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Abstract— In this work we analyze the controllability and
observability properties of several interconnection configura-
tions such as the chain topology and cyclic topology as well as
combinations of these two topologies. A leader/follower control
strategy is proposed to control the center of mass of the multiple
agent system. It is shown that the trajectory tracking for a
multi-agent system converges to the constant input reference
given only to the leader. Also, it is shown that choosing an
appropriated gain, the agents achieve consensus for constant
input reference.

Index Terms— Multi-agent coordination, Trajectory tracking,
Formation Control, Controllability, Observability.

I. INTRODUCTION

Multiple agent coordination as well as multiple spacecraft

flying in formation has been intensively investigated during

the last decade. Coordination control of multiple aerial,

ground or underwater vehicles has important applications.

They include the transport of heavy or large loads, search

and rescue operations, space or ocean exploration, etc.

Different approaches have been proposed in the literature

for coordinating multiple robot systems. There are mainly

three approaches: Leader/Follower, Virtual Structure and

Behavioral Control.

In the leader/follower architecture, one agent is desig-

nated as leader while the others are designated as followers

which should track the leader. Leader/follower approaches

are described in: [1], [2]. The virtual structure approach

considers every agent as an element of a larger structure

[3]. Finally the behavioral control in [4] and [5] is based

on the decomposition of the main control goal into tasks or

behaviors. This approach also deals with collision avoidance,

flock centering, obstacle avoidance and barycenter.

Consensus algorithms allow the coordination of velocities

and/or positions of multiple agents. They have been the

object of extensive analysis and development [6], [7] and[8].

Trajectory tracking of flocks has been recently studied in [9]

and [10].

A natural way to analyze the relationship and communi-

cation between agents is using directed or undirected graphs.

Every node in a graph is considered as an agent which can

have information exchange with all or several agents. In

[7], [8], and [11], the authors use algebraic graph theory in

order to model the information exchange between vehicles.

By using this technique several control strategies have been

developed. [9] presents a new strategy for consensus in multi-

agent systems with a time varying reference. Several cases
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are presented, such as: all agents have access to the reference,

several agents have access to the reference, etc. The analysis

presented assumes that each agent evolution is represented

by a first order integrator.

In [12] and [13] an analysis of multiple agent coordination

using a passivity approach to decompose the system into

two passive subsystems is presented. The first subsystem

called ”shape” maintains the formation of the group of agents

while the second subsystem called ”lock” represents the

translational dynamics of the group. In [13], the convergence

of velocity and relative position of the agents via passive

decomposition is shown.

A bilateral teleoperation approach has been used in [10] to

teleoperate a group of agents. The authors provide results to

achieve a bilateral teleoperation one-to-many (i.e. one master

and many slaves in a leader/follower achitecture). The center

of mass is used as a virtual master robot which is used

to coordinate the slave robots. Trajectory tracking is also

considered using an input to state stability analysis.

Most of the papers in literature dealing with multiple

agent coordination consider fully actuated agents capable of

movement in all directions. Some represent the agents by

single integrators and some other by double integrators. A

state of the art in consensus algorithms can be found in [6].

In this paper we propose a passive approach for multiple-

vehicle coordination and flock trajectory tracking control.

The study is mainly focused on two configurations: cyclic

and chain configurations of information exchange between

agents. The control strategy is composed of two terms. The

first control term is used for agent consensus and the second

control term is used for achieving a desired position of the

formation center of mass. We use the output synchronization

control in [14] for agent coordination. This type of strategy

is such that the control input for each agent depends only

on the information coming from its neighbors. Tracking of

the center of mass is achieved by using a full state feedback

control on the leader. Since the leader is not assumed to have

direct information from all the agents, the state is observed

from the input and output of the leader. We therefore require

observability and controllability (or at least detectability

and stabilizability) of the agents network from the leader

input and output. Observability and controllability of agent

formations is studied for the case of ring and chain topologies

using a coordinating controller. Controllability and observ-

ability of leader-based multi-agent coordination has been

studied in [15]-[18]. Here, the authors provide sufficient

conditions for multi-agent coordination controllability and

observability using multiple leaders and how interconnection

graph topology determines controllability and observability
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properties.

