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Abstract— In this paper we use a 2D systems setting to
develop new results on iterative learning control for linear
plants, where it is well known in the subject area that a trade-off
exists between speed of convergence and the response along the
trials. Here we give new results by designing the control scheme
using a strong form of stability for repetitive processes/2D
linear systems known as stability along the pass (or trial). The
resulting design computations are in terms of Linear Matrix
Inequalities (LMIs) and they are also experimentally validated
on a gantry robot. The control laws only use plant output
information and hence the use of a state observer is avoided.

I. INTRODUCTION

Iterative learning control (ILC) is a technique for con-

trolling systems operating in a repetitive (or pass-to-pass)

mode with the requirement that a reference trajectory yref (t)
defined over a finite interval 0 ≤ t ≤ α is followed

to a high precision. Examples of such systems include

robotic manipulators that are required to repeat a given task,

chemical batch processes or, more generally, the class of

tracking systems.

Since the original work [1] in the mid 1980’s, the general

area of ILC has been the subject of intense research effort.

Initial sources for the literature here are the survey papers

[2] and [3]. The analysis of ILC schemes is firmly outside

standard (or 1D) control theory — although it is still has a

significant role to play in certain cases of practical interest.

Instead, ILC must be seen (as one approach) in the context of

fixed-point problems or, more precisely, repetitive processes

(see the references in [4]) which are a distinct class of 2D

systems where information propagation in one of the two

independent directions only occurs over a finite duration.

In ILC, a major objective is to achieve convergence of

the trial-to-trial error and often this has been treated as the

only one that needs to be considered. In fact, it is possible

that enforcing fast convergence could lead to unsatisfactory

performance along the trial. In this paper, we address this

problem by first showing that ILC schemes can be designed

for a class of discrete linear systems by extending techniques

developed for linear repetitive processes. This allows us to

use the strong concept of stability along the pass (or trial)

for these processes, in an ILC setting, as a possible means

of dealing with poor/unacceptable transients in the along the
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trial dynamics. The results developed give control law design

algorithms which can be implemented via LMIs. Finally,

the resulting control laws are experimentally validated on

a gantry robot executing a pick and place operation where

the plant models used for design are obtained by frequency

response tests.

The remainder of this paper begins with a simulation study

which demonstrates that it is possible for trial-to-trial error

convergence to occur where the along the trial response is

very poor. This is followed by analysis which shows how the

design of a class of ILC laws based only on directly measured

outputs can be formulated in a repetitive process setting

and designed via LMIs to ensure stability along the trial.

Finally, the results of experimentally validating the designs

on a gantry robot system are given.

In this paper, Γ ≻ 0, Γ ≺ 0, are used to denote symmetric

matrices which are positive definite and negative definite,

respectively. The symbol r(·) is used to denote the spectral

radius of a given matrix. Finally, (⋆) is used to denote block

entries in the symmetric Linear Matrix Inequalities (LMIs)

which are the means by which the necessary computations

can be completed for a given numerical example.

II. BACKGROUND

Consider the case when the plant to be controlled can be

modeled as a differential linear time-invariant system with

state-space model defined by {Ac, Bc, Cc}. In an ILC setting

this is written as

ẋk(t) = Acxk(t) + Bcuk(t), 0 ≤ t ≤ α,

yk(t) = Ccxk(t),
(1)

where on trial k, xk(t) ∈ R
n is the state vector, yk(t) ∈ R

m

is the output vector, uk(t) ∈ R
r is the vector of control

inputs, and the trial length α < ∞. If the signal to be tracked

is denoted by yref (t) then ek(t) = yref (t)−yk(t) is the error

on trial k, and the most basic requirement is to force the error

to converge in k. In fact, however, it is possible that trial-

to-trial convergence will occur but produce along the trial

performance which is far from satisfactory for many practical

applications, e.g. a gantry robot whose task is to collect an

object from a location, place it on a moving conveyor, and

then return for the next one and so on. If, for example, the

object has an open top and is filled with liquid, and/or is

fragile in nature, then unwanted vibrations during the transfer

time could have very detrimental effects. Hence in such cases

there is also a need to control the along the trial dynamics

and in this paper the method is to use a stronger form of

stability theory for linear repetitive processes.
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As an example to illustrate this last point consider the

case of a linear continuous-time system whose dynamics are

modeled by the transfer-function

G(s) =
(s + 1)(s + 5)

