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Abstract— This paper considers the controller synthesis prob-
lem for the class of linear time-invariant L2 behaviors. We
introduce classes of LTI L2 systems whose behavior can be
represented as the kernel of a rational operator. Given a plant
and a controlled system in this class, an algorithm is developed
that produces a rational kernel representation of a controller
that, when interconnected with the plant, realizes the controlled
system. This result generalizes similar synthesis algorithms
in the behavioral framework for infinitely smooth behaviors
that allow representations as kernels of polynomial differential
operators.

I. INTRODUCTION

The analysis of system interconnections is at the heart of

many problems in modeling, simulation and control. Indeed,

when focusing on control, the controller synthesis question

amounts to finding a dynamical system (a controller) that,

after interconnection with a given plant, results in a con-

trolled system that is supposed to perform a certain task in

a more desirable manner than the plant. Usually the control

synthesis problem is formulated as a feedback optimization

problem in which the plant and controller interact through a

number of distinguished channels that have been divided in

input- and output variables.

The behavioral theory of dynamical systems has been ad-

vocated as a conceptual framework in which especially

interconnection structures of dynamical system can be stud-

ied in an input-output independent setting. There are many

conceptual, pedagogic and practical reasons for doing so and

we refer to [9], [10] for a detailed account on this matter.

One key problem concerning the interconnection of dynam-

ical systems involves the question when a given dynamical

system ΣK can be implemented (or realized) as the inter-

connection of a dynamical system ΣP , that is supposed

to be given, and a second dynamical system ΣC , that is

supposed to be designed. With the interpretation that ΣP

and ΣK denote the plant- and (desired) controlled system,

this question is therefore equivalent to a synthesis question

for the controller ΣC .

Within the behavioral framework this question received a

very complete and elegant answer for the class of linear

time-invariant systems that admit representations in terms of

polynomial difference or polynomial differential operators

[5], [6]. A rather complete theory has been developed for
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Fig. 1. Interconnection problems.

such representations that covers, among other things, H∞,

LQ and H2 optimal control.

It is the purpose of this paper to reconsider the controller

synthesis question for specific classes of linear and time-

invariant L2 systems that admit representations in terms of

rational functions. In doing so, we depart from the setting

proposed in [11] of considering infinitely smooth trajectories

as solutions of “rational” differential equations. Instead, we

view rational functions in H∞ as multiplicative operators on

L2 functions and define L2 systems through the kernel of

such operator. In this way, rational functions naturally define

dynamical systems in the frequency domain and offer distinct

algebraic advantages over polynomial kernel representations.

The paper is organized as follows. Section II contains the

formulation of the main problem that is discussed in this

paper. In Section III some notational remarks about spaces

and operators are introduced. Sections IV and V contain the

introduction of L2 behaviors, the interconnection problem

and a novel controller synthesis algorithm. An example

using this synthesis algorithm is given in Section VI. In

the last section of this paper, the results of this paper are

discussed and some recommendations for further research

on L2 systems are given.

II. PROBLEM FORMULATION

Following the behavioral formalism, a dynamical system [1]

is described by a triple:

Σ = (T, W,B), (1)

where T ⊆ R or T ⊆ C is the time- or frequency-axis, W

is the variable signal space, which typically contains inputs

and outputs and will be taken to be a finite dimensional

vector space throughout, and B ⊆ W
T is the behavior, that

is defined in more explicit terms in Section IV.

Using (1) it is possible to describe plants, controllers and

desired controlled systems (as ΣP , ΣC and ΣK respectively).

Fig. 1 illustrates the interconnection ΣK of two systems

ΣP = (T, W,P) and ΣC = (T, W, C). It is defined as

ΣK = (T, W,P ∩ K) and motivated by the idea that the
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behavior of the interconnection satisfies the laws of both ΣP

and ΣC .

Fig. 1(a) gives an illustration of the problem treated in this

paper, namely given a plant ΣP and a desired controlled

system ΣK , construct, if it exists, a controller ΣC that

after interconnection with the plant results in the desired

controlled system.

We address this problem for very specific classes of L2

systems. More specifically, we address the problems of

existence, (non-) uniqueness of controllers, together with the

problem to parametrize all controllers that establish a desired

controlled system after interconnection.

