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Abstract— The paper addresses the stabilization of reference
trajectories for a class of nonlinear driftless systems. The
proposed method is based on the so-called Transverse Function
approach, a control design method initially developed by the
authors for driftless systems invariant with respect to a Lie
group operation. The present work shows how the approach
can be generalized to a larger class of systems, not necessarily
invariant. This possibility is illustrated with the control of
unicycle-type (or car-like) vehicles with an arbitrary number of
trailers, and with simulation results in the case of two trailers.

I. INTRODUCTION

The problems here addressed concern the stabilization of
reference trajectories for driftless systems of the form

ẋ =

m
∑

i=1

Xi(x)ui (1)

with X1, . . . , Xm smooth vector fields (v.f.) on some mani-
fold, x the state, and u = (u1, . . . , um)′ the control vector.
It is assumed that m < n := dim(x). This inequality is
commonly attached to kinematic models of nonholonomic
mechanical systems (wheeled robots, rolling spheres, etc).
It is well known that some of the problems associated with
the feedback control of System (1) are particularly difficult
in this case. First, given any equilibrium (x, u) = (x0, 0),
the associated linearized system is neither controllable nor
asymptotically stabilizable. Then, it follows from Brockett’s
theorem [1] that when the vectors X1(x0), . . . , Xm(x0) are
linearly independent, x0 cannot be asymptotically stabilized
by using smooth pure state feedback u(x). Other classes of
feedbacks (time-varying periodic feedback [2], [3], hybrid
feedback [4], [5],...) have been proposed to circumvent
this difficulty, but with mitigated success in practice due
to unsolved robustness problems. For a certain number
of systems the asymptotic stabilization of non-stationary
reference trajectories is less difficult, and many feedback
control methods have also been proposed for this problem
(see e.g. [6], [7]). They usually rely on “persistent excitation”
conditions which allow to exploit the controllability proper-
ties of the linearized error system. However, an important
obstruction to the asymptotic stabilization of admissible
reference trajectories has been proved by Lizárraga in [8],
the essence of which is that some a priori knowledge about

the properties of these trajectories is required. A consequence
is that given a causal trajectory tracking controller, there
always exists a reference trajectory which this controller
cannot asymptotically stabilize. Such an obstruction does not
hold for linear systems.

In [9], we have proposed a new control approach for
driftless systems. It relies on the “transverse function” con-
cept [10]. Contrary to more classical methods, the primary
objective of the approach is practical stabilization, i.e. sta-
bilization of the system’s state in a “small” neighborhood of
the reference state. One of its most noticeable feature is that
it allows for the construction of feedback controllers ensuring
the practical stabilization of any reference trajectory, i.e. it
does not have to be admissible. In addition, the ultimate
tracking error can be made arbitrarily small by a proper
choice of the control parameters. This approach has mostly
been developed under the assumption that the state space is a
Lie group and that the control v.f. X1, . . . , Xm are invariant
with respect to the group operation. However, many physical
systems do not possess this property. The main contribution
of the present paper is to extend the control solution proposed
in [9] to a class of non-invariant systems. The control of
unicycle-type (or car-like) vehicles with an arbitrary number
of trailers is used to illustrate the proposed method.

The paper is organized as follows. Section II presents the
notation and recalls the basics of the transverse function
approach. The main results are presented in Section III. First,
the calculation of transverse functions is addressed for a class
of systems which are feedback equivalent to systems on a
Lie group. Then, stabilizing feedback laws are proposed for
an encompassing class of non-invariant systems. In Section
IV, the results of Section III are applied to unicycle-type
or car-like vehicles with trailers. Finally, simulation results
for a unicycle with two trailers are reported in Section V.
The choice of some of the control degrees of freedom is
also briefly discussed in this last section. The proofs of the
presented results are given in the appendix.

II. NOTATION AND RECALLS

A. Vectors, manifolds, differential geometry

The transpose of a vector x ∈ R
n is denoted as x′,

its i-th component as xi, and its euclidean norm as |x|.
The i-th vector of the canonical basis of R

n is denoted
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as bi, i.e. b′ix = xi ∀x. The m × m identity matrix is
denoted as Im. The tangent space at q of a manifold M
is denoted as TqM . Given a family X1 = {X1, . . . , Xm}
of smooth v.f. on a manifold M , we denote by Lie(X1) the
Lie algebra of v.f. generated by X1, . . . , Xm, i.e. Lie(X1) =
span{Xi, [Xi, Xj ], [Xi, [Xj , Xk]], . . .}, and by Lie(X1)(q)
the subspace of TqM equal to span{X(q);X ∈ Lie(X1)}.
Recall that the family X1 satisfies the so-called “Lie Algebra
Rank Condition” at q ∈ M if Lie(X1)(q) = TqM . The
following notation is used repeatedly in the sequel. Given
a family X1 = {X1, . . . , Xm} of smooth v.f. on M and a
vector ξ ∈ R

m, we denote by X1(q)ξ the tangent vector
∑m

i=1Xi(q)ξi ∈ TqM .

