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Abstract— Although higher-order statistics of neuronal firing
have been characterized in neuroscience, many analyses ignore
the nonstationarity of the background firing rate. We discuss
how to measure the irregularity of interspike intervals in a rate-
independent manner. Under the framework of semiparametric
statistical models, we develop an estimator of firing irregularity
which remains after the effects of rate modulations are removed.
We found that firing irregularity is robust and reproducible in
neurons in olfactory cortex irrespective of the rate modulation
during the task period. As the level of irregularity varies among
neurons, we classified neurons in olfactory cortex by using the

proposed measure as a feature.

I. INTRODUCTION

The discharge patterns in nervous systems can be highly

irregular [1], [2], [3]. The irregular firing have been observed

in cortical neurons of behaving monkeys [4], [5], [6], which

triggered the debates for possible neural codes [7], [8], [9],

[10] and utility of noise [11], [12]. Furthermore, because

firing irregularity of individual neurons likely reflects, at

least in part, both its intrinsic biophysical properties and

statistics of input patters, attempts have been made to use

spike irregularity as a measure to classify neuron types [3],

[13], [14].

In many studies [15], [16], [17], the irregularity of the

firing pattern was characterized by the coefficient of variation

of interspike intervals, CV , which is defined as the standard

deviation divided by the mean of interspike intervals [18],

[19], [20]. CV becomes 0 for completely regular spike trains

and 1 for completely random spike trains generated by a

(stationary) Poisson process. It was shown that it can be

as large as 1 for in vivo neurons in the thalamus [21], [22],

[23], [24] and cortex [25], [5], [6], indicating that their firings

are highly irregular. The underlying mechanisms generating

highly irregular spike trains were pursued by mathematical

modeling of a single neuron [26], [27], [28], [29], [30] and

a network [31], [32], [33], [34], [35].

However, CV gives proper estimate only when the firing

rate is constant [36], [37], [38]. In real situations where

the firing rate changes over time, CV is always biased or

overestimated [39], [40], [41], [42] (Fig. 1 and the text for

future explanations). Thus, the conventional measure CV has

a limitation in applying to a real neuronal data in which firing

rates are expected to be modulated by various internal and

external factors.
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We have previously proposed a new measure which is

sensitive only to the irregularity of local interspike intervals,

but not to the rate modulation [43], [44], [45]. The measure

was derived based on the parameter estimation of a prob-

abilistic model of spike generation, where the two factors,

firing rates and irregularities, were orthogonalized [46]. This

measure purely characterizes the irregularity of a single spike

sequence which remains after the firing rate is detrended.

In this paper, we briefly review the derivation of the

measure of spiking irregularity and show its application

to the neural spiking activities recorded from rat olfactory

cortex. First, we introduce a rate-modulated gamma process

as a statistical model of spike generation and show how to

estimate the parameter for spiking irregularity independently

of the firing rate change. We show this estimator is robust

against the firing rate change and, therefore, suitable as

a measure of spiking irregularity. Next, we compute this

measure for the spike trains recorded from olfactory cortical

neurons. We found that the spiking irregularity is constant

and not affected by tasks whereas the firing rate and the

coefficient of variation CV change largely during tasks. We

classified the recorded neurons into three groups using the

spiking irregularity in clustering analysis in addition to more

commonly used parameters, the spike width and baseline

firing rate. This application demonstrates the usefulness of

the proposed measure taking advantage of its uniqueness.

II. SEMIPARAMETRIC MODELS AND

PARAMETER ESTIMATION

A. Gamma distributions

Here we summarize the basic properties of the gamma

distribution, which we will use as a part of our model.

We model firing of a neuron as a renewal process using

a gamma distribution [47], which has been shown to fit the

interspike interval distribution of neuronal activity fairly well

[45], [48], [49], [50], [51], [52], [53], [54].

A probability density function q of interspike intervals of

a spike train can be modeled using the following gamma

distribution:

q(T ; ξ, κ) =
(ξκ)κ

Γ(κ)
T κ−1e−ξκT , (1)

where the random variable T denotes an interspike interval.

The mean and variance of the interspike intervals are

Ex(T ) =
1

ξ
and

Var(T ) =
1

ξ2κ
. (2)
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ξ is the mean firing rate and κ is called a shape parameter.