As mentioned in the introduction, earlier research, using

infinitely smooth trajectories, has been carried out for this

problem [6], [9], [10]. This paper contributes to the con-

troller synthesis question by considering various L2 systems,

represented through rational operators.

III. NOTATION

A. Hardy spaces

Hardy spaces are denoted by H+
p and H−

p , where

p = 1, 2, . . . ,∞, and defined by:

H+
p :={f : C

+ → C
q | ‖f‖H+

p
< ∞},

H−
p :={f : C

− → C
q | ‖f‖H−

p
< ∞},

where C
+ := Re{s} > 0 and C

− := Re{s} < 0, with

s = σ+jω. So, functions in H+
p are analytic1 in C

+∪{∞}
and functions in H−

p are analytic in C
− ∪ {−∞}. The H+

p

spaces are the classical Hardy spaces [4].

The norms of functions in H+
p and H−

p are defined as:

‖f‖H+
p
=







lim
σ↓0

(
∞∫

−∞

|f(σ + jω)|pdω

) 1
p

, 0 < p < ∞,

lim
σ↓0

sup
ω∈R

|f(σ + jω)|, p = ∞,

and

‖f‖H−

p
=







lim
σ↑0

(
∞∫

−∞

|f(σ + jω)|pdω

) 1
p

, 0 < p < ∞,

lim
σ↑0

sup
ω∈R

|f(σ + jω)|, p = ∞.

It is remarked that the tangential limits σ → 0 in the

above expressions exist, which makes the Hardy spaces well

defined normed spaces, cf. [4].

B. Rational functions and Units

The prefixes R and U denote, respectively, rational functions

and units in the Hardy spaces H+
p and H−

p as in

RH+
p := {f ∈ H+

p | f is rational},

RH−
p := {f ∈ H−

p | f is rational},

1A function is analytic if it is complex differentiable.

and

UH+
∞ :={U ∈ RH+

∞ | U−1 ∈ RH+
∞},

UH−
∞ :={U ∈ RH−

∞ | U−1 ∈ RH−
∞}.

Note that units are necessarily square rational matrices.

C. Laplace transformation

The Laplace transform L : L2(R, Rq) → L2(C, Cq) defines

an isometry between the L2 Hilbert space and the inner

product space L2:

L2 := H+
2 ⊕H−

2 = {f : C → C
q | ‖f‖2 < ∞},

which inherits the following norm:

‖f‖2
2 =

∞∫

−∞

f(jω)Hf(jω)dω,

and the inner product on complex valued functions:

〈f, g〉 =

∞∫

−∞

f(jω)Hg(jω)dω.

Any element w ∈ L2 can be uniquely decomposed as

w = w+ + w−, where

w+ := Π+w, with Π+ : L2 → H+
2 ,

w− := Π−w, with Π− : L2 → H−
2 .

Here, Π+ and Π− denote the canonical projections from L2

onto H+
2 and H−

2 , respectively.

D. Mappings in RH+
∞ and RH−

∞

Elements of RH+
∞ and RH−

∞ (also known as stable- and

anti-stable functions of RHstable
∞ and RHanti−stable

∞ ) define

operators in the following manner. Let Θ ∈ RH+
∞ and define

Θ : L2 → L2 by:

(Θw)(s) := Θ(s)w(s), where w ∈ L2,

which is the usual “multiplication” or Laurent operator in the

frequency domain [4]. Similarly, let Ψ ∈ RH−
∞ and define

Ψ : L2 → L2 by:

(Ψw)(s) := Ψ(s)w(s), where w ∈ L2.

When restricted to the domains H+
2 or H−

2 , these operators

define functions as:

Lemma 3.1: Let Θ ∈ RH+
∞, with possible domains L2,

H+
2 and H−

2 . Then

Θ : L2 → L2, Θ : H+
2 → H+

2 , Θ : H−
2 → L2.

Similarly, let Ψ ∈ RH−
∞, with possible domains L2, H+

2

and H−
2 . Then

Ψ : L2 → L2, Ψ : H+
2 → L2, Ψ : H−

2 → H−
2 .