B. Systems on Lie groups

Let G denote a connected Lie group of dimension n. The
unit element of G is denoted as e, i.e. ∀g ∈ G : ge =
eg = g. The inverse g−1 of g ∈ G is the (unique) element
in G such that gg−1 = g−1g = e. The left (resp. right)
translation operator on G is denoted as L (resp. R), i.e.
∀(σ, τ) ∈ G2 : Lσ(τ) = Rτ (σ) = στ . A v.f. X on G
is left-invariant iff ∀(σ, τ) ∈ G2, dLσ(τ)X(τ) = X(στ),
with df denoting the differential of a mapping f . The Lie
algebra –of left-invariant v.f.– of the group G is denoted as
g. The adjoint representation of G is denoted as Ad, i.e.
∀σ ∈ G, Ad(σ) := dIσ(e), with Iσ : G → G defined by
Iσ(g) := σgσ−1. If X ∈ g, exp(tX) is the solution at time t
of ġ = X(g) with the initial condition g(0) = e. A driftless
control system ġ =

∑m
i=1Xi(g)ξi on G is said to be left-

invariant on G if the control v.f. Xi are left-invariant.
Let X = {X1, . . . , Xn} denote a basis of g. If

(ga(t), ξa(t)) and (gb(t), ξb(t)) (t ≥ 0) are two solutions to
ġ = X(g)ξ =

∑n
i=1Xi(x)ξi, then (omitting the time index)

d

dt
(gag

−1
b ) = X(gag

−1
b )AdX(gb)(ξa − ξb) (2)

with AdX the expression of the Ad operator in the basis X ,
i.e. the (invertible) matrix-valued function defined by ∀σ ∈
G, ∀ξ ∈ R

n, Ad(σ)X(e)ξ = X(e)AdX(σ)ξ. According to
this definition, AdX(e) = In. We have also

d

dt
(g−1

a gb) = X(g−1
a gb)(ξb − AdX(g−1

b ga)ξa) (3)

C. Transverse Functions

Definition and general characterization Let X1 =
{X1, . . . , Xm} denote a family of smooth v.f. X1, . . . , Xm

on a n-dimensional manifold M , T
p denote the p-

dimensional torus, and H denote another manifold. A smooth
function f : T

p ×H −→M is transverse to X1 if, for any
(α, ξ) ∈ T

p ×H , the vectors

X1(f(α, ξ)), . . . , Xm(f(α, ξ)),
∂f

α1
(α, ξ), . . . ,

∂f

αp

(α, ξ)

span Tf(α,ξ)M . Note that p, the dimension of T
p , must

be at least equal to (n − m). This definition is a slight
generalization of the original definition given in [10], for
which H was the empty set, i.e. T

p×H = T
p. Given smooth

functions fε : T
p ×H −→ M defined for ε ∈ (0, ε0), with

ε0 > 0, we say that (f ε) is a family of functions transverse
to X1 if ∀ε ∈ (0, ε0), fε is transverse to X1. Given
q0 ∈ M such that Lie(X1)(q0) = Tq0M , the “transverse
function theorem” given in [10] ensures the existence of
a family of functions transverse to X1, with H = ∅ and
maxα dist(fε(α), q0) → 0 as ε → 0, where “dist” denotes
any distance locally defined in the neighborhood of q0. When
these complementary properties are satisfied we say that the
family (fε) is centered on q0.

The case of invariant v.f. on Lie groups When M = G
is a Lie group and X1, . . . , Xm are independent elements1

of the Lie algebra g, stronger results can be obtained (see
[9] for details). First, provided that Lie(X1)(e) = TeG ≈ g,
functions transverse to X1 can be defined on T

n−m, i.e. with
the minimal value (n−m) of p and H = ∅. An expression
of such functions f ε is given in [9]. It defines a family (f ε)
of functions transverse to X1 and centered on e. Finally, in
the case of Lie groups the transversality property can also be
expressed as follows. Let X2 = {Xm+1, . . . , Xn} denote a
family of elements of g such that X = {X1, . . . , Xn} forms
a basis of g. Given any smooth function f : T

n−m×H −→
G and any smooth curve (α, ξ)(.) on T

n−m ×H , one has

ḟ(α, ξ) = X(f(α, ξ))
(

Aα(α, ξ)α̇+Aξ(α, ξ)ξ̇
)

(4)

for some smooth matrix-valued functions Aα, Aξ . By de-
noting A1

α ∈ R
m×n−m and A2

α ∈ R
(n−m)×n−m the

components of the following block decomposition of Aα:

Aα(α, ξ) =

(

A1
α(α, ξ)

A2
α(α, ξ)

)

one easily verifies that f is transverse to X1 iff A2
α(α, ξ) is

invertible ∀(α, ξ) ∈ T
n−m ×H .