(s + 3)(s2 + 4s + 29)
, (2)

which is to be controlled in the ILC setting using the P-type

law

uk+1(t) = uk(t) + Lek+1(t), (3)

with, in particular, L = 3 which is easily shown to result

in trial-to-trial error convergence. Fig. 1 shows the response

of the controlled system over 50 trials when the reference

signal (yref (t)) is a unit step function of 2 seconds duration

is applied at t = 0. Fig. 2 shows the performance of the

controlled system for the 30th trial. These responses confirm

that trial-to-trial error convergence occurs but along the trial

performance can be very poor. The key purpose of this

paper is to develop methods which can avoid such poor

performance by the use of stability theory for linear repetitive

processes for which we next summarize the required results.

The unique characteristic of a repetitive, or multipass [4],

process is a series of sweeps, termed passes, through a set of

dynamics defined over a fixed finite duration known as the

pass length. On each pass an output, termed the pass profile,

is produced which acts as a forcing function on, and hence

contributes to, the dynamics of the next pass profile. This, in

turn, leads to the unique control problem in that the output

sequence of pass profiles generated can contain oscillations

that increase in amplitude in the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the

pass length (assumed constant). Then in a repetitive process

the pass profile yk(t), 0 ≤ t ≤ α, generated on pass k acts as

a forcing function on, and hence contributes to, the dynamics

of the next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0.

Attempts to control these processes using standard (or 1D)

systems theory and algorithms fail (except in a few very

restrictive special cases) precisely because such an approach

ignores their inherent 2D systems structure, i.e. information

propagation occurs from pass-to-pass (k direction) and along

a given pass (t direction) and also the initial conditions are

reset before the start of each new pass. To remove these de-

ficiencies, a rigorous stability theory has been developed [4]

based on an abstract model of the dynamics in a Banach

space setting which includes a very large class of processes

with linear dynamics and a constant pass length as special

cases, including those described by (4) below. In terms of

their dynamics, it is the pass-to-pass coupling (noting again

their unique feature) which is critical. This is of the form

yk+1 = Lαyk, where yk ∈ Eα (Eα a Banach space with

norm || · ||) and Lα is a bounded linear operator mapping

Eα into itself.

Consider now discrete linear repetitive processes described

by the following state-space model over p = 0, 1, . . . , α −
1, k ≥ 1,

xk(p + 1) = Adxk(p) + Bduk(p) + Bd0yk−1(p),
yk(p) = Cdxk(p) + Dduk(p) + Dd0yk−1(p),

(4)

where xk(p) ∈ R
n, uk(p) ∈ R

r, yk(p) ∈ R
m are the state,

input and pass profile vectors respectively. To complete the

process description, it is necessary to specify the initial, or

boundary, conditions, i.e. the state initial vector on each pass

and the initial pass profile. Here these are taken to be zero. In

the next section, we show how a repetitive process setting can

be used to analyze ILC schemes and, in particular, how the

stability theory of these processes can be employed leading

to control law design which prevents performance such as

that of Fig.2 from arising.

III. ILC AS A REPETITIVE PROCESS

From this point onwards we work in the discrete domain

and so assume that the process dynamics have been sampled

by the zero-order hold method at a uniform rate Ts sec-

onds to produce a discrete state-space model with matrices

{A,B,C}. Also introduce

ηk+1(p + 1) = xk+1(p) − xk(p),
∆uk+1(p) = uk+1(p) − uk(p),

(5)

and let ek(p) = yref (p) − yk(p) denote the current trial

error. Then it is possible to proceed as in [5] and use an

ILC law which requires the current trial state vector xk(p)
of the plant. In practical applications, this vector may not be

available for measurement or, at best, only some of its entries

are and hence in general an observer will be required. In this

paper, we avoid the use of an observer by using the control

law

∆uk+1(p) = K1µk+1(p + 1) + K2µk+1(p) + K3ek(p + 1),
(6)

where ∆uk+1(p) represents the term to be added to the

previous trial input and

µk(p) = yk(p − 1) − yk−1(p − 1) = Cηk(p). (7)

The extra term in the control law considered here has been

added as a means, if necessary, of compensating for the

effects of not assuming that the state vector is available for

use in the control law.