The paper is organized as follows: Section 2 introduces the

background and preliminaries on information graph theory.

Section 3 presents the dynamic model of the proposed

configurations. Section 4 presents necessary conditions to

satisfy the controllability and observability of the multi-

agent system. Flock trajectory tracking control based on the

centroid of the system is also presented. Section 5 is devoted

to simulation results. Conclusions are given in section 6.

II. PRELIMINARIES

A multi-agent dynamic system can be modelled as a group

of dynamical systems which has a information exchange

topology represented by information graphs. A graph G
is a pair G(N , E) consisting of a set of nodes N =
{ni : ni ∈ N ,∀i = 1, ..., n} together with their interconnec-

tions E on N [6]. Each pair (n1, n2) is called an edge

e ∈ E . An undirected graph is one where nodes i and j can

get information from each other. In a digraph, the ith node

can get information from the jth node but not necessarily

viceversa. We can think of the information exchange between

agents as an undirected graph but also as a digraph which

implies a more complicated problem. A graph is connected

if for every pair {x, y} of distinct vertices there is a path

from x to y. A connected graph allows the communication

between all agents through the network. A graph is said to

be balanced if its in-degree (number of communication links

arriving at the node) is equal to its out-degree (number of

communication links leaving the node).

III. CONTROLLABILITY AND OBSERVABILITY

OF INTERCONNECTIONS

We will study the controllability and observability of in-

terconnections using a coordinating control strategy. We will

assume that the agents are represented by double integrators.

We will first consider the case of three agents and study the

controllability and observability of the system using only the

input and output of a single agent. It is shown that for the

cyclic topology the system is observable and controllable

from any agent. It also shown that for the chain topology

with undirected communication, the system is controllable

and observable for agents 1 and 3 but only stabilizable and

detectable for agent 2.

Fig. 1. Information flow configuration: a) Cyclic topology (left), b) Chain
topology (right).

A. Cyclic topology

In the case of 3 agents, the cyclic topology with input and

output on the first agent, is represented as
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Let O and C be the observability and controllability

matrices. It is clear that the system is observable since det

O = 1. Also the system is controllable since det C = −1.

B. Chain topology. Input and output on agent 1.

In the chain topology with input and output of the first

agent, the system is represented by
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The system is observable since detO = 1. The system

is also controllable since det C = 1. Due to symmetry, the

same result holds for agent 3.

C. Chain topology. Input and output on agent 2.

Let us consider the same chain configuration as before but

considering this time the input and output of agent 2.
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ẋ2

ẋ3
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The system is not observable since det O = 0. Note

however that we assumed that agent 2 measures all the state.

The system is not controllable since det C = 0. Let

wT
1
, wT

2
and wT

3
be the eigenvectors of the Laplacian in (4),

see (21). Premultiplying (4) by wT
1
, wT

2
, wT

3
, we obtain

ẍ1 + ẍ2 + ẍ3 = u2

ẍ1 − 2ẍ2 + ẍ3 = −3(ẋ1 − 2ẋ2 + ẋ3) + u2

ẍ1 − ẍ3 = −(ẋ1 − ẋ3)

Equations (4) can also be rewritten as

ẍ2 = −2ẋ2 + (ẋ1 + ẋ3) + u2

ẍ1 + ẍ3 = 2ẋ2 − (ẋ1 + ẋ3)
ẍ1 − ẍ3 = −(ẋ1 − ẋ3)

(6)

The last equation represents a stable uncontrollable mode.