The proof of this lemma and more details about Hardy spaces

can be found in [4].
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t →

ŵ(t)

(σ̂−τ ŵ)(t) (σ̂τ ŵ)(t)

σ̂−τ σ̂τ

t →t →

Fig. 2. τ -shift of ŵ = L−1{w} with w ∈ H+
2

.

E. τ -shift operators

We define the τ -shift operator σ̂τ on a signal ŵ : R → R as:

(σ̂τ ŵ)(t) = ŵ(t − τ),

where ŵ is the inverse Laplace transform of w, which is an

element of L2, H+
2 or H−

2 (so, ŵ = L−1{w}).

A τ -shift is called a left-shift if τ < 0 (which means that

the signal shifts left with respect to the time axis) and is

named a right-shift if τ > 0 (so, the signal shifts right with

respect to the time axis).

For any τ ∈ R, we introduce the shift operators στ : L2 →
L2, στ : H+

2 → H+
2 and στ : H−

2 → H−
2 by defining:

(στw)(s) = e−sτw(s),

(στw)(s) =







e−sτw(s), [τ > 0]

e−sτ (w(s) −
−τ∫

0

ŵ(t)e−stdt), [τ < 0]

(στw)(s) =







e−sτ (w(s) −
0∫

−τ

ŵ(t)e−stdt), [τ > 0]

e−sτw(s), [τ < 0]

respectively. Obviously, σ0 is the identity map. Note that

στ : L2 → L2 defines an isometry (for all τ ∈ R) and that

στ : H+
2 → H+

2 and στ : H−
2 → H−

2 define isometries only

if τ ≥ 0 and τ ≤ 0, respectively. When interpreted in the

time domain, a left- and right-shift for a signal w ∈ H+
2 are

illustrated in Fig. 2.

Definition 3.1: A subset P of L2 (or H+
2 or H−

2 ) is said to

be left-shift invariant if στP ⊆ P for all τ < 0.

The set P is said to be right-shift invariant if στP ⊆ P for

all τ > 0.

IV. RATIONAL REPRESENTATIONS OF BEHAVIORS

In the previous section, stable- and anti-stable rational oper-

ators have been introduced on Hilbert spaces. In this section

we will associate behaviors as linear shift invariant subsets

of L2, H+
2 and H−

2 defined through the null spaces of

these operators. Throughout this section, the variables w are

elements of L2, H+
2 or H−

2 .

First, behaviors associated with mappings P from the space

of rational stable Hardy functions are discussed.

For any P ∈ RH+
∞, the following three dynamical systems

are defined:

ΣP := (C, Cq,P(P )),

ΣP,+ := (C, Cq,P+(P )), (2a)

ΣP,− := (C, Cq,P−(P )),

where

P(P ) := {w ∈ L2 | Pw = 0} = ker P ⊂ L2,

P+(P ) := {w ∈ H+
2 | Pw = 0} = kerP ⊂ H+

2 , (2b)

P−(P ) := {w ∈ H−
2 | Pw ∈ H+

2 } = ker Π−P ⊂ H−
2 .

Here, Π− is the canonical projection that is introduced

before. For these sets we have the following properties:

Lemma 4.1: For P ∈ RH+
∞, the behaviors P(P ), P+(P )

and P−(P ) are linear and right-shift invariant subsets of L2,

H+
2 and H−

2 , respectively. A system Σ with either of these

behaviors is called an L2 right-shift invariant system.

Definition 4.1: The classes of all linear and right-

shift invariant systems in L2, H+
2 and H−

2 that admit

representations as the kernel of a rational element

P ∈ RH+
∞ are denoted by M, M+ and M−.

Similarly, for any P̂ ∈ RH−
∞, the following three dynamical

systems are introduced as:

Σ
P̂

:= (C, Cq,P(P̂ )),

Σ
P̂ ,+ := (C, Cq,P+(P̂ )), (3a)

Σ
P̂ ,−

:= (C, Cq,P−(P̂ )),

where the behaviors are given by:

P(P̂ ) := {w ∈ L2 |P̂w = 0} = ker P̂ ⊂ L2,

P+(P̂ ) := {w ∈ H+
2 |P̂w ∈ H−

2 } = ker Π+P̂ ⊂ H+
2 , (3b)

P−(P̂ ) := {w ∈ H−
2 |P̂w = 0} = ker P̂ ⊂ H−

2 ,

As introduced before, Π+ : L2 → H+
2 is the canonical

projection.