By routine analysis, we can write (6) as

∆uk+1(p−1) = K1Cηk+1(p)+K2Cηk+1(p−1)+K3ek(p),
(8)

and hence on introducing

η̃k+1(p + 1) =

[

ηk+1(p + 1)
ηk+1(p)

]

(9)

we the controlled system dynamics can be written as

η̃k+1(p + 1) = Âη̃k+1(p) + B̂0ek(p),

ek+1(p) = Ĉη̃k+1(p) + D̂0ek(p),
(10)

where

Â =

[

A + BK1C BK2C

I 0

]

,

B̂0 =

[

BK3

0

]

,

Ĉ =
[

−CA − CBK1C −CBK2C
]

,

D̂0 = (I − CBK3),

(11)
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Fig. 1. Responses produced by (2) under the ILC law (3) with L = 3.
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Fig. 2. Responses produced by (2) under the ILC law (3) with L = 3 and k = 30.

which is of the form (4) and hence the repetitive process

stability theory can be applied to this ILC control scheme.

The stability theory for linear repetitive processes with

constant pass length consists of two distinct concepts.

Asymptotic stability, i.e. BIBO stability over the fixed finite

pass length α > 0, requires the existence of finite real scalars

Mα > 0 and λα ∈ (0, 1) such that ||Lk
α|| ≤ Mαλk

α, k ≥ 0
(where || · || also denotes the induced operator norm). For

processes described by (4) it has been shown elsewhere (see,

for example, Chapter 3 of [4]) that this property holds if, and

only if, r(Dd0) < 1. When applied to the ILC state-space

model (10) this requires that r(D̂0) = r(I − CBK3) < 1.

This last condition is precisely that obtained by applying

2D discrete linear systems stability theory to (10) as first

proposed in [6] to ensure trial-to-trial error convergence

only. Using the repetitive process setting, however, provides

a means of examining what happens after a ‘very large’

number of trials have elapsed if this form of stability holds.

The method of doing this is by the so-called limit profile for

asymptotically stable linear repetitive process which we now

introduce in terms of (4).

Suppose that r(Dd0) < 1 for a discrete linear repetitive

process described by (4). Suppose also and the input se-

quence applied {uk+1}k converges strongly as k → ∞ (i.e.

in the sense of the norm on the underlying function space)

to u∞. Then the strong limit y∞ := limk→∞yk is termed

the limit profile corresponding to this input sequence and its

dynamics (with Dd = 0 for ease of presentation) is described

by

x∞(p + 1) = (Ad + Bd0(I − Dd0)
−1Cd)x∞(p)

+ Bdu∞(p),

y∞(p) = (I − Dd0)
−1Cdx∞(p). (12)

Note, however, that this property does not guarantee that

the limit profile is stable as a 1D discrete linear system,

i.e. r(Ad + Bd0(I − Dd0)
−1Cd) < 1 — a point which is

easily illustrated by the case when Ad = −0.5, Bd = 0,

Bd0 = 0.5 + β, Cd = 1, Dd = 0, Dd0 = 0 and β > 0 is a

real scalar such that |β| ≥ 1.

The reason why asymptotic stability does not guarantee

a limit profile which is stable along the pass is due to the

finite pass length. In particular, asymptotic stability is easily

shown to be bounded-input bounded-output (BIBO) stability

with respect to the finite and fixed pass length. Also in cases

where this feature is not acceptable, the stronger concept

of stability along the pass must be used. In effect, for the

model (4), this requires that the BIBO stability property holds

uniformly with respect to the pass length α.

For the discrete linear repetitive processes considered here,

there are a wide range of stability along the pass tests but

here we use an LMI based condition since, see also below,

it leads immediately to algorithms for control law design –

a feature which is not present in alternatives.