III. MAIN RESULTS

For systems (left-invariant) on a Lie group G, transverse
functions can be used to design stabilizing feedback laws for
arbitrary (i.e. not necessarily feasible) reference trajectories
[9]. Let us briefly recall how this can be done. Consider a
left-invariant system

ġ =

m
∑

i=1

Xi(g)ui = X(g)Cu (5)

with C = (Im | 0m×(n−m))
′ and X = {X1, . . . , Xn} a

basis of g. Let gr denote any smooth reference trajectory on
G. One can decompose the time derivative ġr on the basis
X , i.e. ġr = X(gr)vr with vr a smooth R

n valued function.
Let g̃ := g−1

r g denote the tracking error between g and gr.
It follows from (3) that

˙̃g = X(g̃)(Cu− AdX(g̃−1)vr)

Now, let z := g̃f(α, ξ)−1 with (α, ξ)(.) a smooth curve on
T
n−m ×H . It follows from (2) that

ż = X(z)AdX(f(α, ξ))
(

C̄(α, ξ)ū

−Aξ(α, ξ)ξ̇ − AdX(g̃−1)vr
)

(6)

1a property equivalent to X1(e), . . . , Xm(e) being independent.
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with ū′ := (u′, α̇′) = (u1, . . . , um, α̇1, . . . , α̇n−m) and

C̄(α, ξ) := (C | −Aα(α, ξ)) =

(

Im −A1
α(α, ξ)

0 −A2
α(α, ξ)

)

When f is a transverse function, the matrix C̄(α, ξ) is
invertible for any (α, ξ) so that the feedback

ū = C̄(α, ξ)−1
(

Aξ(α, ξ)ξ̇ + AdX(g̃−1)vr

+ AdX(f(α, ξ)−1)v̄(z)
)

(7)

transforms Eq. (6) into ż = X(z)v̄(z). Therefore, any
asymptotic stabilizer v̄(z) of z = e for this system yields
a feedback ū(g, gr, vr, α, ξ) which makes the tracking error
g̃ converge to the image set of the function f . Clearly,
the design of such a stabilizer is not a difficult task, since
X(z)v̄(z) =

∑n
i=1Xi(z)vi(z) and X1(z), . . . , Xn(z) is a

basis of TzG for all z. When f(α, ξ) = f ε(α) with (fε) a
family of functions transverse to X1 and centered on e, the
convergence of z to e thus ensures the ultimate boundedness
of the tracking error by maxα dist(fε(α), e) independently
of the reference trajectory gr. Moreover, the ultimate bound
can be made arbitrarily small via the choice of ε.

The extension of this approach to systems which are not
invariant on a Lie group raises two issues: 1) the calculation
of transverse functions and 2) the design of stabilizing
control laws. In the following subsections, these two issues
are addressed for some classes of systems

A. Transverse functions for feedback equivalent systems

Consider two driftless systems Σ, Σ̄ on possibly different
manifolds M, M̄ :

Σ : q̇ =

m
∑

i=1

Yi(q)wi , Σ̄ : ˙̄q =

m
∑

i=1

Ȳi(q̄)w̄i (8)

Let us recall (see e.g. [11]) that Σ is feedback equivalent to
Σ̄ on an open subset O ⊂M if there exists a diffeomorphism
χ : O × R

m −→ Ō × R
m ⊂ M̄ × R

m of the form
(

q̄
w̄

)

= χ(q, w) =

(

Φ(q)
Ψ(q)w

)

(9)

which transforms Σ into Σ̄, i.e. such that

∀w, dΦ(q)

m
∑

i=1

Yi(q)wi =

m
∑

i=1

Ȳi(Φ(q))Ψi(q)w (10)

with Ψi the i-th component of the function Ψ. Recall that d is
the differentiation operator. Relation (10) can also be written,
with the notation of Section II-A, in the more compact form

∀w, dΦ(q)Y 1(q)w = Ȳ 1(Φ(q))Ψ(q)w (11)

with Y 1 = {Y1, . . . , Ym} and Ȳ 1 = {Ȳ1, . . . , Ȳm}. Note
also that the property of feedback equivalence is symmetric,
i.e. if Σ is feedback equivalent to Σ̄ on O, then Σ̄ is feedback
equivalent to Σ on Ō = Φ(O).

Proposition 1 Assume that Σ is feedback equivalent to Σ̄
on O and that f : T

p × H −→ O is a function transverse
to Y 1. Then f̄ := Φ(f) is transverse to Ȳ 1.

When one of the two systems Σ, Σ̄ is an invariant system
on a Lie group, one obtains complementary properties.

Proposition 2 Assume that Σ is feedback equivalent to the
left-invariant system (5) on O, so that (11) is satisfied with
Ȳ 1 = X1 = {X1, . . . , Xm}. Let (f̄ε) denote a family of
functions transverse to X1 and centered on e, and let q0 ∈ O.
Then,

1) there exists ε0 > 0 such that Φ(q0)f̄ε(α) ∈ Ō for all
α ∈ T

n−m and all ε ∈ (0, ε0),
2)

fε(α, q0) := Φ−1(Φ(q0)f̄
ε(α)) (12)

defines a family of functions transverse to Y 1 and
centered on q0.

Proposition 2 shows how the property of feedback equiva-
lence to an invariant system can be used to design a family of
transverse functions centered on any point q0 ∈ O and which
depend smoothly on q0. The following section illustrates a
possible application of this result.

B. Control laws for a class of non-invariant systems

In this section, we show how to extend the design of
stabilizing control laws based on the transverse function
approach to a class of systems of the form

{

ġ = X(g)Cg(ξ)w

ξ̇ = Cξ(ξ)w
(13)

with g an element of a Lie group G, X = {X1, . . . , Xn}
a basis of the group’s Lie algebra g, ξ ∈ R

N , w ∈ R
m the

control input, and Cg , Cξ smooth matrix-valued functions of
adequate dimensions. We denote by n the dimension of the
state space, so that dim(G) = n0 := n−N .