Lemma 4.2: For P̂ ∈ RH−
∞ the behaviors P(P̂ ), P+(P̂ )

and P−(P̂ ) are linear and left-shift invariant subsets of L2,

H+
2 and H−

2 , respectively. A system Σ with either of these

behaviors is called an L2 left-shift invariant system.

Definition 4.2: The classes of all linear and left-shift

invariant systems in L2, H+
2 and H−

2 that admit

representations as the kernel of a rational element

P̂ ∈ RH−
∞ are denoted by L, L+ and L−.

Now dynamical systems (1) can be described using L2

behaviors, some properties, using rational elements, are

introduced:
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Theorem 4.1: Let P,K ∈ RH+
∞ and let P(±) = P(±)(P )

and K(±) = K(±)(K) be as defined in (2). Then the

following statements are equivalent:

i K ⊂ P ,

ii K+ ⊂ P+,

iii K− ⊂ P−,

iv ∃F ∈ RH+
∞ such that P = FK.

Moreover, K = P ⇐⇒ K+ = P+ ⇐⇒ K− = P− ⇐⇒
∃U ∈ UH+

∞ such that P = UK.

The proof of this theorem can be found in the Appendix.

Also anti-stable mappings can be used in the representations,

which yields the following theorem:

Theorem 4.2: Let P̂ , K̂ ∈ RH−
∞ and let P(±) = P(P̂ ) and

K(±) = K(K̂) as in (3). Then the following statements are

equivalent:

i K ⊂ P ,

ii K+ ⊂ P+,

iii K− ⊂ P−,

iv ∃F̂ ∈ RH−
∞ such that P̂ = F̂ K̂.

Moreover, K = P ⇐⇒ K+ = P+ ⇐⇒ K− = P− ⇐⇒
∃Û ∈ UH−

∞ such that P̂ = ÛK̂.

The proof of this theorem is similar to the one of Theorem

4.1 and therefore is not included in this paper.

V. CONTROLLER SYNTHESIS

A. Full Interconnection problem

For each of the above classes of L2 systems, the synthesis

problem defined in Section II can now be formally stated as

follows:

Problem 5.1: Given two linear left-shift invariant systems

ΣP and ΣK in the class L (or L+ or L−).

i Verify whether there exists ΣC ∈ L (L+ or L−) such

that P ∩ C = K. Any such system is said to implement

K for P by full interconnection through w (Fig. 1(a)).

ii If such controller exists, find a representation C0 ∈
RH−

∞ of ΣC = (T, W, C) in the sense that C = kerC0

(or C = ker Π+C0 or C = kerC0).

iii Characterize the set Cpar of all C ∈ RH−
∞ for which

ΣC = (T, W, ker C) implements K for P .

A similar problem formulation applies for the model classes

M, M+ and M−.

Our synthesis algorithm is inspired by the polynomial

analog that has been treated in [5], [6] and leads to explicit

rational representations of behaviors C that implement K
for P .

Theorem 5.1: Given the systems ΣP = (T, W,P) and

ΣK = (T, W,K) in the class L(±) (or M(±)).

i There exists a controller ΣC = (T, W, C) ∈ L(±) (or

M(±)) that implements K for P by full interconnection

if and only if K ⊂ P .

ii Whenever one of the equivalent conditions of item i

holds, the set Cpar of all possible kernel representations

of controllers that implement K for P by full intercon-

nection is given in Step 5 of Algorithm 1 below.

The proof of Theorem 5.1 is inspired by the polynomial

analog in [5] and [6] and is given in the next subsection.

B. Algorithm

The following algorithm results in the explicit construction

of all controllers ΣC that solve Problem 5.1 for the class L

of L2 systems. A similar algorithm applies for the solution

of Problem 5.1 for the model classes L+, L− and M(±).

