is a topological space, which is a homeomorphic image
of complete separable metric space. The continuous image of a Polish space
is called an analytic space.

called shift operator or simply shift such that

xs ◦ θt = xs+t, ∀s ≥ 0. (1)

C. Stochastic Hybrid Systems

We adopt the General Stochastic Hybrid System model

presented in [4]. This subsection describes the model and

establishes the notation.

Let Q be a set of discrete states. For each q ∈ Q, we

consider the Euclidean space Rd(q) with dimension d(q) and

we define an invariant as an open subset Xq of Rd(q). The

hybrid state space is the set X(Q, d,X ) =
⋃

i∈Q{i} × Xi

and x = (i, zi) ∈ X(Q, d,X ) is the hybrid state. The closure

of the hybrid state space will be X = X∪∂X, where ∂X =⋃
i∈Q{i} × ∂Xi.

A (General) Stochastic Hybrid System (SHS) is a collec-

tion H = ((Q, d,X ), (b, σ), Init, (λ, R)), where: (Q, d,X )
describes the hybrid state space; (b, σ) provides the coef-

ficients of the diffusion part; Init is the initial probability

measure defined on (X,B(X)); (λ, R) gives the jumping

mechanism: λ : X(Q, d,X ) → R+ is a transition rate

function; R : X × B(X) → [0, 1] is a stochastic kernel

that provides the post-jump location [4]. The realization

of an SHS is built as a Markov string obtained by the

concatenation of the paths of some diffusion processes (zi
t),

i ∈ Q together with a jumping mechanism given by a family

of stopping times (Si) [4]. The realization of any SHS, H ,

under standard assumptions (about the diffusion coefficients,

non-Zeno executions, transition measure) is a strong Markov

process M = (Ω,F ,Ft, xt, Px). The sample paths of M are

right continuous with left limit, i.e. cadlags.

III. STOCHASTIC REACHABILITY

Let us consider M = (Ω,F ,Ft, xt, Px) a (strong right)

Markov process, the realization of an SHS. The stochastic

reachability problem is defined as follows. Given a target

set, the objective of the reachability problem is to compute

the probability that the system trajectories from an arbitrary

initial state will reach the target set. Formally, given a set A ∈
B(X) and a time horizon T > 0, let us define: ReachT (A) =
{ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ A}, Reach∞(A) = {ω ∈
Ω | ∃t ≥ 0 : xt(ω) ∈ A}.
These two sets are the sets of trajectories of M , which

reach the set A (the flow that enters A) in the interval of

time [0, T ] or [0,∞). The reachability problem consists of

determining the probabilities of such sets. The probabilities

of reach events are

P (TA < T ) or P (TA < ζ) (2)

where ζ is the life time of M and TA is the first hitting time

of A
TA = inf{t > 0|xt ∈ A} (3)

and P is a probability on the measurable space (Ω,F) of the

elementary events associated to M . P can be chosen to be Px

(if we want to consider the trajectories that start in x). Denote

by PA the hitting operator associated to the underlying

Markov process (xt), i.e. PAv = Ex{v ◦ xTA
|TA < ζ} and
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TA is given by (3). We have Px[Reach∞(A)] = PA1(x) =
Px[TA < ζ].

IV. SYMMETRY REDUCTION: DISCRETE SETTING

In this section, we briefly present the mathematical appa-

ratus of symmetry reduction for discrete probabilistic models

as it was developed in the literature [8].

A. Deterministic case

Let M = (X,R) be a transition system with X a

finite/countable set of states and a transition relation R ⊆
X ×X . A bijective map (permutation) π : X → X is called

an automorphism when it preserves the transition relation

R, i.e. (x, x′) ∈ R ⇒ (π(x), π(x′)) ∈ R. A group G of

such automorphisms generates an equivalence relation ǫ on

the space X (defined by (x, x′) ∈ ǫ if there is permutation

in G mapping x to x′, i.e. if x and x′ are symmetric).

ǫ is called the orbit relation, and its equivalence classes

are called orbits. Let X be the set containing a unique

representative state for each equivalence class, we can define

a function rep : X → X that selects the corresponding

unique representative rep(x) ∈ X , for each state x ∈ X
and uses this to define a new transition relation R =
{(rep(x), rep(x′))|(x, x′) ∈ R}. Since all permutations in

G preserve the transition relation R, the quotient transition

system (X,R) is bisimilar to the original transition system

(X,R).