System (13) is a particular case of a system Σ in (8), with

q = (g, ξ) and Yi(q) =

(

X(g)Cg(ξ)bi
Cξ(ξ)bi

)

The class of systems of the form (13), which generalizes
the class on invariant systems (5) (for which N = 0), is of
interest to model the kinematics of articulated nonholonomic
mechanical systems, where g corresponds (typically) to the
system’s “situation” (position and orientation), and ξ to a
vector of “shape” variables [12].

Let X̄ and AdX̄ denote the mapping defined by

∀u = (u1, u2) ∈ R
n0 × R

N , ∀q = (g, ξ) ∈ G× R
N

X̄(q)u =

(

X(g)u1
u2

)

, AdX̄(q)u =

(

AdX(g)u1

u2

)

(14)

We note that {X̄i(q) := X̄(q)bi , i = 1, . . . , n} is a basis of
left-invariant v.f. for the Lie group G × R

N endowed with
the group law inherited from the group law on G and the
vector addition on R

n, i.e.

q1q2 =

(

g1
ξ1

)(

g2
ξ2

)

=

(

g1g2
ξ1 + ξ2

)

, q−1=

(

g
ξ

)−1

=

(

g−1

−ξ

)
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and AdX̄ is the associated Ad operator. With this notation,
System (13) can also be written as

q̇ = X̄(q)C(ξ)w , with C(ξ) :=

(

Cg(ξ)
Cξ(ξ)

)

The possible dependence of C on ξ accounts for the possible
non-invariance of this system on the group G× R

N .
Let us now consider a (smooth) reference trajectory qr =

(gr, ξr) and denote vr the smooth function such that ġr =
X(gr)vr. Let q̃ := (g̃, ξ̃) := (g−1

r g, ξ − ξr) denote the
tracking error between q and qr.

Proposition 3 Consider System (13) and a reference trajec-
tory (gr, ξr) to be stabilized. Assume that

1) For any i = 1, . . . , N , the i-th row Cξ,i(ξ) of the
matrix Cξ(ξ) only depends on ξi+1, . . . , ξN ,

2) For any ξ̄ := (e, ξ) there exists a family (f ε(., ξ̄)) =
(fεg (., ξ̄), f

ε
ξ (., ξ̄)) of functions transverse to Y 1 and

centered on ξ̄, with fε depending smoothly on ξ,
3) The time-functions ξr, ξ̇r, and vr are bounded,

For any ε, let

z =

(

zg
zξ

)

:=

(

g̃fεg (α, ξ̄r)
−1

ξ − fεξ (α, ξ̄r)

)

C̄(α, ξr) :=
(

C(fεξ (α, ξ̄r)) | −Aα(α, ξr)
)

(15)

with Aα the matrix-valued function defined by

ḟε(α, ξ̄r) = X̄(fε(α, ξ̄r))(Aα(α, ξr)α̇+Aξ(α, ξr)ξ̇r) (16)

Finally, let v̄(z) = (v̄g(zg), v̄ξ(zξ)), with ∂v̄ξ
∂zξ

(0) a diagonal
matrix, denote a smooth feedback law that makes z =
(e, 0) an exponentially stable equilibrium of the system ż =
X̄(z)v̄(z). Then,

1) the matrix C̄(α, ξr) is invertible for any (α, ξr),
2) the “extended control” w̄ := (w′, α̇′)′ given by

w̄ = C̄(α, ξr)
−1
(

Aξ(α, ξr)ξ̇r +
(

AdX(g̃−1)vr
0

)

+ AdX̄(fε(α, ξ̄r)
−1)v̄(z)

)

(17)

makes z = (e, 0) an asymptotically stable equilibrium of the
controlled system. Moreover, the tracking error q̃ converges
to a neighborhood of (e, 0) whose size can be made as small
as desired by choosing ε small enough.

Let us comment on this result. Assumption 1) specifies the
class of systems to which the proposition results apply. It
is used in the stability analysis of the closed-loop system.
Assumption 2) concerns the existence of transverse func-
tions and is much weaker. Indeed, the main result in [10]
guarantees the existence of a family (f ε(., ξ̄)) of functions
transverse to Y 1 and centered on ξ̄ provided that System
(13) satisfies the Lie algebra rank condition at this point.
However, the existence of a family of functions depending
smoothly on ξ is not proved in [10]. This complementary
property relies on additional assumptions. The next section
illustrates with the example of the N -trailer system how
Proposition 2 can be used to derive such a family of

transverse functions. As for the third assumption of the
proposition, it is clearly little restrictive in practice. The
stabilizing control law (17) is essentially the same as the
control law (7) used in the case of a left-invariant system,
except for the additional condition upon ∂v̄ξ

∂zξ
(0) induced by

the possible non-invariance of the system.
The proof of Proposition 3 only establishes the local

asymptotic stability of z = e. Global stability can be obtained
for specific Lie groups, as shown below for SE(2) ≈
R
2 × S

1, whose group law is defined by

g1g2 =





(

x1
y1

)

+R(θ1)

(

x2
y2

)

θ1 + θ2



 (18)

with gi = (xi, yi, θi) ∈ R
2 × S

1 and R(θ) the matrix of
rotation in the plane of angle θ. The corresponding unit
element is e = (0, 0, 0). For the sake of conciseness, we
denote by |g| the norm of the element of R

3 associated to g
by identifying θ ∈ S

1 with an element of (−π, π].