Algorithm 1: Given P,K ∈ RH−
∞ that define the systems

ΣP and ΣK as in (3).

Aim: Find all C ∈ RH−
∞ that define the system ΣC =

(T, W, C) ∈ L with C = kerC, such that C implements K
for P in the sense that P ∩ C = K by full interconnection.

Step 1: Verify whether K ⊂ P . Equivalently, verify whether

there exists a mapping F ∈ RH−
∞ such that P = FK. If not,

the algorithm ends and no controller exists that implements

K for P .

Step 2: Determine a unit U ∈ UH−
∞ which brings F into

column reduced form: F = FU = [F1 , 0], where F1 ∈
RH−

∞ is square and of full rank.

Step 3: Extend the matrix F with W = [0 , I] such that

Λ =

[
F

W

]

=

[
F1 0
0 I

]

,

belongs to UH−
∞. Factorize W = WU with W = WU−1.

Step 4: Set ΣC = (T, W, C) where C = kerC0 and C0 =
WK ∈ RH−

∞. The controller ΣC then belongs to L and

implements K for P .

Step 5: Set

Cpar = {Q1P + Q2WK | Q1, Q2 ∈ RH−
∞, Q2 full rank}.

Then Cpar is a parametrization of all controllers ΣC =
(T, W, C) that implement K for P by ranging over all kernel

representations C = ker C with C ∈ Cpar.

Proof: Proof of Theorem 5.1:

i (⇒): This is trivial.

(⇐): If K ⊂ P , then there exists a F as in Theorem

4.1 or 4.2. In the controlled behavior K, the restrictions

of the plant as well as the restrictions applied by the

controller have to be satisfied:

K = ker [ P
C ] = ker K = ker(ΛK), where Λ ∈ UH−

∞,

where Λ = col(F,W ) with W unknown. The extended

matrix Λ in step 3 is a multiplication of a unit U with

Λ, so Λ has to be a unit. Therefore:

K = ker [ P
C ] = ker ([ F

W ]K) ,

so, C = WK which results in C = ker C = ker{WK}.

ii One can apply a multiplication with a unit Q ∈ UH−
∞:

K = ker
( [

I 0
Q1 Q2

]

︸ ︷︷ ︸

Q

[ P
C ]
)

= ker
([

P
Q1P+Q2WK

])
,
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where Q1, Q2 ∈ RH−
∞ and Q2 is full rank. Then all

possible rational functions C can be parametrized by

Cpar as in step 5.

VI. EXAMPLE: QUADRATIC COST

In this example, the plant behavior P of an unstable plant

ΣP is described by the state-space realization:
{

ẋ(t) = Ax(t) + Bu(t),

y(t) = x(t),
x(0) = x0, (4)

where x(t) ∈ R
x, u(t) ∈ R

u, A ∈ R
x×x and B ∈ R

x×u.

The desired controlled behavior K consists of all pairs

(u, y) ∈ L2(R+, Ru×x) that minimize the cost function:

J(x0, x(t), u(t)) = 1
2

∞∫

0

xT (t)Qx(t) + uT (t)Ru(t)dt

subject to the system equations (4) of the plant model ΣP .

Here, 0 ≤ Q ∈ R
x×x, 0 < R ∈ R

u×u.

As discussed in [3], [8], this controlled behavior can be

written as a dynamical system ΣK with the state-space

realization:






ẋ(t) = (A − BR−1BT S) x(t), x(0) = x0,

u(t) = −R−1BT S x(t),

y(t) = x(t),

(5)

where S is a solution of an Algebraic Ricatti Equation. The

numerical values used for those matrices are the following:

A = [ 4 1
0 4 ] , B = [ 2 4

0 1 ] , Q = [ 4 0
0 4 ] , R = [ 2 0

0 2 ] ,

S =
[

4 −15
−15 76

]
, α, β ∈ R

+, α 6= β.

The dynamical systems are specified by trajectories in the

time domain, but we are interested in L2 behaviors using

rational kernel representations as system representations.