B. Probabilistic Case

For DTMC, CTMC, the concept of symmetry can be

formulated in an analogous way to the non-probabilistic

case. Consider permutations of the state space π : X → X
that preserve the transition function. For DTMC, we require

that P (π(x), π(x′)) = P (x, x′), ∀x, x′ ∈ X . Similarly, for

CTMC, we need R(π(x), π(x′)) = R(x, x′), ∀x, x′ ∈ X .

Consider a group G of such permutations on X and the

corresponding orbit relation ǫ. Using the equivalence w.r.t.

ǫ, we define a reduced state space X containing a unique

representative for each orbit and a function rep : X →
X , which computes the representative for each state. The

construction of the quotient model can be done as follows.

For a DTMC (X, P ) we build the quotient DTMC (X,P ),
where for each pair of states x, x′ ∈ X: P (x, x′) =∑

{x′∈X|rep(x′)=x′} P (x, x′). For a CTMC (X, R), the quo-

tient model is (X,R), where for x, x′ ∈ X: R(x, x′) =∑
{x′∈X|rep(x′)=x′} R(x, x′).
In the case of DTMCs and CTMCs, the automorphisms

used in symmetry reduction of the state space are invariance

automophisms, i.e. they preserve the transition probabilities.

Applying such automorphims to a chain, the new chain has

the same law as the initial one.

V. SYMMETRY REDUCTION VIA THE INVARIANCE

GROUP: CONTINUOUS SETTING

Note that in [8], for the Markov chains, the automorphisms

defined in [8] preserve the transition system structure. For the

case of continuous-time continuous space Markov processes,

this system structure is no longer available (the concept of

next state is available only for Markov chains). Then the

concept of invariance automorphism should be different: It

has to preserve the probabilistic dynamics of the system.

Formally, consider a Markov process as a family {xx
t |x ∈

X} of processes, where xx
t is the process starting at x. If

π : X → X is a homeomorphism, then π(xt) is also a

Markov process. The transformation π is called invariance

automorphism of xt if the process π(xx
t ) is identical in law

with x
π(x)
t .

A. Invariance

Consider a continuous Markov process defined as in

Subsection II-B. Suppose that π is a measurable one to one

transformation of the state space (X,B). Then we can iden-

tify the Wiener probabilities P̃x = Pπ−1(x) on F . The trans-

formed process is of the form M̃ = (πxt, ζ,Ft, Pπ−1(x)).
Its transition function is defined by the formula p̃t(x, Γ) =
pt(π

−1(x), π−1Γ). We say that a Markov process M is

invariant w.r.t. a transformation π, if the following conditions

are satisfied: (i) For each ω ∈ Ω, there exists ω′ ∈ Ω such

that πxt(ω) = xt(ω
′) for all 0 ≤ t < ζ(ω) = ζ(ω′). (ii) For

all t > 0, x ∈ X , Γ ∈ B pt(x, Γ) = pt(π
−1(x), π−1Γ). If a

Markov process M is invariant w.r.t. π, then the transformed

process M̃ is equivalent to M [6]. If B is a set of trajectories,

we can define the shift θπB (w.r.t. π) as follows. Put

ω ∈ θπB, if ω′ can be found such that (i) holds. Then

θπ{xt ∈ Γ} = {πxt ∈ Γ} = {xt ∈ π−1Γ}, for any t ≥ 0,

Γ ⊆ X .

Theorem 1 (Invariance of the Wiener Probabilities):

[6] Let M be a Markov process on the state space

(X,B) invariant w.r.t. a transformation π. Then

Pπ−1x(θπA) = Px(A), for each A ∈ F and x ∈ X .

The transformation π that appears in the definition of

invariance can be called invariance automorphism of M .

This preserves the transition probabilities and transforms a

trajectory of M into another one.

B. Symmetry reduction

Let M be a Markov process on the state space (X,B)
and let G(X) be a group of invariance automorphims of

M . Suppose that the group G preserves the measurable sets.