Proposition 4 Suppose that G = SE(2) and that As-
sumptions 1, 2, and 3 of Proposition 3 are verified. Let
v̄(z, t) = (v̄g(zg, t), v̄ξ(zξ)) denote a bounded feedback
law with v̄ξ(zξ) = −τξ(|zξ|)zξ and z′gX(zg)v̄g(zg, t) ≤
−τg(|zg|)|zg|

2 for some strictly positive continuous functions
τg, τξ. Define g̃−1

f := (hε(α, ξ̄r),−θ̃) with hε(α, ξ̄r) the first
two components of f εg (α, ξ̄r)

−1, and θ̃ the last component of
g̃. Then, the “extended control” w̄ := (w′, α̇′)′ given by

w̄ = C̄(α, ξr)
−1
(

Aξ(α, ξr)ξ̇r +
(

AdX(g̃−1

f
)vr

0

)

+ AdX̄(fε(α, ξ̄r)
−1)v̄(z, t)

)

(19)

makes z = (e, 0) a globally asymptotically stable equilibrium
of the controlled system.

Remark: The dependence of v̄g(zg, t) upon t is an additional
degree of freedom the usefulness of which is illustrated in
Section V. Note also that the small difference between the
control expressions (17) and (19) has its importance.

IV. APPLICATION TO THE N -TRAILER SYSTEM

With the notation of Fig. 1, the kinematic model of a
unicycle with N trailers is given by






































ẋ = ν1 cos θ
ẏ = ν1 sin θ

θ̇ = ν1
tanϕ1

`0

ϕ̇i = ν1

tanϕi+1

`i
− sinϕi

`i−1

∏i
k=1 cosϕk

(i = 1, . . . , N − 1)

ϕ̇N = ν2
(20)

with (x, y) the vector of coordinates of P0 in the fixed frame
{0,~ı,~}, and ν1, ν2 the control inputs, related to the linear
and angular velocities v1, v2 of the front unicycle by the
equations ν1 = v1

∏N
k=1 cosϕk and ν2 = v2−

v1

`N−1
sinϕN .

System (20) is well defined on the configuration space
R
2 × S

1 × (−π/2, π/2)N . The following lemma, the proof
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ϕ1
ϕ2

P0
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`2

`0

θ

PN

ϕN

Fig. 1. Unicycle with N trailers

of which is straightforward (and omitted), states that, via
a change of variables on ϕ1, . . . , ϕN , System (20) can be
transformed into an equivalent system the expression of
which is simpler.

Lemma 1 There exists a diffeomorphism Υ :
(−π/2, π/2)N × R

2 −→ R
N × R

2 of the form
(

ξ
w

)

= Υ(ϕ, ν) =

(

Γ(ϕ)
∆(ϕ)ν

)

which transforms System (20) into the system






















ẋ = w1 cos θ
ẏ = w1 sin θ

θ̇ = w1ξ1
ξ̇i = w1ξi+1 (i = 1, . . . , N − 1)

ξ̇N = w2

(21)

It well known [13], [14] that System (20) is feedback equiv-
alent to the (N +3)-d chained system (whose equations are
recalled below) on the set O = R

2×(−π/2;π/2)N+1. While
System (21) is reminiscent of the chained system, its advan-
tage w.r.t. the chained system is that it is feedback equivalent
to System (20) on the larger domain R

2×S
1×(−π/2, π/2)N .

In particular, contrary to the transformation into a chained
system, the diffeomorphism Υ does not introduce limitations
on the orientation variable θ. For this reason it is preferable
to base the control design on the state equations (21) rather
than on the locally equivalent chained system.

A. Calculation of transverse functions

System (20) is feedback equivalent to the (N + 3)-d
chained system on O = R

2 × (−π/2;π/2)N+1, and so is
System (21) by the transitivity of the feedback equivalence
property. Recall that the n-d chained system is defined as







ẋ1 = u1
ẋ2 = u2
ẋi = u1xi−1 (i = 3, . . . , n)

(22)

This is a system invariant on the Lie group R
n endowed with

the group law (x, y) 7−→ xy defined by

(xy)i =

{

xi + yi if i = 1, 2

xi + yi +
∑i−1

j=2
y
i−j
1

(i−j)!xj otherwise
(23)

with the unit element e = 0. A family ( ¯̄fε) of functions
transverse to the v.f. Xc

1 , X
c
2 of the chained system and

centered on e is defined by (see [9, Sec. VII] for details)

¯̄fε(α) = ¯̄fεn−2(αn−2) . . .
¯̄fε1 (α1), ε ∈ (0,+∞) (24)

with, for i = 1, . . . , n− 2,

•
¯̄fεi (αi) = exp(εβi,1 sin(αi)X

c
1 + εiβi,2 cos(αi)X

c
i+1)

• Xc
i+2 := [Xc

i+1, X
c
1 ] = bi+2,

• βi,1, βi,2 adequately chosen non-zero parameters.