Because the controlled system is autonomous, the left-shift

invariance property is required, which restricts us to use anti-

stable mappings for P,K and also C. This results in:

P (s) = [−I (sI−A)−1B ] ∈ RH−
∞,

K(s) =
[

(sI−(A−BR−1BT S))(sI−αI)−1 0

R−1BT S(sI−βI)−1 (sI−βI)−1

]

∈ RH−
∞,

where w(s) = [y(s) u(s)]T , α, β > 0 and α 6= β. Due to the

requirement, the anti-stable “poles” α and β are introduced.

Of course, no “pole-zero” cancellation should occur

when α and β are chosen. Using those representations, the

full interconnection algorithm can be applied to the problem:

Step 1: The first step in the full interconnection algorithm

is to verify whether K ⊂ P , which should be the case.

Equivalently, we need to verify whether there exists a F (s) ∈
RH−

∞ such that P (s) = F (s)K(s):

F (s) =
[
Γ(s) Λ(s)

]
∈ RH−

∞, where

Γ(s) = [−I−(Is−A)−1B(Is−βI)R−1BT S(sI−βI)−1]

· (Is−αI)(sI−(A−BR−1BT S))
and

Λ(s) = (Is−A)−1B(Is−βI) .

Step 2: The next step is to column reduce F (s). This can

be done using algorithms as in [2], which results in:

F (s) =

[
0 − s−α

(s−4)2
2 s−β

s−4 0

0 − s−α
s−4 0 0

]

∈ RH−
∞, which can be column

reduced to F (s) = F (s) U(s) =
[
F0(s) 0

]
, where

F (s) =

[
− s−α

(s−4)2
2 s−β

s−4 0 0

− s−α
s−4 0 0 0

]

∈ RH−
∞

and

U(s) =

[ 0 0 1 0
1 0 0 s−β

s−α

0 1 1
2

s−α
s−β

−2

0 0 0 1

]

∈ UH−
∞.

Step 3-4: Then, as discussed in Step 4 of Algorithm 1, a

possible controller behavior C = ker C0 is expressed as:

C0(s) = W (s)K(s) =

[
s+6
s−α

1
s−α

0 0
1
2

1
s−β

8
s−β

0 1
s−β

]

∈ RH−
∞.

As mentioned before, the behavioral framework does not

require a separation of the variable w into inputs and outputs.

This can be seen in the result above, because the controller

restricts the outputs of the plant in the first row when a

separation in the variable space is made. So, mathematically

the interconnection with this controller results in the desired

controlled behavior, but this representation is not directly

implementable for a real system, because outputs of a plant

can’t always be used as inputs. For a practical reason,

we consider the parametrization of all controllers that

implement ΣK in the next step.

Step 5: Another controller can be found using the matrices

Q1(s) and Q2(s) as defined in Algorithm 1. When these

matrices are chosen to be:

Q1=
[

1
2

s−4
s−b

− 1
2

1
s−b

0 0

]

∈RH−
∞ and Q2=

[
1
2

s−a
s−b

−2

0 1

]

∈RH−
∞,

the resulting controller is equal to:

C(s) = Q1(s)P (s) + Q2(s)C1(s)

=
[ 4

s−b
− 15

s−b
1

s−b
0

1
2

1
s−b

8
s−b

0 1
s−b

]

∈ RH−
∞,

In fact, this controller allows a feedback implementation as

it is equivalent to the general LQR, namely:

u(t) = −
[

4 −15
1
2 8

]

x(t).

Note: The values in the Ricatti solution S and the values in

the estimated rational expressions are rounded to integers

for simplification.

VII. CONCLUSIONS AND RECOMMENDATIONS

We considered the problem of controller synthesis for spe-

cific classes of L2 functions. Operators in the classes RH+
∞

of stable rational functions and RH−
∞ of anti-stable rational

functions define linear right-shift invariant L2 behaviors and

linear left-shift invariant L2 behaviors by considering their

kernel spaces. Given two L2 systems ΣP and ΣK we solve

the question to synthesize a third L2 system ΣC that realizes
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ΣK in the sense that the full interconnection of ΣP and ΣC

satisfies K = P ∩ C. Necessary and sufficient condition for

the existence of an L2 system ΣC is the inclusion K ⊂ P .