When κ = 1, the distribution becomes the exponential dis-

tribution that is equivalent to the Poisson process where the

spike train is completely irregular. When κ is large, a gamma

distribution can be approximated by a normal distribution,

whose variance decreases with increasing κ. In the limit of

large κ, the interspike intervals become completely regular.

Thus, κ is related to spiking irregularities. An important

feature of the gamma distribution is that ξ always appears

as ξT in q(T ; ξ, κ) and, therefore, changing ξ just stretches

the distribution along T .

The parameters can be estimated by using the

maximum likelihood method [55] as follows. Let

{T (1), T (2), . . . , T (N)} be N observed interspike intervals.

The likelihood that T (l)’s are generated from the gamma

distribution with {ξ, κ} is given by

L =

N
∏

l=1

q(T (l); ξ, κ). (3)

In maximum likelihood estimation, the parameter values

that maximize the likelihood are chosen. Without loss of

generality, you can consider the maximization of the log-

likelihood,

log L =
N

∑

l=1

log q(T (l); ξ, κ). (4)

The estimated parameters must satisfy

∂

∂ξ
log L =

N
∑

l=1

∂ log q(T (l); ξ, κ)

∂ξ
= 0 and (5)

∂

∂κ
log L =

N
∑

l=1

∂ log q(T (l) : ξ, κ)

∂κ
= 0 (6)

where

∂ log q(T ; ξ, κ)

∂ξ
and (7)

∂ log q(T ; ξ, κ)

∂κ
(8)

are called score functions. Then, the parameters are estimated

by solving the following equations,

ξ̂T − 1 = 0 and (9)

log(κ̂) − φ(κ̂) − log(T ) + log T = 0, (10)

where the digamma function φ(κ) is defined using the

gamma function Γ(κ) as

φ(κ) =
Γ′(κ)

Γ(κ)
. (11)

Note that in the maximum likelihood estimation, the parame-

ters are estimated by setting the sample averages of the score

functions to be zero as in (5) and (6). This always works if

the number of parameters is finite [55], [56].
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Fig. 1. An illustration of rate-modulated gamma processes. The mean
interspike interval changes among 30ms, 60ms, and 90ms. CV is 0.5 for
each gamma distribution, whereas it is 0.87 for the total distribution which is
obtained by equally mixing three gamma distributions. Note that the heights
of the three gamma distributions are reduced to 1/3.

B. The model

First, using an example, we illustrate how modulations in

firing rates ξ result in overestimation of firing irregularity

measured using CV . Fig. 1 shows an example where κ is

fixed to be 2 whereas the mean interspike interval increases

from 30ms to 90ms. Let us assume that the first 10 interspike

intervals have the mean value of 30ms, the second 10 have

the mean of 60ms, and the last 10 have the mean of 90ms.

Note that CV for the total interspike interval distribution,

which is represented by the thick line, is 0.87, which is

surprisingly larger than the true value 0.5 for each gamma

distribution. In this paper, we attempt to estimate κ which

we assume to be constant regardless of the firing rate change,

because the estimations of the firing rate profile and κ

rather than CV give the complete information of the spiking

mechanism.

We assume that ξ for each interspike interval T is

distributed according to a probability density k(ξ), whose

functional form is unknown. That is, the mean firing rate ξ

at each time is generated randomly according to an unknown

probability density k(ξ). We consider the case where two

observations of T are given for each ξ. That is, we assume

that two consecutive interspike intervals in a spike train have

the same firing rate. If there is only an interspike interval for

a given ξ, it is impossible to estimate both ξ and κ from the

single observation. Therefore two or more observations are

required for each firing rate ξ. Here we minimally assume

that two observations share a common firing rate ξ. Thus

the rate correlation longer than two interspike intervals is re-

garded as the rate modulation whereas the difference between

consecutive interspike intervals is regarded as irregularity.

Let {T1, T2} be the two observations that are generated

from the same firing rate ξ. The probability can be written

as

p({T }; κ, k(ξ)) =

∫

q(T1; ξ, κ)q(T2; ξ, κ)k(ξ)dξ. (12)

This distribution may look peculiar at first glance as it

includes an integral. However, it can be understood as

follows. The probability that an interspike interval coin-
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cides with T under the firing rate ξ is the product of

the probability that ξ is generated and the probabilities

that T1 and T2 are generated with that ξ. The product

becomes q(T1; ξ, κ)q(T2; ξ, κ)k(ξ). Because the same T can

be generated from a different ξ, ξ must be integrated to sum

up all the probabilities. As this model is a mixture model

weighted by k(ξ), it can represent varieties of interspike

interval distributions by changing the weight function. Note

that this type of model is called a semiparametric model [56],

[57], because it has both a scalar κ and a function k(ξ) as

parameters.