It follows that ẋ1 − ẋ3 = e(0) exp−t with e(0) = ẋ1(0) −
ẋ3(0). Thus defining z = ẋ1 + ẋ3, (6) can be reduced to:

ẍ2 = −2ẋ2 + z + u2

ż = 2ẋ2 − z

The reduced system is controllable since det C = 2. Also,

the reduced system is observable since det O = 1.
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D. General case

The examples above suggest that the interconnection of

agents using the coordinating control strategy leads to sys-

tems that are controllable and observable from the input and

output of every agent or that are at least stabilizable and

detectable. We will prove next that this is true in the general

case when the system is represented by

ẍ = −Lẋ + bu (7)

y = cT ẋ

where L is the Laplacian matrix having the following

properties:

1) L has a single eigenvalue at 0, λ1(L) = 0 with right

eigenvector wT
1

=
[

1 1 · · · 1
]

, i.e. Lw1 = 0.

2) The remaining eigenvalues have all positive real part,

i.e. Re[λi(L)] > 0 and Lwi = λiwi for i = 2, ..n,

and wi ∈ Rn. If L is symmetric then the remaining

eigenvalues are all positive, i.e. λi(L) > 0.

We assume that the information exchange graph is bal-

anced. Let us assume also that in the coordinating controller

the gains multiplying the signals in between agents are all

equal to 1. For the i− th row of L, the entries lij = −1 for

i 6= j correspond to the gains multiplying the signals from

other agents coming to agent i. For the i − th column of

L, the entries lji = −1 for i 6= j correspond to the gains

multiplying the signals going out of agent i towards the other

agents. We then have the following property.

3) w1 defined above is also the left eigenvalue of L
corresponding to the eigenvalue 0, i.e. wT

1
L = 0.

Let us study the controllability and observability of the

system from the input and output of agent k, i.e. cT =
bT =

[

0 · · · 0 1 0 · · · 0
]

where only the k− th

element is different from zero.

Proposition 1: Consider the multiple agent system whose

evolution is described by (7). This system is unobservable if

there exist a right eigenvector ωi of L such that cT ωi = 0.

Proof: Let ω1 be the right eigenvector of L correspond-

ing to the zero eigenvalue. Note that cT ω1 6= 0, and thus, the

mode corresponding to (λ1, w1) is observable. If cT wi = 0
for some i = 2, ..n, then the system will have non observable

modes, but such modes will be asymptotically stable, i.e.,

they will converge to zero, because Re[λi(L)] > 0 for

i = 2, ..., n.

Proposition 2: Consider the multiple agent system whose

evolution is described by (7). This system is uncontrollable

if there exist an eigenvector vi of LT such that vT
i b = 0.

Proof: Note that L and LT have the same eigenvalues.

Let vi be the right eigenvectors of LT (or the left eigenvectors

of L), i.e. LT vi = λivi or vT
i L = λiv

T
i . Pre-multiplying (7)

by vT
i we get

vT
i ẍ = −vT

i Lẋ + vT
i bu

or

vT
i ẍ = −λiv

T
i Ẋ + vT

i bu (8)

If vT
i b = 0 for some i, then

d

dt
(vT

i ẋ) = −λi(v
T
i ẋ)

which means that the corresponding mode is not controllable.

Nevertheless, for i = 2, ..., n such mode is asymptotically

stable and converges to zero. Recall that for i = 1 we

have v1 = w1 and therefore vT
1
b 6= 0. Thus the mode

corresponding to (λ1, v1) is controllable.

Lemma 1: Center of mass of multi-agent system (7) cor-

responds to controllable and observable modes.

E. The cyclic topology in the general case

In this section it will be proved that the cyclic topology is

controllable and observable in the general case. The laplacian

matrix of the cyclic topology is the following

−L =















−1 1
−1 1

. . .
. . .