A second family, derived from the first one, is defined by

f̄ε(α) := ¯̄fε(α?)−1 ¯̄fε(α), ε ∈ (0,+∞) (25)

with α? ∈ T
n−2. The pre-multiplication by ¯̄fε(α?)−1

ensures that e = 0 belongs to the image of the transverse
function, whatever the value of ε. As shown in [15], this
feature can in turn be used by choosing α? adequately in
order to make f̄ε(α) converge to zero when tracking a
“persistently exciting” feasible trajectory and, subsequently,
to make the tracking error converge to zero when z converges
to zero. The important point is that this convergence is
obtained without having to make ε tend to zero, i.e. without
rendering the control law ill-conditioned. By extension of the
4-d chained system case treated in [15], a suitable choice is
α? = (−π

2 , . . . ,−
π
2 )

′, with the complementary requirement
of equal signs for the parameters βi,1 (i = 1, . . . , n− 2) and
the reference input ur,1.

Now, the mapping χ which transforms System (21) into
the (N+3)-d chained system is a diffeomorphism from O×
R
2 onto Ō × R

2 = R
N+3 × R

2. Therefore, it follows from
Proposition 2 that for any q0 = (x0, y0, θ0, ξ0) ∈ O, the
functions fε(., q0) given by (12), with ε ∈ (0 +∞) and f̄ε

given by (25), define a family of functions transverse to the
v.f. Y1, Y2 of System (21) and centered on q0.

B. Stabilizing feedback laws

Let X(g) = {X1(g), X2(g), X3(g)} denote the following
“canonical basis” of left-invariant v.f. on SE(2):

X1(g) =





cos θ
sin θ
0



 , X2(g) =





− sin θ
cos θ
0



 , X3(g) =





0
0
1





With this notation, it is straightforward to verify that System
(21) is of the form (13) with

Cg(ξ) =





1 0
0 0
ξ1 0



 , Cξ(ξ) =











ξ2 0
...

...
ξn 0
0 1











Clearly, Cξ satisfies Assumption 1 of Proposition 3. By
this proposition, the feedback control (17) associated with
the family (fε(., ξ̄r)) of functions transverse to Y 1 and
centered on ξ̄r, the determination of which was specified in
the previous subsection, asymptotically stabilizes z = (e, 0).
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V. SIMULATION RESULTS FOR A UNICYCLE WITH TWO
TRAILERS

The 1-trailer system, or car-like system, is studied in
some detail in [15]. The 2-trailer system comes as the next
example in increased complexity to which the results of the
present study apply. Physically, this system may either take
the form of a unicycle pulling two trailers, or a car (truck)
pulling a single trailer. For the simulation results presented
below, the control objective is to have the last trailer track a
reference frame whose situation gr varies with a velocity
vr according to the relation ġr = X(gr)vr. The motion
of the reference frame is compatible with the kinematic
equations of the trailer system provided that vr,2(t) = 0
(∀t). Then, in view of (21), perfect tracking implies that
the reference “shape” variables should be ξr,1 =

vr,3
vr,1

and

ξr,2 =
ξ̇r,1
vr,1

=
v̇r,3vr,1−vr,3v̇r,1

v3
r,1

. For the simulations, we
have regularized these expressions in order to avoid divisions
by zero when vr,1 = 0 by setting ξr,1 = vr,1

vr,3
v2
r,1+δ

and

ξr,2 = vr,1
v̇r,3vr,1−vr,3v̇r,1

v4
r,1+δ

, with δ a small positive number.

The time-derivative ξ̇r is then well defined provided that vr,3
and vr,1 are twice differentiable.

The matrix-valued functions involved in the transformation
of the kinematic model (20) of a unicycle with two trailers
(N = 2) into the system (21) are

Γ(ϕ) =

(

tanϕ1

l0

( tanϕ2

l1
− sinϕ1

l0
) 1
l0(cosϕ1)3

)

∆(ϕ) =

(

1 0
∆2,1(ϕ)

1
l0l1(cosϕ1)3(cosϕ2)2

)

with

∆2,1(ϕ) =

(

3(sinϕ1) tanϕ2

l1
−

1 + 2(sinϕ1)
2

l0

)

Γ2(ϕ)

(cosϕ1)2

The matrix-valued functions Φ involved in the transformation
of the system (21) with N = 2 into the 5-d chained system,
and thus in the calculation of the transverse functions via
relation (12), is

Φ(q) =

(

q1,
q5 + 3q24 tan q3

(cos q3)4
,

q4
(cos q3)3

, tan q3, q2

)′

The parameters of the function (24) involved in the transverse
function expression have been chosen as ε = 1, β1,1 =
0.14, β1,2 = 3, β2,1 = 0.4, β2,2 = 0.8, β3,1 = 1, β3,2 = 0.4.