C. Estimation of spiking irregularity κ

Previously we showed that the maximum likelihood

method works if the number of parameters is finite. However,

a semiparametric model has infinite degrees of freedom be-

cause it has a function as an unknown parameter. Therefore,

the maximum likelihood method does not work for our model

[56], [43], [44].

Then, our strategy is that we estimate κ without estimating

k(ξ). It is known that only a part of parameters can be

estimated optimally by modifying the score functions so that

they are orthogonal to each other [57]. After the projection,

the parameter can be estimated by setting the sample average

of the modified score function to be zero as in the maximum

likelihood estimation in (5) and (6).

For purposes of illustration, let us consider the fixed-rate

gamma distribution defined in (1) as a simpler example. Here

two score functions are already orthogonal to each other as

the inner product of the two score functions are zero:
∫

q(T ; ξ, κ)
∂ log q(T ; ξ, κ)

∂ξ

∂ log q(T ; ξ, κ)

∂κ
dT = 0, (13)

where the inner product is defined in the function space with

the probability distribution q(T ; ξ, κ) as a weight function.

Fortunately, the estimating function in (9), which was derived

from (5) by using the ξ-score function (7), does not depend

on κ. Therefore, you can estimate ξ without estimating κ

whatever the true parameters are, although you can also

estimate κ with only a slight effort for this example having

finite parameters. In general, the score functions can depend

on all parameters and the combination of the equations such

as (5) and (6) must be solved at once.

Here we only show the result. For our semiparametric

model, the projected score function is obtained by subtracting

the conditional expectation [43], [44], [58] as

∂ log p(T ; κ, k(ξ))

∂κ
− E

[

∂ log p(T ; κ, k(ξ))

∂κ

∣

∣

∣

∣

T1 + T2

]

= log

(

T1T2

(T1 + T2)2

)

+ 2φ(2κ) − 2φ(κ), (14)

where the digamma function φ(κ) is defined in (11).

κ can be estimated from N independent sets of observa-

tions, {T (l)} = {T
(l)
1 , T

(l)
2 }, l = 1, . . . , N, as the value of κ

that solves

N
∑

l=1

log

(

T
(l)
1 T

(l)
2

(T
(l)
1 + T

(l)
2 )2

)

+ 2φ(2κ̂) − 2φ(κ̂) = 0. (15)

Fortunately, this estimator does not depend on k(ξ) at all.

Thus you can estimate κ without estimating k(ξ). In addition,

this estimator is optimal because any estimator of κ has larger

mean-square estimation error.

Although we skipped the detailed calculation in the deriva-

tion in (14), it is easy to show why it works. If there are

many observations, the sample average in (15) approximates

the expectation for the true distribution p(T1, T2; κ, k(ξ)).
Because you can easily check
∫

∞

0

p(T1, T2)

[

log

(

T1T2

(T1 + T2)2

)

+2φ(2κ)−2φ(κ)

]

dT = 0,

(16)

independently of k(ξ), the estimated κ̂ in (15) must be close

to the true value κ.

The estimator works because the firing rate ξ only

stretches the distribution (T → ξT ) and it is cancelled out

inside the logarithm. On the other hand, the coefficient of

variation,

CV ≡

√

(T − T )2

T
, (17)

measures the variance around the global mean and cannot

cancel out the local firing rate change.

D. Measure of spiking irregularity

We proposed a practical measure of spiking irregularity

based on the estimator [44],

SI ≡ −
1

N − 1

N−1
∑

i=1

1

2
log

(

4TiTi+1

(Ti + Ti+1)2

)

, (18)

where Ti denotes the ith interspike interval and

{T1, T2, ..., TN} form a single spike train.

SI becomes 1 − log 2 = 0.307 for a completely random

spike train generated by a (stationary) Poisson process where

κ = 1. It becomes zero for a completely regular or periodic

spike train where κ = ∞.