−1 1
1 −1















(9)

and c = bT =
[

0 · · · 1 · · · 0
]

where only the k-

th element is different from zero. For simplicity, this system

will be rewritten as

ẍ = −Lrẋ + bul

yl = cT ẋ

1) Observability: The system will be non observable if

there exists a vector v such that

vT b = 0 (10)

and

Lrv = λv (11)

with vT =
[

v1 v2 · · · vn

]

and a real λ.

For λ = 0, vT =
[

1 1 · · · 1
]

and thus vT b 6= 0
which is a contradiction.

For λ 6= 0, it follows from (10) that v1 = 0. In view of

the structure of Lr in (11) it follows that v2 = 0. Iterating

it follows that v = 0. We conclude that the system is

observable.

2) Controllability: The system will be non controllable if

there exists a vector v such that

vT b = 0 (12)

and

vTLr = λvT (13)

with vT =
[

v1 v2 · · · vn

]

and a real λ.

For λ = 0, it follows from (12) that v1 = 0. In view of

(13) it follows that v2 = 0. Iterating it follows that v = 0.

For λ 6= 0, since v1 = 0 and in view of the structure of

Lr in (13) it follows that vn = 0. Substituting in (13) gives

vn−1 = 0. Iterating it follows v = 0. We conclude that the

system is controllable.
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F. The chain topology in the general case

In this section it will be proved that the chain topology is

controllable and observable in the general case. The laplacian

matrix of the chain topology is the following

−L =















−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1















(14)

and c = bT =
[

0 · · · 1 · · · 0
]

where only the k-

th element is different from zero. For simplicity, this system

will be rewritten as

ẍ = −Lcẋ + bul

yl = cT ẋ

1) Controllability: The system will be non controllable if

there exists a vector v such that

vT b = 0 (15)

and

vTLc = λvT (16)

with vT =
[

v1 v2 · · · vn

]

and a real λ.

For λ = 0, since v1 = 0, from (16) it follows that v2 = 0.

Iterating it follows that v = 0.

For λ 6= 0, in view of the structure of Lc in (14) it follows

from (16) that v2 = 0. Iterating it follows that v = 0. We

conclude that the system is controllable.

2) Observability: Given that Lc = LT
c and b = cT , the

system is also observable.

G. Combinations of chain and cyclic topologies

In this section we show that a network of agents obtained

by appropriately combining the cyclic and chain topologies

is controllable and observable. Let us consider the following

topology

6
ր ց

1 ⇐⇒ 2 ⇐⇒ 3 5
տ ւ

4

Considering the input and output of agent 1, the state space

representation is given by

ẍ = −Lcoẋ + bu1

y1 = cT ẋ

where

−Lco =

















−1 1
1 −2 1

1 −2 1
−1 1

−1 1
1 −1

















(17)

and c = bT =
[

1 0 · · · 0
]

.

1) Controllability: The system will be non controllable if

there exists a vector v such that

vT b = 0

and

vTLco = λvT (18)

with vT =
[

v1 v2 · · · v6

]

and λ real.

Case λ = 0. In this case the only vector satisafing (18) is

vT =
[

1 1 · · · 1
]

which implies that vT b 6= 0.

Case λ 6= 0. In view of the structure of Lco in (17) it

follows that v1 = 0 =⇒ v2 = 0. Similarly it follows that

v3 = 0, v6 = 0, v4 = 0 and v5 = 0.

We conclude that the system is controllable.

2) Observability: The system will be non observable if

there exists a vector v such that

vT b = 0 (19)

and

Lcov = λv (20)

with vT =
[

v1 v2 · · · v6

]

and a real λ.

Case λ = 0. The only vector satisfying (20) is vT =
[

1 1 · · · 1
]

and thus vT b 6= 0 which is a contradic-

tion.

Case λ 6= 0. In view of the structure of Lco in (18) and

since v1 = 0, it follows that v2 = 0. Iterating it follows that

v = 0. We conclude that the system is observable.

Remark 1: In view of the structure of Lco in (18) and the

arguments described above, it follows that the controllability

and the observability properties are preserved if the chain

and the cyclic topologies in (17) have arbitrary length.