This group generates an equivalence relation ǫ on the space

X , defined by (x, x′) ∈ ǫ if there exists an automorphism

in G mapping x to x′. The subsets {Gx}x∈X are called

orbits of the group G. Denote by X̃ := X/G the set of

all orbits of the group G. Denote by γ the projection map

from X to X̃ defined by γx := {Gx}. Let B̃ := γB. then γ
is a measurable transformation of (X,B) into (X̃, B̃). The

invariance of M w.r.t. to the automorphims of G enables

us to construct a Markov process on the state space (X̃, B̃)
from the Markov process M , using the transformation γ [6].

Denote by M/G this new Markov process. M/G is obtained

from M by symmetry reduction of the state space w.r.t. the

group G.

We can define a reduced state space or a fundamental

domain for the group G as follows. A set X ⊂ X is a
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reduced state space for G if one and only one point belonging

to X can be found in each orbit {Gx}. Then associating the

class {Gx} with this point we obtain a one to one mapping

β : X̃ → X . Naturally, we can then define rep : X → X;

rep := β ◦γ. Assume that X ∈ B and set B := B(X). Then

βB̃ = B and β−1B = B̃. This says that it is possible to

identify the space (X̃, B̃) with the space (X,B) and consider

the process M/G to be given on (X,B). The Markov process

M under Px is equivalent with the Markov process M/G
under P rep(x).

VI. SYMMETRY REDUCTION VIA SYMMETRY GROUPS:

CONTINUOUS SETTING

When we are considering complex Markov processes

as those that appear as semantics of SHS, the symmetry

reduction described in the Section V might be difficult to

apply. We need to find an appropriate transformation group

G whose elements are also automorphisms for the diffusion

components. As well, we need to check properties like the

invariance of the transition rate λ or of the stochastic kernel

R (that appear in the definition of SHS) w.r.t. the elements

of G. This might be a difficult task considering the structure

of the SHS executions. In order to have two “symmetric”

trajectories, we need some symmetry also for their diffusion

parts. But if we start in a mode with two symmetric diffusion

paths, after the first jump we may get some asymmetric paths

in another mode or in two different modes.

Our novelty is to replace invariance groups by transforma-

tion groups for which we have the symmetry properties of

some observation functions. These are symmetry groups and

their elements are called symmetry automorphims. Formally,

consider a Markov process {xx
t |x ∈ X}. A homeomorphism

π : X → X is called symmetry automorphism of xt if the

process π(xx
t ) is identical in law with x

π(x)
t after a time

change.

The line of this section can be described as follows.

We present first the concept of time change for Markov

processes. Then we define formally the observation functions

as expectations of some random variables over the paths (that

provide “observations” about the trajectories). The next step

is to define the observation automorphisms as permutations

of the state space that preserve the observation functions. The

group of such automorphisms is used thereafter to “reduce

the state space” considering the quotient space w.r.t. the

equivalence relation induced by this group. At the end, we

show that this symmetry reduction of state space preserves

the reach set probabilities.

A. Time change

Let us recall briefly the definition of time changes for Markov

processes [11]. A real valued process At is called an additive

functional of (xt) if it is adapted to the natural filtration of

(xt) and satisfies A0 = 0 and At+s = At +As ◦θt, where θt

is the shift operator defined by (1). Suppose that an additive

functional has continuous strictly continuous paths. Let τ t be

the inverse of At considered as a function of t. τ t is called

a time-change process of (xt). The process (xτt
) (which is

also a Markov process) has the same physical paths as (xt),
but runs according to a different clock.

Let a(x) a positive continuous function on X bounded

away from 0. Then At =
∫ t

0
a(xs)ds is an additive functional

and a is called the density of At. If τ t is the inverse of At,

then the time-changed process (xτt
) is said to be obtained

from (xt) by the time change with density a. In this case,

the generator of the time-changed process is given by (see

[11], p.278): L̃f(x) = a(x)−1Lf(x); f ∈ D(L).
Two processes that differ by a time change have the

same hitting distribution, by the Blumenthal-Getoor-McKean

Theorem (Ch. 5 of [3]). Then, two such processes have the

same reach set probabilities, so they are “bisimilar”.

B. Observability over the paths

We suppose that the trajectories x : [0,∞) → X of M
are cadlags. We consider Ω = DX [0,∞), the set of all these

paths (i.e. the space of all cadlag functions from [0,∞) to

X). In the following, we define a special class of functions

called observation functions for the Markov process M.
These functions play the role of some logic formulas over the

trajectories. First we define the observation random variables.

