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Abstract— This paper focuses on the problem of force
estimation performances in some EFM-like device (Electric
Force Microscope). In this context it is shown how those
performances can be significantly improved w.r.t. noise
measurement by combining techniques in the spirit of the
so-called ’parametric amplification’ in particular investigated
in physics, with observer techniques as they are developed
in the control community. The minimal force which can be
estimated in this way is expressed in terms of estimation rate
and measurement noise variance.
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I. INTRODUCTION

Measuring smaller and smaller signals means coping with

noises of higher and higher effects (see e.g. [1], [2]). This

is typically what happens in the area of so-called Scanning

Probe Microscopy [3], where appropriate conditions are

looked for, aiming at higher performances (measurement

in vacuum, at low temperature...). In this context, it has

been emphasized a few years ago how some appropriate

excitation of the measurement device, known as parametric

amplification can yield better measurement performances,

in particular w.r.t. the sensor noise [4], [5].

On the other hand, it has also been shown how those

measurement problems can be efficiently tackled via

a system approach relying on state space formalism,

allowing to get a better insight into the phenomena and

to provide solutions in terms of state observers (as in

[6] for instance). In particular it has been shown how

those observer techniques (such as Kalman-like [7] or

high-gain [8] designs) can yield very efficient noise filtering

in the presence of ’minimal excitation’ (only aiming at

observability) [6], [9].

In the present paper, as a continuation of those previous

studies, it is shown how combining observer techniques with

techniques of amplification can give better performances of

the observer w.r.t. sensor noise, making it possible to reduce

the estimation time for a given accuracy - or conversely, to

increase the accuracy for a given estimation time. In that

respect, the present study can be compared with that of [10]

where ’optimal’ parametric amplification is investigated

with some observer approach, except that in the present

paper, we choose some more specific amplification context,

and analytically show how it can be tuned w.r.t. some
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pre-specified performances, in terms of estimation time and

accuracy. As a result, we get some formal characterization

of the smallest force which can be estimated, given an

estimation time and a sensor noise variance.

This study is based on a measurement device typical

of EFM (Electric Force Microscopy) [5] firstly presented

in section II. The considered amplification principle is then

described in section III, together with a full analysis on its

effect on observer performances. This analysis is illustrated

via simulations in section IV.

Some conclusions and perspectives finally end the paper in

section V.

II. CONSIDERED MEASUREMENT DEVICE

We will here consider a measurement device following the

principle of the so-called Electric Force Microscope, namely

depicted by figure 1 below: in short, it is made of a micro-

cantilever with a mass m, a stiffness k and subject to friction

of coefficient f , whose position x is optically monitored and

is supposed to be sensitive to the effect of some force FD to

be measured. A specific feature of the EFM within the SPM

techniques is the application of a voltage V (t) between the

substrate under study and the cantilever, with the cantilever

position being itself mechanically excited. In the present

study, this excitation will be assimilated to the effect of FD,

as in [4], the purpose being as in [4] to study the effect of

amplification, but here in the context of observer design.

Controlled 

Voltage V(t) 

Signal to be  

measured )(tF
D

k f

m

Optical 

position 

sensor

Cantilever 

Substrate

x(t)

Fig. 1. Measurement device principle.

The resulting overall dynamics can then be classically de-

scribed by a second order equation of the form:

mẍ(t) + fẋ(t) + kx(t) = FD(t) + Felec(V, x) (1)
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where Felec is the electrostatic force due to V between the

cantilever and the substrate, which can be written as:

Felec(V, x) =
ε0S · V 2(t)

(D − x(t))2
(2)

with S the surface between the two plates of the capacitor,

D their distance in the absence of any deflection, and ε0 the

permittivity in vacuum.

In practice, the directly measured variable y will be assumed

to be the position x, delivered by an optical sensor up to some

sensor noise ν assumed to be Gaussian white noise. Namely

the actual measurement takes the following form:

y(t) = x(t) + ν(t) (3)

Notice that in practice there are various types of additional

noises that can affect the measurement accuracy, such as

the thermal noise which directly disturbs equation (1). It

was shown in [9] how such noises can be filtered out,

together with ν, by appropriate observer design, but at the

expense of the estimation time. The purpose here is to

show how the sensor noise can be attenuated in shorter

time by appropriate excitation of the device, following the

parametric amplification idea of [4]. It was indeed already

underlined in this previous work that such an amplification

method is not efficient w.r.t. other noises - such as thermal

noise, since it amplifies them together with the signal of

interest. For this reason, we will only consider sensor noise

in this study (the other ones can anyway be filtered out by

the observer, but with no improved performance with the

excitation we will consider).

III. CONSIDERED AMPLIFICATION TECHNIQUE

AND OBSERVER DESIGN

The problem here considered is thus that of ’measuring’

a force FD which may be very small w.r.t. noises affecting

the measurement device here described by equations (1)-(3):

in other words, the problem is that of reconstructing FD

from direct measurement of x.