H. Simple configurations that are either non controllable or

non observable

In order to help characterizing the configurations that are

both controllable and observable, we present in this section

a series of illustrative simple configurations that are not in

the form (17) and that fail to be controllable and observable.

We will denote by L, Ci,Oi the Laplacian, the controllability

and observability matrices respectively when using the input

and output of the i − th agent.

1) Example 1:

1
ր ց

2 ⇐⇒ 4
տ ւ

3

Note that det C1 = det C2 = 0.We have that detO1 =
detO2 = 0

2) Example 2:

1
m m

2 ⇐⇒ 3

Note that det C1 = detO1 = 0
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3) Example 3:

1
ր ↓

2 ←− 3 ⇐⇒ 4

det C1 = 0, detO1 = 1, det C2 = −1, detO2 = 0, det C3 =
0, detO3 = 0, det C4 = 1, detO4 = −1 Controllability and

observability from agent 4 can also be proved as it was done

for (17).

4) Example 4:

5
m

1 ⇐⇒ 2 −→ 4
↑ ւ
3

det C1 = 0, detO1 = 0
5) Example 5:

1 ⇐⇒ 2 −→ 4
↑ ւ
3 ⇐⇒ 5

det C1 = −1,detO1 = 0

IV. FORMATION LEADER TRACKING

In this section we introduce a coordination control for

flock tracking. We first study the case of three agents and

then we extend the method to the general case.

A. Eigenvalues and eigenvectors of the system

Consider the case of three agents in chain topology de-

scribed in (3). The eigenvalues of A in (3) are 0,−1,−3.

Their corresponding eigenvectors are

wT
1

=
[

1 1 1
]

wT
2

=
[

1 0 −1
]

wT
3

=
[

1 −2 1
]

(21)

Premultiplying (3) by wT
1
, wT

2
, wT

3
above we obtain

ẍ1 + ẍ2 + ẍ3 = u1

ẍ1 − ẍ3 = −(ẋ1 − ẋ3) + u1

ẍ1 − 2ẍ2 + ẍ3 = −3(ẋ1 − 2ẋ2 + ẋ3) + u1

(22)

Define ẋCM = 1

3

3
∑

i=1

ẋi and its desired velocity value

ẋd
CM . Consider the tracking control law

u1 = 3ksat
{

ẋd
CM − ẋCM

}

(23)

where sat(·) represents the saturation function and k is a

positive gain. Note that ẋCM is not directly measurable by

the leader (agent 1), but the state can be observed from the

input and output of agent 1. Defining eCM = ẋd
CM − ẋCM

and introducing (23) into (22) we get

ẍCM = ksat {eCM}
ẍ1 − ẍ3 = −(ẋ1 − ẋ3) + 3ksat {eCM}

ẍ1 − 2ẍ2 + ẍ3 = −3(ẋ1 − 2ẋ2 + ẋ3) + 3ksat {eCM}

If the desired velocity value ẋd
CM is constant, then ẋCM −→

ẋd
CM as t −→ ∞,which implies that u1 −→ 0 and (ẋ1 −

ẋ3), (ẋ1 − ẋ2) −→ 0. Notice that for small values of k, the

convergence speed of ẋCM is slow, but the transient in the

errors (ẋ1 − ẋ3), (ẋ1 − ẋ2) will be smaller.

From the previous analysis we can state the following

lemma

Lemma 2: Consider a multi-agent system of the form (7)

with coordinating control law (23). If ẋd
CM is constant, then

ẋCM −→ ẋd
CM as t −→ ∞,which implies that u1 −→ 0

and (ẋi − ẋj) −→ 0.

B. Formation leader tracking in the general case

Define ẋCM = 1

N

N
∑

i=1

ẋi where N is the number of agents

in the formation. Let ẋd
CM be the desired value for ẋCM .