If the value of κ is needed, it can be obtained by solving

the following equation for κ̂ numerically,

SI + log 2 − φ(2κ̂) + φ(κ̂) = 0. (19)

Note that φ(2κ)−φ(κ) is monotonic and, therefore, the cor-

respondence between κ̂ and SI is one-to-one. This estimator

works fairly well if the firing rate changes continuously and

slowly [44].

III. RECORDINGS OF NEURAL SPIKING ACTIVITY

Here we summarize the experimental methods.

Behavioral training and testing were conducted as de-

scribed in [59], [60]. Rats were trained and tested on an

odor-cued two alternative choice discrimination task. A rat

initiates a trial by entering the central odor-sampling port,

which triggers the delivery of one of two odors. Each odor

signals that water is available in one of the two goal ports.

The rat responds by moving to one of them. A water reward

is delivered for correct choices, whereas error trials are not

rewarded, and no other feedback is provided.
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Fig. 2. Firing Rates outside and during task periods. The firing rate changes
during task periods.
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Fig. 3. Coefficient of variation CV outside and during task periods. CV

tends to be large outside the task periods where the firing rates are not
necessarily stationary. The correlation coefficient is 0.35.

Following training, rats were implanted with a custom-

made chronic electrode drive consisting of six independently

adjustable tetrodes in olfactory cortex (anterior piriform

cortex, [61], [62]). Tetrode implantations and recordings

were conducted as described in [63], [60]. Cells were isolated

offline using manual clustering methods. Only units with

good isolation and recording stability across the session were

included in the analysis. All data analysis was performed

using MATLAB (MathWorks, Natick, MA).

IV. RESULTS

Here we compare the stability of CV and κ applied to

real neuronal data. Firing rates, coefficients of variations CV ,

Fano factors, and spiking irregularities κ were calculated

for each neuron. The firing rates were calculated for two

different periods: the period inside the tasks where the rats

are in the presence of odor stimuli and the period outside the

tasks. A firing rate was calculated for a neuron by averaging

all trials. Each point in Fig. 2 corresponds to a neuron. The

figure shows that the firing rate tended to be larger during

the task. Next, the conventional measure of variability, the

coefficient of variation CV was calculated (Fig. 3). CV ’s

(17) were calculated by collecting the interspike intervals

inside or outside the task period across trials. The figure

shows that CV s outside the task periods are larger than those

inside resulting in poor stability of this measure between

inside and outside the task (correlation coefficient: 0.35).
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Fig. 4. Fano factor outside and during task periods. Fano factor is the
variance over mean of the spike count. The window length for spike counts
is 500ms. Fano factor tends to be large outside the task periods, which
explain why CV becomes large there.
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Fig. 5. Firing irregularity κ outside and during task periods. Each point
corresponds to a single neuron. Irregularity κ is constant and is not affected
by the task. The correlation coefficient is 0.85.

We hypothesized that poor correspondence of CV between

inside and outside the task is due to the higher variability in

firing rates outside the task. To check the nonstationarity of

the firing rate, we computed Fano factor which is defined

as the variance over the mean of a spike count in some

time window [18]. Fig. 4 plots Fano factors with 500ms

windows outside and during the task periods. The numbers of

spikes were counted for each separate 500ms window inside

or outside the task period and their mean and variance for

the whole recording including all trials were computed to

obtain Fano Factors. The figure shows that Fano factors

outside the task periods tend to be larger than those inside,

accounting for why CV is larger outside the task periods.

Because κ is likely insensitive to firing rate modulations,

we then tested whether κ stays constant between the two

conditions. To calculate κ, SI ’s (18) were calculated from

the spikes inside or outside the task period when the rats

are presented odor stimuli and averaged over trials. From

this averaged SI , κ was obtained by solving (19). In fact,

the large correlation coefficient (0.85) in Fig. 5 demonstrates

that the spiking irregularity κ is highly reproducible and is

not affected by the task. Although irregularity κ is constant

over time for a given neuron, it varies largely by neuron,

suggesting that it is useful for cell classification as we will

show next.
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Fig. 6. Cell classification by clustering analysis according to spike widths,
baseline rates and firing irregularities. The neurons are classified into three
groups denoted by the circles, crosses, and dots. The neurons with small
spike widths may be inhibitory interneurons.