Theorem 1: [4] A discrete linear repetitive process de-

scribed by (4) is stable along the pass if there exist matrices
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Y ≻ 0 and Z ≻ 0 such that the following LMI holds




Z − Y ∗ ∗
0 −Z ∗

Â1Y Â2Y −Y



 ≺ 0, (13)

where

Â1 =

[

Â B̂0

0 0

]

, Â2 =

[

0 0

Ĉ D̂0

]

. (14)

IV. LMI BASED ILC DESIGN

Return now to the ILC setting. Then we have the following

result

Theorem 2: An ILC scheme described by (10) is stable

along the trial if there exist matrices Y ≻ 0, Z ≻ 0, N1, N2

and N3 such that the following LMI with linear constraints

holds




Z − Y ∗ ∗
0 −Z ∗

Ω1 Ω2 −Y



 ≺ 0,

CY1 = PC,

CY2 = QC,

(15)

where

Y =





Y1 0 0
0 Y2 0
0 0 Y3



 , (16)

and

Ω1 =

2

4

AY1 + BN1C BN2C BN3

Y1 0 0

0 0 0

3

5 ,

Ω2 =
2

4

0 0 0

0 0 0

−CAY1 − CBN1C −CBN2C Y3 − CBN3

3

5 .

(17)

The matrices P and Q are additional decision variables.

If the LMI with equality constraints of (15) is feasible, the

control law matrices can be calculated using

K̂1 = N1P
−1,

K̂2 = N2Q
−1,

K̂3 = N3Y
−1
3 .

(18)

Proof: Interpret Theorem 1 in terms of the state-space

model and then set CY1 = PC, CY2 = QC, where P and

Q are unknown matrices to obtain (after routine analysis)




Z − Y ∗ ∗
0 −Z ∗

Ω1 Ω2 −Y



 ≺ 0, (19)

where

Ω1 =

2

4

AY1 + BK1PC BK2QC BK3Y3

Y1 0 0

0 0 0

3

5 ,

Ω2 =
2

4

0 0 0

0 0 0

−CAY1 − CBK1PC −CBK2QC Y3 − CBK3Y3

3

5 ,

CY1 = PC,
CY2 = QC.

(20)

Substituting

K1P = N1, K2Q = N2, K3Y3 = N3, (21)

into (20) to obtain (17). Finally, it is easy to see that (18)

can be calculated from (21) and the proof is complete.

Finally, to apply the control law of (8) note that after simple

algebraic manipulations we obtain

uk(p) = uk−1(p) + K1(yk(p) − yk−1(p))
+K2(yk(p − 1) − yk−1(p − 1))
+K3(yref (p + 1) − yk−1(p + 1)).

V. EXPERIMENTAL VERIFICATION

To experimentally verify the practical value of the de-

scribed approach tests were undertaken using a multi-axis

gantry robot, see Fig. 3, previously used for testing and

comparing the performances of other ILC algorithms, see,

for example, [7]. Each axis of the gantry robot is controlled

individually and the models of all were obtained by means of

frequency response tests that determined the continuous-time

transfer-functions.

Fig. 3. The gantry robot

The transfer function for X-axis is

G(s) = 13077183.4436(s+113.4)
s(s2+61.57s+1.125·104)(s2+227.9s+5.647·104)

· (s2+30.28s+2.13·104

(s2+466.1s+6.142·105) .

(22)

This was discretized using the zero-order hold method for a

sampling time of Ts = 0.05 seconds. The required reference

trajectory was designed to simulate a “pick and place”

process and this reference signal has been used in all previous

algorithm tests allowing comparison of obtained results. The

X-axis component of this trajectory is shown in Fig. 4.

The result of Theorem 2 provides infinitely many solutions

for the control law matrices where in the example here these

are scalars. Moreover, many of the values of K3 produced

could be very small with possibly detrimental effects on

along the trial performance. One means of maximizing the

value of K3 is to minimize the objective function

f(N3, Y3) = −N3 + Y3 · h, (23)

subject to the LMI constraints (15)–(17), where N3 and Y3

are as in Theorem 2 and h is a positive real scalar to be
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selected. By this route the following set of alternative feasible

control law matrices can be obtained

• K3 = 17.74083,(K1 = −326.4815, K2 = 4.3525 · 10−13),

• K3 = 47.7641,(K1 = −262.8253, K2 = 2.87865 · 10−11),

• K3 = 239.375,(K1 = −207.8933, K2 = −4.7220 · 10−7),

The control laws here have been designed using a sampling

period of 0.05 seconds, however this is of the same order

as the time constants of the gantry robot actuators and

consequently performance of the ILC algorithm may be

compromised. A choice of a higher sampling frequency for

the design was not possible as the resulting LMIs were

not feasible, however, previous experiments have shown that

a sampling frequency of at least 100 Hz is required to

ensure a reasonable performance. To overcome this problem

5 independent parallel control laws (operating with a 0.05 sec

sampling period) were used to produce an updated control

demand at 0.01 sec intervals.