Assume for simplicity that agent 1 is the leader, i.e. cT =
bT =

[

1 0 · · · 0
]

and that the control law is

u1 = Nksat
{

ẋd
CM − ẋCM

}

(24)

where sat(·) represents the saturation function and k is a

positive gain. Note that ẋCM may not be directly measurable

for the leader (agent 1). We assume the system is observable

from the input and output of the leader. The state can

therefore be observed from the input and output of agent

1. Introducing (23) into (8) we get

ẍCM = ksat
{

ẋd
CM − ẋCM

}

d
dt

(vT
i Ẋ) = −λi(v

T
i Ẋ) + vT

i bu1 ; i = 2, .., N
(25)

The modes in the last equation above are all stable. When

u1 = 0, these modes converge to zero which means that

(ẋi− ẋj) −→ 0 for i 6= j. This property is obtained by using

the coordinating control algorithm that leads to system (7).

These modes are uncontrollable when vT
i b = 0. There is a

trade-off in the choice of gain k in (24). For smaller values

of k, the speed of convergence of ẋCM is slower, but the

transient in the errors (ẋi − ẋj) for i 6= j, will be smaller.

C. Observer design

Due to the nature of information flow between agents, full

state is in general not available. Thus, we have developed a

coordination control based on the center of mass of the multi-

agent system. Full state is needed in order to compute the

coordination control (24). In order to obtain the full state we

propose a Luenberger observer of the form:

ẋ = Ax − Bu(x̂)
˙̂x = L̄Cx + (A − L̄C)x̂ − u(x̂)

y = Cx

where x is the state vector, x̂ is the observed state vector, L̄

is the Luenberger gain vector.

V. SIMULATIONS

We will consider both, the case when partial and full state

of the multi-agent system is available from measurement.

When the state is not available from measurement a Luen-

berger observer is used to estimate the state. It is shown

that the multi-agent system synchronizes in velocity and
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position using the combination of coordinating and tracking

control. Synchronization of the center of mass is achieved

with respect to a continuous time varying reference while

there is a small bias in agents synchronization with the input

reference. When observer is used in the multiagent system,

simulation results (Fig. 2 - Fig. 3) show the observer state

convergence to the actual state which implies a convergence

of the center of mass to the input reference. Agents’ state

also converge to the center of mass reference.
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Fig. 2. Case a) Velocity consensus and tracking considering full state
available for 3-agent chain configuration.
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Fig. 3. Case b) Velocity consensus and tracking using Luenberger Observer
for 3-agent chain configuration.

VI. CONCLUSION

In this paper we have proposed a control method for

synchronizing and tracking multiple agents in formation. We

have used the coordinating control in [14] for which the input

of every agent depends only on its neighbors information.

Tracking of the center of mass of the agents formation

has been achieved by using state feedback control applied

to the leader. Since the leader is not assumed to have direct

information from all the agents, the state is observed from

the input and output of the leader. This approach requires

observability and controllability (or at least detectability and

stabilizability) of the agents network from the leader input

and output. The observability/controllability properties for

chain and cyclic topologies has been studied in this paper.

It has been shown that the interconnection of agents using

the coordinating control strategy and leading to systems as

(7) are stabilizable and detectable from the input and output

of any agent.

It has been proved that, after applying a coordinating

control, the cyclic topology is observable and controllable

from any agent and the chain topology is observable and

controllable from the first or the last agent of the chain. A

cyclic topology and a chain topology can be interconnected

in cascade to obtain a new configuration that is controllable

and observable provided that the input and output are taken

from the first agent of the chain topology as in (17). Several

simple counter-examples show that adding any extra inter-

connection to the cyclic topology, the chain topology or the

combination of both as in (17) leads to either uncontrollable

or unobservable modes. This means that the most general

combination of chain and cyclic topologies that is both

controllable and observable from one agent (the first agent of

the chain) is the cascade interconnection of a chain topology

and a cyclic topology as in (17).
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