Although extracellular recording features such as spike

widths and firing rates have been widely used to classify

neurons into two classes, wide- and narrow-spiking neurons,

it is of great interest whether other parameters enable further

classifications. Firing irregularity has been used to classify

neurons both in slice experiments and in vivo extracellular

recordings [14], [13]. Given the insensitivity of κ to firing

rate modulations, κ may be suitable for this purpose. Hi-

erarchical clustering was performed by using irregularity κ,

spike widths, and baseline firing rates outside task periods

of each neuron as features (Fig. 6). The neurons with narrow

spikes are putative inhibitory interneurons [63]. Interestingly,

the wide spiking neurons were further classified into distinct

two classes. In the piriform cortex, it has been reported that

there are at least two classes of pyramidal neurons that have

different morphology and firing irregularity: one of them

fires more regularly than the other [14]. Therefore, it is of

particular interest to test whether these two classes within

wide-spiking neurons actually corresponds to different class

of neuron types in the future, using more definite methods

such as genetically labeling neurons with molecular tags

[64].

V. DISCUSSIONS

In this paper we demonstrated the constancy of the spiking

irregularity. Recent studies showed that excitatory and in-

hibitory synaptic inputs are balanced in cerebral cortex [65]

and spinal cord [66]. These results are consistent because it

was shown that the spiking irregularity reflects the balance of

synaptic inputs and, therefore, it is maintained at a constant

level if the input balance is kept [45]. Thus, the spiking

irregularity is also useful for studying the cortical circuits.

Some measures similar to SI in (18) were used in previous

studies to cancel out rate modulations [67], [68]. However,

they are proposed ad hoc and do not have clear interpreta-

tions. In contrast, κ was derived based on the orthogonality

in information geometry [46] and it has a corresponding

parameter in the gamma distribution. Therefore, each value

of κ specifies an interspike interval probability distribution,

which can be utilized in information decoding [44], [69].

In the previous work, we demonstrated the information

decoding or firing rate estimation can be improved by

knowing irregularity levels [45]. This is possible because

the irregularity shows how reliable the rate estimation is.

For example, if you know that a neuron fires completely

regularly or rhythmically, you can estimate the instantaneous

firing rate only by taking an inverse of a single interspike

interval. Similarly, it may also improve the spike sorting

[70] by assigning the probability distribution of interspike

intervals to each neuron.

VI. ACKNOWLEDGMENTS

We thank Zachary F. Mainen as some of the recording

experiments were performed by the author in his laboratory.

REFERENCES

[1] G. P. Moore, D. H. Perkel and J. P. Segundo, ”Statistical analysis and
functional interpretation of neuronal spike data,” Annu. Rev. Physiol.,
vol. 28, pp. 493-522, 1966.

[2] S. Hagiwara, ”On the fluctuation of the interval of the rhythmic
excitation. I. The efferent impulse of the human motor unit during
the voluntary contraction,” Rept, Physiograph. Sci. Inst. Tokyo Univ.,
vol. 3, pp. 19-24, 1949.

[3] T. Tokizane and H. Shimazu, Functional Differentiation of Human

Skeletal Muscle, University of Tokyo Press, Tokyo; 1964.

[4] R. Vogels, W. Spileers, and G.A. Orban, ”The response variability of
striate cortical neurons in the behaving monkey,” Exp Brain Res, vol.
77, pp. 432-436, 1989.

[5] W. R. Softky and C. Koch, ”The highly irregular firing of cortical
cells is inconsistent with temporal integration of random EPSPs,” J.

Neurosci., vol. 13, pp. 334-50, 1993.
[6] A. Compte, C. Constantinidis, J. Tegner, S. Raghavachari, M. V.

Chafee, P. S. Goldman-Rakic and X. J. Wang, ”Temporally irregular
mnemonic persistent activity in prefrontal neurons of monkeys during
a delayed response task,” J. Neurophysiol., vol. 90, pp. 3441-54, 2003.

[7] M. N. Shadlen and W. T. Newsome, ”Noise, neural codes and cortical
organization,” Curr. Opin. Neurobiol., vol. 4, pp. 569-79, 1994.

[8] W. R. Softky, ”Simple codes versus efficient codes,” Curr. Opin.