An explicit controller synthesis algorithm for the class of all

controllers that implement an L2 controlled system for an L2

plant has been derived. An example is given to demonstrate

the algorithm for the construction of a rational representation

of C.

This paper only introduced the case when the plant behavior

P and controller behavior C are fully interconnected, which

is not always the case. Therefore, some further research

has to be done for the “partial interconnection” case using

those classes of rational functions. Studies already started

for infinite smooth continuous behaviors in [6]. In this case,

disturbances like noise can be taken into account, which may

yield in robust control problems.

APPENDIX

PROOF OF THEOREM 4.1

Proof:

(iv ⇒ {i,ii,iii}):

• iv ⇒ i:

K,P ⊂ L2, so w ∈ L2: If P = FK and take a w ∈ K.

Then, v = Kw = 0, so also Pw = FKw = Fv = 0.

This implies that P (s)w(s) = 0, so w ∈ P , and K ⊂ P .

• iv ⇒ ii:

K,P ⊂ H+
2 , so w ∈ H+

2 :

This proof is identical to the case when K,P ⊂ L2.

• iv ⇒ iii:

K,P ⊂ H−
2 , so w ∈ H−

2 : Again, if P = FK and

w ∈ K, one can say that v = Kw ∈ H+
2 and hence

Pw = FKw = Fv. Now, F ∈ RH+
∞, so Fv ∈ H+

2 .

So, Pw ∈ H+
2 which implies using (2) that w ∈ P ,

which is equal to K ⊂ P .

(iv ⇐ {i,ii,iii}):

• iv ⇐ i:

K,P ⊂ L2, so w ∈ L2: Using the definition of K, one

can write:

K ={w ∈ L2 | 〈Kw, v〉L2
= 0 ∀v ∈ L2}

={w ∈ L2 | 〈w,K∗v〉L2
= 0 ∀v ∈ L2} = (im K∗)

⊥
,

where K∗ : L2 → L2 is the dual- or adjoint operator

in RH−
∞ defined by K∗(s) = KT (s−1). Something

similar can be applied to the plant behavior. So, K ⊂ P
implies that P⊥ ⊂ K⊥ and using the previous definition

of K, this results in

(im P ∗) ⊆ (im K∗),

where the bar denotes the closure in L2.

For rational operators the latter implies that:

(im P ∗) ⊂ (im K∗) ,

because in that case the images are closed.

Then we can say that for some ei
2, P ∗ei ∈ im K∗, so

there exists a vi such that:

P ∗ei = K∗vi.

This can be extended to a set of vi’s, such that:

P ∗ = K∗X with X = (v1, . . . , vp) ∈ RH−
2 ⊂ RH−

∞.

Then, we can rewrite this to P = X∗K, where F is

equal to the dual operator X∗ ∈ RH+
∞.

• iv ⇐ ii:

K,P ⊂ H+
2 , so w ∈ H+

2 :

This proof is similar to the one in the previous item,

except that now the H+
2 inner product is used. However,

H+
2 inherited this inner product from L2.

• iv ⇐ iii:

K,P ⊂ H−
2 , so w ∈ H−

2 : Now, K can be written as:

K ={w ∈ H−
2 | 〈Π−Kw, v〉H−

2
= 0 ∀v ∈ H−

2 }

={w ∈ H−
2 |
〈
w,K∗Π∗

−v
〉

H
−

2
= 0 ∀v ∈ H−

2 }

=
(
im K∗Π∗

−

)⊥
,

where K∗ and Π∗
− are adjoint operators. This can also

be done for the plant behavior P . As in item (iv ⇐ i),

P⊥ ⊂ K⊥, so: (im P ∗Π∗
−) ⊂ (im K∗Π∗

−). Then there

exists a X ∈ RH−
2 such that P ∗Π∗

− = K∗Π∗
−X . So,

one can say that Π−P = X∗Π−K, where F = X∗.

Equality condition:

Using the previous items, one can say that P = K if and

only if P = U1K and K = U2P with both U1 and U2

in RH+
∞. Moreover, if U1 and U2 satisfy these conditions,

then P = U1U2K and K = U2U1P . If P and K are full

rank, we find that U1 = U−1
2 , which completes the proof.
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