There remains to specify the choice of v̄ = (v̄g, v̄ξ) in
(19). The function v̄ξ is defined as in Proposition 4, with
τξ(|zξ|) = 5/(1 + 0.1|zξ|). Similarly, v̄g can be chosen as
v̄g(zg) = −τg(|zg|)zg with τg = τξ. Motivated by [15],
another choice has been made. We have assumed that ν1

cosϕ1

(the longitudinal velocity of the first trailer) and ϕ̇2 are
the physical control variables whose amplitude should be
kept as small as possible –without preventing the practical
stabilization of the reference frame. This led to define the
extended control vector ¯̄w := ( ν1

cosϕ1
, ϕ̇2, α̇

′)′, and D(α, ξr)
the matrix such that, in view of (19), ¯̄w = D(α, ξr)v̄g when

zξ, v̄ξ, vr, and ξ̇r are identically equal to zero. Then, we have
set

v̄g(zg, t) = −
(z′gW2zg)Q(t)−1X(zg)

′zg

z′gX(zg)Q(t)−1X(zg)′zg

1

1 + a|zg|

with Q(t) = (D′W1D)|(α(t),ξr(t)). The above expression of
v̄g implies that, along any solution of the controlled system
such that the above mentioned variables are identically
equal to zero, one has d

dt
|zg|

2 = −2z′gW2zg (≤ 0) with
¯̄w′W1 ¯̄w being minimized at each time-instant. As explained
in [15], this way of calculating v̄g also allows for the
reduction of the number of transient maneuvers when the
distance between the last trailer and the reference frame is
initially large. For these simulations, we have set W1 =
diag{10, 1, 0.01, 0.1, 0.1}, W2 = I3, and a = 0.1.

The trailers “lengths” are l0 = 2 and l1 = 1 (meters). A
single reference trajectory presenting different properties at
different times is used. The values of the associated reference
frame velocity vr are given in the following table.

t ∈ (s) vr = (m/s, rad/s,m/s)′ properties
[0, 5) (0, 0, 0)′ ad,npe
[5, 10) (1, 0, 0)′ ad,pe
[10, 20) (−1, 0, 0)′ ad,pe
[20, 25) (1, 0, 0.314)′ ad,pe
[25, 30) (−1, 0,−2 sin(2t))′ ad,pe
[30, 35) (0,−1, 0)′ nad
[35, 40) (0, 0, 0)′ ad,npe
[40, 45) (2,−0.5,−0.5 sin(3t) + 0.3)′ nad
[45, 50) (0, 0, 0)′ ad,npe

In this table, the abbreviations used to describe the
properties of each part of the reference trajectory are: ad
and nad for admissible and non-admissible respectively,
according to whether vr,2 is or is not equal to zero; and
pe and npe for persistently exciting and non-persistently
exciting respectively, according to whether vr,1 is or is not
equal to zero.

Figures 2 and 3 show the time evolution of the position
errors (g̃1, g̃2) and orientation error g̃3 respectively. From
these figures, one can observe i) the uniform boundedness
of the tracking errors whatever the properties of the reference
trajectory, ii) the convergence of the tracking errors to zero
when the reference trajectory is admissible and persistently
exciting, iii) the automatic (resp. non-systematic) production
of maneuvers when the reference trajectory is ”strongly”
(resp. ”weakly”) non-admissible. The other figures are at-
tempts to visualize the vehicle’s motion in the plane during
different phases of the reference trajectory.

APPENDIX

Proof of Proposition 1: By definition of the property of
transversality, one has to show that the vectors

Ȳ1(f̄(α, ξ)), . . . , Ȳm(f̄(α, ξ)),
∂f̄

α1
(α, ξ), . . . ,

∂f̄

αp

(α, ξ)

span Tf̄(α,ξ)M̄ for any (α, ξ). This is equivalent to the
surjectivity, for any (α, ξ), of the mapping

η : w̄ = (w̄1, w̄2) 7−→ Ȳ 1(f̄(α, ξ))w̄1 + dαf̄(α, ξ)w̄
2
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with dα the operator of differentiation w.r.t. α. By the
property of diffeomorphism of χ, Ψ(q) is invertible for any
q. Therefore, the property of transversality is also equivalent
to the surjectivity, for any (α, ξ), of the mapping

η̄ : w̄ 7−→ Ȳ 1(f̄(α, ξ))Ψ(Φ−1(f̄(α, ξ)))w̄1 + dαf̄(α, ξ)w̄
2

We deduce from (11) and the definition of f̄(= Φ(f)) that

η̄(w̄) = dΦ(f(α, ξ))(Y 1(f(α, ξ))w̄1 + dαf(α, ξ)w̄
2)

The proof then follows from the fact that f is transverse to
Y 1 and dΦ(q) is invertible for any q.

Proof of Proposition 2: Using the fact that Φ(q0) belongs
to the open set Ō, Property 1) is a direct consequence of the
definition of a family of transverse functions centered on e,
since this implies that maxα dist(f̄ε(α), e) tends to zero as
ε tends to zero. Property 2) then follows by application of
Proposition 1, using the fact that on a Lie group, for any fixed
g0 and any transverse function f̄ , g0f̄ is also a transverse
function.

Proof of Proposition 3: Property 1) is a direct conse-
quence of (16) and the property of transversality of the
functions fε(., ξ̄) w.r.t. Y 1.