Neurobiol., vol. 5, pp. 239-47, 1995.
[9] M. N. Shadlen and W. T. Newsome, ”Is there a signal in the noise?,”

Curr. Opin. Neurobiol., vol. 5, pp. 248-50, 1995.

[10] D. Ferster, ”Is neural noise just a nuisance?,” Science, vol. 273, p.
1812, 1996.

[11] F. S. Chance FS, L. F. Abbott and A. D. Reyes, ”Gain modulation
from background synaptic input,” Neuron, vol. 35, pp. 773-82, 2002.

[12] W. J. Ma, J. M. Beck, P. E. Latham, A. Pouget, ”Bayesian inference
with probabilistic population codes,” Nat. Neurosci., vol. 9, pp. 1432-
8, 2006.

[13] S. Shinomoto, K. Shima and J. Tanji, New classification scheme of
cortical sites with the neuronal spiking characteristics, Neural Netw.,
vol. 15, 2002, pp. 1166-1169.

[14] N. Suzuki, J. M. Bekkers, ”Neural coding by two classes of principal
cells in the mouse piriform cortex,” J Neurosci., vol. 26, pp. 11938-47,
2006.

[15] Z. F. Mainen, T. J. Sejnowski, ”Reliability of spike timing in neocor-
tical neurons,” Science, vol. 268, pp. 1503-6, 1995.

[16] R. R. de Ruyter van Steveninck, G. D. Lewen, S. P. Strong, R. Koberle
and W. Bialek, ”Reproducibility and variability in neural spike trains,”
Science, vol. 275, pp. 1805-8, 1997.

[17] A. D. Reyes, ”Synchrony-dependent propagation of firing rate in
iteratively constructed networks in vitro,” Nat. Neurosci, vol. 6, pp
593-9, 2003.

[18] C. Koch, Biophysics of Computation. Oxford: Oxford Univ. Press,
1999.

[19] F. Gabbiani and C. Koch, ”Principles of spike train analysis,” In:
Methods in Neuronal Modeling. C. Koch and I Segev, editors, second
edition, Cambridge, MA: MIT Press, 1998, pp. 313-360.

[20] A. J. Buller, J. G. Nicholls and G. Strom, ”Spontaneous fluctuations
of excitability in the muscle spindle of the frog,” J Physiol., vol. 122,
pp. 409-418, 1953.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA05.3

2010



[21] G. Werner and V. B. Mountcastle, ”The variability of central neural
activity in a sensory system, and its implications for the central
reflection of sensory events,” J Neurophysiol., vol. 26, pp. 958-77,
1963.

[22] G. F. Poggio and L. J. Viernstein, ”Time series analysis of impulse
sequences of thalamic somatic sensory neurons,” J Neurophysiol., vol.
27, pp. 517-45, 1964.

[23] H. Nakahama, H. Suzuki, M. Yamamoto, S. Aikawa and S. Nishioka,
”A statistical analysis of spontaneous activity of central single neu-
rons,” Physiol. Behav., vol. 3, pp. 745-752, 1968.

[24] Y. Lamarre, M. Filion, and J. P. Cordeau, ”Neuronal discharges of the
ventrolateral nucleus of the thalamus during sleep and wakefulness in
the cat. I. spontaneous activity,” Exp. Brain Res., vol. 12, pp. 480-498,
1971.

[25] H. Noda and W. R. Adey, ”Firing variability in cat association cortex
during sleep and wakefulness,” Brain Research, vol. 18, pp. 513-526,
1970.

[26] H. C. Tuckwell, ”Synaptic transmission in a model for stochastic
neural activity,” J Theor. Biol., vol. 77, pp. 65-81, 1979.

[27] W. J. Wilbur and J. Rinzel, ”A theoretical basis for large coefficient of
variation and bimodality in neuronal interspike interval distributions,”
J Theor. Biol., vol. 105, pp. 345-368, 1983.

[28] V. Lanska, P. Lansky, C. E. Smith, ”Synaptic transmission in a
diffusion model for neural activity,” J Theor. Biol., vol. 166, pp. 393-
406, 1994.

[29] T. W. Troyer and K. D. Miller, ”Physiological gain leads to high ISI
variability in a simple model of a cortical regular spiking cell,” Neural

Comput., vol. 9, pp. 971-83, 1997.