Fig. 5 gives the experimental results obtained with the con-

trol laws computed above. These clearly show that different

choices of feasible control law matrices do indeed influence

the performance achieved. In particular, the convergence rate

of the algorithm can be increased (but at the possible cause

of an increase in the final error).

x
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Fig. 5. Influence of the control law on the error ek(p)

It has been frequently reported (see, for example, [8]) that

ILC algorithms can exhibit higher frequency noise build up

as the number of trials increases and tracking of the reference

signal then begins to diverge (due to numerical problems

in both computation and measurement). In this design, the

higher-frequency component buildup was observed in some

cases, resulting in vibrations which greatly increased the

error ek(p) as illustrated in Fig. 6. To deal with such
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Fig. 6. The Input/Output/Error signals on the 50 th trial without filtering

cases, one relatively simple option is to employ a zero-

phase Chebyshev low-pass filter. Here it was decided to

use a 6 th order filter with parameters tuned to obtain best

performance. Here we compare the performance of two filters

with different cut-off frequencies. The first has a cut-off at

15 Hz and the second 5 Hz and the filter z transfer-functions,

denoted by H15(z) and H5(z) respectively, are given in the

appendix.

Fig. 7(a) shows the learning progression of the outputs

produced by the X-axis over 20 trials with Figs. 7(b) and 7(c)

showing the corresponding control input and error dynamics

respectively. These results demonstrate, in particular, that

the new ILC design algorithm developed here is capable of

preventing the undesirable along the pass dynamics, such

as illustrated by Fig. 1 without requiring excessive control

action. It must be stressed, however, that if a zero-phase

filter is required in application to a physical example then

its cut-off frequency influences the performance obtained -

see Fig. 8.

VI. CONCLUSIONS

This paper has considered the design of ILC schemes using

a discrete linear repetitive processes setting. This releases

a stability theory for application which demands uniformly

bounded along the pass (or trial) dynamics (whereas previous

approaches only demand bounded dynamics over the finite

pass length). Here we have shown that this approach leads

to a stability condition expressed in terms of an LMI with

immediate formulas for computing the control law matrices.

This is a potentially powerful approach in this general area
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Fig. 7. (a) Evolution of the output of X-axis for the first 20 trials in one experiment, (b) Evolution of the control input, (c) Evolution of the error
dynamics
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Fig. 8. Influence of the filter cut-off frequency on the error ek(p)

which also makes a significant step forward in the application

of repetitive process systems theory. Another particularly

notable feature of the results here is that they allow control

law design without access to state information together with

experimental verification.

The results here establish the basic feasibility of this

approach in terms of both theory and experimentation. There

is a significant degree of flexibility in the resulting design

algorithm and current work is undertaking a detailed inves-

tigation of how this can be fully exploited.
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VII. APPENDIX

H15(z) =
a15(z)

b15(z)

a15(z) = 0.0020 + 0.0101z−1 + 0.0202z−2

+ 0.0202z−3 + 0.0101z−4 + 0.0020z−5

b15(z) = 1.0000 − 3.1624z−1 + 4.7607z−2

− 4.0528z−3 + 1.9344z−4 − 0.4153z−5

H5(z) =
a5(z)

b5(z)

a(z) = 0.0102 × 10−3 + 0.0512 × 10−3z−1

+ 0.1024 × 10−3z−1 + 0.1024 × 10−3z−1

+ 0.0512 × 10−3z−1 + 0.0102

b(z) = 1.0000 − 4.5879z−1 + 8.5399z−1

− 8.0560z−1 + 3.8495z−1 − 0.7452
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