It follows from (3) that

˙̃g = X(g̃)(Cg(ξ)w − AdX(g̃−1)vr)

so that, from (2),

ż = X̄(z)AdX̄(fε(α, ξr))
(

C(ξ)w −Aα(α, ξr)α̇

−Aξ(α, ξr)ξ̇r −
(

AdX(g̃−1)vr
0

)

) (26)

This equation can be rewritten as

ż = X̄(z)AdX̄(fε)
(

C̄w̄ −Aξ ξ̇r −
(

AdX(g̃−1)vr
0

)

+ (C(ξ)− C(fεξ ))w
)

(27)

where the arguments α, ξr for fε, C̄, Aα, and Aξ have been
omitted to lighten the notation. Applying the control law (17)
yields the closed loop system

ż = X̄(z)v̄ + X̄(z)AdX̄(fε)(C(ξ)− C(fεξ ))w (28)

Let us show that the linearization of this system at z = e
is exponentially stable. By an abuse of notation, we use the
same symbols to denote z and X and their expressions in a
system of local coordinates around e mapping e to 0 ∈ R

n.
From (17), one has w = w0 +O(z) with

w0 = (Im | 0)C̄(α, ξr)
−1
(

Aξ(α, ξr)ξ̇r +
(

AdX((fε)−1)vr
0

))

the value of the control w at the equilibrium z = e and O(z)
a smooth function such |O(z)| ≤ k|z| in the neighborhood
of z = 0. The linearization of System (28) at z = e is thus
given by
(

żg
żξ

)

=

(

X(0)
∂v̄g
∂zg

(0) X(0)AdX(fεg )
∂hg
∂ξ

(fεξ , w0)

0
∂v̄ξ
∂zξ

(0) +
∂hξ
∂ξ

(fεξ , w0)

)

(

zg
zξ

)

with hg(ξ, w0) := Cg(ξ)w0 and hξ(ξ, w0) := Cξ(ξ)w0 It
follows from Assumption 1) and the assumption upon v̄ξ that

the matrix ∂v̄ξ
∂zξ

(0)+
∂hξ
∂ξ

(fεξ , w0) is upper triangular with each
element on the diagonal strictly negative. From Assumption
3), all other terms of this matrix are bounded. Therefore the
zξ sub-system is exponentially stable. Since v̄g exponentially
stabilizes the system żg = X(zg)v̄g , the associated linearized
system ż = X(0)

∂v̄g
∂zg

(0) is also exponentially stable. The
exponential stability of the linearized system and the proof of
stability of z = e for the original (nonlinear) system follow.
The fact that the tracking error q̃ converges to a neighborhood
of (e, 0) whose size tends to zero as ε tends to zero is a
direct consequence of the convergence of z to e and the fact
that (fε(., ξ̄)) is a family of transverse functions centered on
ξ̄ = (e, ξ).

Proof of Proposition 4: In the canonical basis of the Lie
algebra of SE(2) (see Section IV-B), the Ad operator is
given by the matrix

AdX(g) =





R(θ)

(

y
−x

)

0 1



 (29)

Since |g̃−1
f | is bounded by definition, AdX(g̃−1

f ) is bounded
for any basis X . Using the property of boundedness of v̄ and
Assumptions 2) and 3) one deduces that the extended control
w̄ is bounded. Applying the control law (19), one obtains in
closed-loop (compare with (28)),

ż = X̄(z)v̄ + X̄(z)AdX̄(fε)(C(ξ)− C(fεξ ))w

+ X̄(z)AdX̄(fε)

(

(AdX(g̃−1
f )− AdX(g̃−1))vr

0

)

(30)

This yields the following dynamics of zξ:

żξ = v̄ξ(zξ) + (Cξ(ξ)− Cξ(f
ε
ξ ))w

By using Assumption 1), the expression of v̄ξ(zξ), and the
fact that w is bounded (since w̄ is bounded), one deduces
that zξ converges to zero. On the zero-dynamics zξ = 0, Eq.
(30) implies that

żg = X(zg)v̄g +X(zg)(AdX(fεg g̃
−1
f )− AdX(z−1

g ))vr

It comes from (29) that

X(zg)(AdX(fεg g̃
−1
f )− AdX(z−1

g ))vr = θ̇r(zy,−zx, 0)
′

with (zx, zy) ∈ R
2 the first components of zg . Therefore

z′g żg = z′gX(zg)v̄g = −τg(|zg|)|zg|
2, where the last equality

is one of the Proposition’s assumptions. The exponential
convergence of zg to zero follows. The stability of the equi-
librium z = (e, 0) follows from the fact that, for an adequate
choice of η1, . . . , ηN > 0, V (zg, zξ) = |zg|

2 +
∑

k ηkz
2
ξ,k

is a Lyapunov function for the closed-loop system in the
neighborhood of z = (e, 0), due to the boundedness of
w = w0 at z = (e, 0) (see the proof of Proposition 3).
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Fig. 2. Position tracking errors g̃1,2 and vs. time

Fig. 3. Orientation tracking error g̃3 vs. time

Fig. 4. Fixed reference, t ∈ [0s, 5s)

Fig. 5. Admissible arc of circle, t ∈ [20s, 25s)

Fig. 6. Admissible trajectory with rapidly changing curvature, t ∈

[25s, 30s)

Fig. 7. Non-admissible lateral motion inducing maneuvers, t ∈ [30s, 35s)
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