[30] G. Bugmann, C. Christodoulou and J. G. Taylor, ”Role of temporal
integration and fluctuation detection in the highly irregular firing of
a leaky integrator neuron model with partial reset,” Neural Comput.,
vol. 9, pp. 985-1000, 1997.

[31] M. Tsodyks and T. Sejnowski, ”Rapid switching in balanced cortical
network models,” Network, vol. 6, pp. 1-14, 1995.

[32] J. K. Lin, K. Pawelzik, U. Ernst and T. J. Sejnowski, ”Irregular
synchronous activity in stochastically-coupled networks of integrate-
and-fire neurons,” Network, vol. 9, pp. 333-44, 1998.

[33] C. van Vreeswijk and H. Sompolinsky, ”Chaos in neuronal networks
with balanced excitatory and inhibitory activity,” Science, vol. 274,
pp. 1724-6, 1996.

[34] N. Brunel, V. Hakim, ”Fast global oscillations in networks of integrate-
and-fire neurons with low firing rates,” Neural Comput., vol. 11, pp.
1621-71, 1999.

[35] A. Renart, R. Moreno-Bote, X. J. Wang and N. Parga, ”Mean-driven
and fluctuation-driven persistent activity in recurrent networks,” Neural

Comput., vol. 19, pp. 1-46, 2007.

[36] H. C. Tuckwell, Introduction to Theoretical Neurobiology: Volume 2,

Nonlinear and Stochastic Theories. Cambridge: Cambridge University
Press, 1988.

[37] S. Shinomoto and Y. Tsubo, ”Modeling spiking behavior of neurons
with time-dependent Poisson processes,” Phys. Rev. E, vol. 64, 041910,
2001.

[38] S. Shinomoto, K. Miura, and S. Koyama, ”A measure of local variation
of inter-spike intervals,” Biosystems, vol. 79, pp. 67-72, 2005.

[39] C. F. Stevens and A. M. Zador, ”Input synchrony and the irregular
firing of cortical neurons,” Nat. Neurosci., vol. 1, pp. 210-7, 1998.

[40] Y. Sakai, S. Funahashi and S. Shinomoto, ”Temporally correlated in-
puts to leaky integrate-and-fire models can reproduce spiking statistics
of cortical neurons,” Neural Netw., vol. 12, pp. 1181-1190, 1999.

[41] A. Harsch and H. P. Robinson, ”Postsynaptic variability of firing in
rat cortical neurons: the roles of input synchronization and synaptic
NMDA receptor conductance,” J. Neurosci., vol. 20, pp. 6181-92,
2000.

[42] J. Feng and D. Brown, ”Impact of correlated inputs on the output
of the integrate-and-fire model,” Neural Comput., vol.12, pp 671-92,
2000.

[43] K. Miura, M. Okada and S. Amari, ”Unbiased estimator of shape
parameter for spiking irregularities under changing environments,”
in Y. Weiss, B. Scholkopf and J. Platt (eds.), Advances in Neural

Information Processing Systems 18, Cambridge, MA: MIT Press, vol.
18, pp 891-898, 2006.

[44] K. Miura, M. Okada and S. Amari, ”Estimating spiking irregularities
under changing environments,” Neural Comput., vol. 18, pp. 2359-
2386, 2006.

[45] K. Miura, Y. Tsubo, M. Okada and T. Fukai, ”Balanced excitatory and
inhibitory inputs to cortical neurons decouple firing irregularity from
rate modulations,” J Neurosci., vol. 27, pp. 13802-12, 2007.

[46] S. Amari and H. Nagaoka, Methods of Information Geometry. Provi-
dence, RI: American Mathematical Society, 2001.

[47] D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of

Events. London: Methuen, 1966.
[48] S. W. Kuffler, R. Fitzhugh and H. B. Barlow, ”Maintained activity in

the cat’s retina in light and darkness,” J Gen. Physiol., vol. 40, pp.
683-702, 1957.

[49] T. Nagai, K. Ueda, ”Stochastic properties of gustatory impulse dis-
charges in rat chorda tympani fibers,” J Neurophysiol., vol. 45, pp.
574-92, 1981.

[50] S. N. Baker and R. N. Lemon, ”Precise spatiotemporal repeating
patterns in monkey primary and supplementary motor areas occur at
chance levels,” J Neurophysiol., vol. 84, pp. 1770-80, 2000.