Taking the expectations of such random variables represents

a technique to generate observation functions. This technique

provides also intuitions about the meaning of these functions.

A nonnegative function η : Ω → R+ is said to be an

observation random variable for the process M , if: (i) the

function η is measurable; (ii) the value of η on the shifted

trajectory is less than the value of η on the whole trajectory,

i.e. η(θtω) ≤ η(ω) for all 0 ≤ t < ζ(ω); (iii) the function

η(θtω) is right-continuous in t ∈ [0, ζ(ω)) for all ω. In the

language of [6], the observation random variables are called

excessive random variables. Let η be an excessive random

variable, satisfying the additional requirement: 0 < Exη <
∞, for all x ∈ X .

Proposition 2: Let M be a strong Markov process. If η is

an observation random variable, then f(x) = Exη satisfies

the following conditions: (a) Exf(xτ ) ≤ f(x), for all x ∈ X
and for any stopping time τ ; (b) limn→∞ Exf(xτn

) = f(x),
for any x ∈ X and any sequence of stopping times τn such

that Px(τn ց 0) = 1.

If h is an arbitrary non-negative B-measurable function then

η =
∫ ζ

0
h(xt)dt,where ζ is the life time of M , is an

observation random variable.

The set of non-negative measurable functions f that satisfy

the conditions (a) and (b) from the Prop. 2 may be larger than

the set of such functions provided by observation random

variables. For instance, these properties remain true for limits

of such function

A non-negative measurable function f : X → [0,∞]
is called observation function for the process M if the

conditions (a) and (b) from the Prop. 2 are fulfilled.

Theorem 3: A non-negative measurable function f : X →
[0,∞] is an observation function for a strong Markov process

M iff the following conditions w.r.t. the operator semigroup

P are satisfied: (i) Ptf(x) ≤ f(x) for all t ≥ 0, x ∈ X; (ii)

Ptf(x) → f(x) as t ց 0, for every x ∈ X .
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Th.3 shows that our observation functions are exactly

0-excessive functions defined in the context of Markov

processes. Let us denote by Ob(M) the set of observation

(or 0-excessive) functions associated to M . Recall that a

function f is called α−excessive (α ≥ 0) w.r.t. the semigroup

(Pt) if it is measurable, non-negative and e−αtPtf ≤ f , for

all t ≥ 0 and e−αtPtf ր f as t ց 0. Let Eα
M be the

set of all excessive functions associated to M . According

to the Blumenthal-Getoor-McKean theorem [3], the cone

of excessive functions determines the process up to a time

change. We assume also that M is transient [3]. This

hypothesis guarantees that the cone Ob(M) is rich enough

to be used.

C. Symmetry Group

Let us consider a transient Markov process M with the

state space (X,B) (M as the realization of an SHS, H). Let

S(X) be the group of all homeomorphisms ϕ : X → X , i.e.

all bijective maps ϕ such that ϕ, ϕ−1 are B(X)-measurable.

When X is finite, S(X) is the set of (finite) symmetries of

X . Any symmetry2 of X induces a symmetry of B(X) as

follows. Let ∗ : S(X) → Perm[B(X)] be the action S(X)
to B(X) defined by ∗(ϕ) = ϕ∗ : B(X) → B(X), where

ϕ∗ is the linear operator on B(X) given by ϕ∗f = f ◦ ϕ.

The range of ‘∗’ is enclosed in Perm[B(X)] (the symmetry

group of B(X)). Then, ϕ∗ can be thought of as a symmetry

of B(X) for each ϕ.

Clearly Ob(M) ⊂ B(X). We can not define the action

‘∗’ of S(X) to Ob(M) because ∗(Ob(M))  Ob(M).
It is then necessary to consider those subgroups of S(X)
such that we can define the action of these subgroups on

the semigroup Ob(M). Consider the maximal subgroup of

symmetries of the state space X , denoted by H, such that the

action of H to Ob(M) denoted also by ‘∗’ can be defined:

∗ : H → Perm[Ob(M)]. We have the invariance of the

observations w.r.t. the elements of H. These observations

could be interpreted as well as some stochastic specifications

of the system. H is not necessary to be taken as the maximal

subgroup of symmetries with this property. Naturally, the

elements of H will be called observation automorphisms of

M .

Using H, an equivalence relation O ⊂ X × X , called

observation relation, can be defined on the state space X as

follows: Two states x, y are in the same orbit, written xOy, if

and only if there exists an observation automorphism ϕ ∈ H
such that ϕ(x) = y. Let us denote by [x] the equivalence

class containing the point x in X . The equivalent classes

of O are called orbits. It is clear that an orbit [x] can be

described as [x] = {ϕ(x)|ϕ ∈ H} = {Hx}. Let X/O
denote the set of orbits, and let ΠO the canonical projection

ΠO : X → X/O, ΠO(x) = [x]. The space X/O will

be equipped with the quotient topology by declaring a set

A ⊂ X/O to be open if and only if Π−1
O (A) is open in X .

ΠO is a continuous map w.r.t. the initial topology of X and

the quotient topology of X/O.

2Here, permutation is used with the sense of one-to-one correspondence
or bijection.

D. Symmetry Reduction

In this subsection, we show that the observation auto-

morphisms are, in fact, symmetry automorphims, so they

preserve the hitting distributions. Consequently, the reach

set probabilities (2) are preserved through the observation

automorphisms. Moreover, since the reach set probabilities

are preserved, the observation relation O is nothing else, but

a bisimulation relation on the state space.

Proposition 4: Let g : X/O → R be a B(X/O)-
measurable and let E = Π−1

O (A) for some A ∈ B(X/O).
Then the following equality holds

PE = ϕ∗ ◦ PA,∀ϕ ∈ H (4)

applied to all functions f : X → R, f = g ◦ ΠO.

Corollary 5: Any observation automorphism ϕ ∈ H for

M is a symmetry automorphism, i.e. M and ϕ(M) differ by

a time change, then they have the same hitting distributions.

Formula (4) shows that the function PEf (where f =
g ◦ΠO) is constant on the orbits of O. Then it makes sense

to define a collection of operators (QA) on (X/O,B(X/O))
by setting QAg([x]) = PE(g ◦ΠO)(x), where E = Π−1

O (A)
(Prop.4 allows to use any representative x of [x] in the right

side of this equality). It is easy to check that QAQB = QB

if A and B are open sets of X/O with B ⊂ A. Under

some supplementary hypotheses one can construct a Markov

process M/O = ([x]t, Q[x]) with these hitting operators [3].

M/O is obtained from M by symmetry reduction of the state

space w.r.t. the group H and the set of observations Ob(M).

E. Stochastic Bisimulation

For a continuous time continuous space Markov process

M with the state space X , an equivalence relation R on X is

called (strong) bisimulation if for xRy we have pt(x, A) =
pt(y, A),∀t > 0,∀A ∈ B(X/R), where pt(x,A), x ∈ X are

the transition probabilities of M and B(X/R) represent the

σ-algebra of measurable sets closed w.r.t. R. This variant

of strong bisimulation considers two states to be equivalent

if their ‘cumulative’ probability to ‘jump’ to any set of

equivalent classes (that this relation induces) is the same.

This is hard to be checked in practice since the time t runs

continuously. Then a robust bisimulation relation on X must

be defined as a relation that preserves only the measures of

interest for the Markov process M .

In the following we briefly present a more robust concept

of bisimulation defined in [5]. Suppose we have given a

Markov process M on the state space X , w.r.t. a probability

space (Ω,F ,P). Assume that R ⊂ X ×X is an equivalence

relation such that the quotient process M |R is still a Markov

process with the state space X/R, w.r.t. a probability space

(Ω,F ,Q). A relation R is called behavioral bisimulation

on X if for any A ∈ B(X/R) we have that P[TE <
∞] = Q[TA < ∞], where E = Π−1

R (A) (i.e. the reach

set probabilities of the process M and M |R are equal).

Theorem 6: The observation relation O is a bisimulation

relation on (X,B) for the Markov process M .
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Th. 6 is a simple consequence of the Prop. 4, but its statement

is very important in the context of stochastic reachability. It

states that the symmetry reduction of the state space defined

via observation automorphisms represents a sound approach

that can be used further in stochastic model checking.

VII. TOWARDS SYMMETRY REDUCTION FOR SHS

In this section, we discuss how the symmetry reduction

techniques described in Sections V and VI can be further

adapted in the framework of stochastic hybrid systems.