[51] R. Barbieri, M. C. Quirk, L. M. Frank, M. A. Wilson and E. N. Brown,
”Construction and analysis of non-Poisson stimulus-response models
of neural spiking activity,” J Neurosci. Methods, vol. 105, pp. 25-37,
2001.

[52] J. M. Fellous, M. Rudolph, A. Destexhe and T. J. Sejnowski, ”Synaptic
background noise controls the input/output characteristics of single
cells in an in vitro model of in vivo activity,” Neuroscience, vol. 122,
pp. 811-29, 2003.

[53] H. M. Bayer, B. Lau and P. W. Glimcher, ”Statistics of midbrain
dopamine neuron spike trains in the awake primate,” J Neurophysiol.,
vol. 98, pp. 1428-39, 2007.

[54] R. B. Stein, ”A theoretical analysis of neuronal variability,” Biophys.

J., vol. 5, pp. 173-94, 1965.
[55] G. Casella and R. L. Berger, Statistical Inference. Pacific Grove, CA:

Duxbury, 2002.
[56] J. Neyman and E. L. Scott, ”Consistent estimates based on partially

consistent observations,” Econometrica, vol. 32, pp. 1-32, 1948.
[57] P. J. Bickel, C. A. J. Klaassen, Y. Ritov, and J. A. Wellner, Efficient

and Adaptive Estimation for Semiparametric Models. Baltimore, MD:
Johns Hopkins University Press, 1993.

[58] S. Amari and M. Kawanabe, ”Information geometry of estimating
functions in semi-parametric statistical models,” Bernoulli, vol. 3, pp.
29-54, 1997.

[59] N. Uchida, Z. F. Mainen, ”Speed and accuracy of olfactory discrimi-
nation in the rat,” Nat. Neurosci., vol. 6, pp. 1224-9, 2003.

[60] N. Uchida and Z. F. Mainen, ”Rapid formation of dense odor rep-
resentation in the piriform cortex of behaving rats,” in 36th Annual

Meeting of the Society for Neuroscience (slide session), Atlanta, GA,
October 2006.

[61] N. Uchida, Y. K. Takahashi, M. Tanifuji and K. Mori, ”Odor maps
in the mammalian olfactory bulb: domain organization and odorant
structural features,” Nat Neurosci., vol. 3, pp. 1035-43, 2000.

[62] N. Uchida, A. Kepecs, Z. F. Mainen, ”Seeing at a glance, smelling in a
whiff: rapid forms of perceptual decision making,” Nat. Rev. Neurosci.,
vol. 7, pp. 485-91, 2006.

[63] C. E. Feierstein, M. C. Quirk, N. Uchida, D. L. Sosulski and Z. F.
Mainen, ”Representation of spatial goals in rat orbitofrontal cortex,”
Neuron, vol. 51, pp. 495507, 2006.

[64] V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B.
Schneider, and K. Deisseroth, ”Targeting and readout strategies for
fast optical neural control in vitro and in vivo,” J Neurosci., vol. 27,
pp. 14231-8, 2007.

[65] Y. Shu, A. Hasenstaub and D. A. McCormick, ”Turning on and off
recurrent balanced cortical activity,” Nature, vol. 423, pp. 288-293,
2003.

[66] R. W. Berg, A. Alaburda and J. Hounsgaard, ”Balanced inhibition
and excitation drives spike activity in spinal half-centers,” Science,
vol. 315, pp. 390-393, 2007.

[67] G. R. Holt, W. R. Softky, C. Koch and R. J. Douglas, ”Comparison of
discharge variability in vitro and in vivo in cat visual cortex neurons,”
J Neurophysiol., vol. 75, pp. 1806-14, 1996.

[68] S. Shinomoto, K. Shima and J. Tanji, ”Differences in spiking patterns
among cortical neurons,” Neural Comput., vol. 15, pp. 2823-42, 2003.

[69] M. A. Lebedev and M. A. Nicolelis, ”Brain-machine interfaces: past,
present and future,” Trends Neurosci., vol. 29, pp. 536-46, 2006.

[70] K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase and G. Buzsaki,
”Accuracy of tetrode spike separation as determined by simultaneous
intracellular and extracellular measurements,” J Neurophysiol., vol. 84,
pp. 401-414, 2000.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA05.3

2011