We have already pointed out that the fact that symmetry

reduction via invariance groups is not a realistic choice for

SHS due to the jumping mechanism between the discrete

locations. One way to deal with this method is to apply

symmetry reduction locally in each mode for the corre-

sponding diffusion process and then to find the appropriate

composition mechanism for these local abstractions, in order

to obtain the global abstraction of the given SHS.

The second symmetry reduction technique (via a group of

observation automorphisms, Section VI) might be a valuable

method to reduce the state space of a stochastic hybrid

system. The efficiency of this method depends pretty much

on our ability to choose the generators of the semigroup of

observation functions. Considering the connection between

the semigroup of operators and the infinitesimal generator of

a Markov process based on the Th.3, one can easily obtain

characterizations of the observation functions in terms of the

generator.

The infinitesimal generator of the realization of an SHS

H is an integro-differential operator. The extended generator

of an SHS has the following expression:

Lf(x) = Lcontf(x) + Ldisf(x) (5)

where Lcontf(x) has the standard form of the diffusion

infinitesimal operator and Ldisf(x) = λ(x)
∫

X
(f(y) −

f(x))R(x, dy) (typical generator of a jump process). The

domain D(L) contains at least the set of second order

differentiable functions that satisfy the following boundary

condition: f(x) =
∫

X
f(y)R(x, dy), x ∈ ∂X . For any

ϕ ∈ S(X) (where S(X) is defined as in Subsection VI-

C), the generator of ϕ(M) is given by Lϕf = ϕ∗[L(ϕ∗f)],
where ϕ∗f := f ◦ ϕ−1. Then we can define the invariance

group Inv(L) := {ϕ ∈ S(X)|Lϕ = L}. Analogously,

the symmetry group can be defined taking into account

the results from Subsection VI-A as follows: Sym(L) :=
{ϕ ∈ S(X)|∃β ∈ C0(X), β > 0,Lϕ = βL}. Clearly,

Inv(L) ⊂ Sym(L). To apply symmetry reduction to SHS,

we need the assumption that there is a group of symmetries

acting uniformly on the diffusion processes of different

discrete modes, and the transition rate λ and the stochastic

kernel R are ‘invariant’ w.r.t. these symmetries. Finding

appropriate symmetry automorphisms for SHS might be a

difficult and challenging task. In the first step, considering the

expression of the SHS generator (5), it is clear that we need

to consider symmetry groups for the continuous dynamics

of an SHS. Characterizations of the invariance group and

symmetry group for diffusion processes can be given using

the isometry group (that consists of transformations which

leave the metric invariant) and the conformal group (that

consists of transformations which do not change the angles)

[9]. In the second step, consider ϕ a symmetry/invariant

automorphism for the diffusion part and observe that

Lϕ
disf(x) = λ(ϕ−1(x)){

∫
X

f(ϕ(y))R(ϕ−1(x), dy) −
f(x)}.

Proposition 7: ϕ is an invariant automorphism for the

whole process MH (realization of H) iff ϕ∗λ =
λ,

∫
X

f(ϕ(y))R(ϕ−1(x) =
∫

X
f(y)R(x, dy), f ∈ D(L)

A similar condition can be written for a symmetry auto-

morphism. In a upcoming paper, we will investigate further

these conditions in order to find necessary conditions for

a transformation group to be an appropriate subgroup of

Inv(L) or Sym(L), where L is the infinitesimal generator

of an SHS.

VIII. CONCLUSIONS

Modelling with SHS is very fashionable in engineering

because of the versatile randomisation techniques it offers.

However, this paradigm is less popular in computer science

due to the inherent complexity of the formal verification of

safety properties. In this work, we address the verification

issue by investigating how probabilistic model checking

techniques from computer science can be extending for SHS.

We have mainly presented two techniques for symmetry

reduction of the state space for continuous probabilistic

systems. Both of them are based on the same methodology

to obtain the reduced state space: choose an appropriate

group of permutations of the state space (the invariant group

and the symmetry group) and then construct the quotient

space w.r.t. this group. We have also proved that the reduced

quotient model is bisimulation-equivalent to the original

model. Finally, both techniques are discussed for stochastic

hybrid systems.
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