In [4] in particular, it has been shown how this reconstruction

can be improved in spite of measurement noises ν within the

usual measurement framework in microscopy, by using some

specific excitation known as ’parametric amplification’: in

short, a parameter is periodically modified in the system by

some appropriate periodic excitation, so that the effect of

some signal to be measured be significantly amplified in the

motion x w.r.t. noise ν. More precisely, for system (1), if

FD is of the form F0 cos(w0t + φ), such an amplification

can be achieved by choosing V (t) = V0 + Vp sin(wpt).
This indeed yields a dynamical behaviour which can be

(approximately) described by the modified equation:

mẍ(t) + fẋ(t) + (k − δk(t))x(t) = FD(t) (4)

where δk(t) depends on the excitation. The appropriate

choice for such an excitation (Vp, wp) in this ’pure’ amplifi-

cation context has been fully studied in [4], [5], [11].

Some optimal choice of wp in a context of position and

velocity reconstruction by state observer has also been in-

vestigated in [10].

In the present paper, the purpose is to study the improvement

obtained by such an amplification-like approach, when using

an observer to directly reconstruct the force FD. To that

end, we will consider some ’static’ version of the parametric

amplification previously recalled, for which a full analysis

will then be provided.

The idea indeed is that force reconstruction can be achieved

via observer techniques by considering a state space rep-

resentation including the force as a state variable (as in

[6], [9] for instance, following the typical state extension

approach of the Extended Kalman Filter). When considering

a constant force for instance, the model will be based on

z1 := x, z2 := ẋ and z3 := FD as state variables, yielding:

ż1 = z2

ż2 = −
k

m
z1 −

f

m
z2 +

z3

m
+

ε0S · V 2(t)

m(D − z1)2

ż3 = 0
y = z1 + ν

(5)

Now let us consider a first order approximation around some

equilibrium z1 = z1e, z2 = 0 corresponding to a voltage

V (t) = V0 when FD = 0. We get:

ż1 = z2

ż2 = −
(k − k1V

2
0 )

m
z1 −

f

m
z2 +

z3

m
ż3 = 0
y = z1 + ν

(6)

with k1 =
2ε0S

(D − z1e)3
.

From this, it appears that V0 allows us to tune coefficient

k − k1V
2
0 (in a similar way as k − δk(t) is somehow tuned

in the classical periodic case (4)) - and can even cancel it

(with V0 s.t. z1e = D
3 ). It is also clear that k − k1V

2
0 is

the inverse DC gain between z3 and y: it is thus possible

to arbitrarily tune this gain via V0 and in particular make it

arbitrarily large. More precisely, it can be checked that given

any desired gain G, choosing V0 such that:

V0 =
√

kxe

ε0S
(D − xe), with

xe = (kG−1)D
3kG−1

(7)

makes k − k1V
2
0 to be equal to 1

G
for the system

(6) obtained by linearizing (5) around the equilibrium

z1 = xe, z2 = 0, V = V0. Of course for any finite strictly

positive gain G, this linearized model is stable, and thus

the original nonlinear one is locally stable by standard

Lyapunov arguments [12], namely the analysis carried out

on the basis of model (6) will be valid for forces (z3) ’small

enough’.

In the sequel, we will call this gain G ’amplification gain’.

Intuitively, increasing this gain will improve the signal-

to-noise ratio in the measured output, and thus result

in improving estimation performances. But noting that

increasing G in (6) also results in making the system
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slower, one can also expect that the best gain is not

necessarily the largest one.

The effect of this amplification gain on observer

performances when used for a purpose of force (z3)

reconstruction can actually be formulated via the following

result:

Proposition 3.1: Given a system in observable form:

ξ̇ =





−a1 1 0
−a2 0 1
0 0 0



 ξ = Aξ

y =
(

1 0 0
)

ξ + ν = Cξ + ν,

(8)

where ν is a gaussian white noise with variance W ,

and given any observer:

˙̂
ξ = Aξ̂ − K(Cξ̂ − y)

for a convergence rate arbitrarily chosen by K =
(

k1 k2 k3

)T
,

then the third component e3 of the estimation error e := ξ̂−ξ

decays to zero in means with a rate given by K, and its

variance v3(t) := E[e3(t)
2] satisfies:

• v3 asymptotically goes to:

v3∞ =
k3W

2[(k1 + a1)(k2 + a2) − k3]
×

×[k3a
2
1 + k2

2(k1 + a1) + (a2 − k2)[(k1 + a1)(k2 + a2) − k3]]
(9)

• v3∞ decreases with a2, as long as:

a2 ≥
k3

k1 + a1
=: a20 (10)

• v3∞ admits a minimum for a2 = a20 of the form:

v3∞0 :=
k2
3

2k2(k1 + a1)
(k2 + a2

1)W (11)

•

Proof: The proof follows from the form of the estima-

tion error equation:

ė = (A − KC)e + Kν

From this indeed, the expectation E[e] of e classically goes

to zero according to the dynamics fixed by A−KC, and its

variance M(t) = E[e(t)eT (t)] satisfies [13]:

Ṁ(t) = M(t)(A − KC)T + (A − KC)M(t) + KWKT .

By stability of A−KC it admits a stationary solution given

by:

0 = M(A − KC)T + (A − KC)M + KWKT .

Expression (9) for the variance of e3 is obtained by directly

solving this equation (notice that the denominator in v3∞

is strictly positive whenever A − KC is stable, by simple

application of Routh stability criterion for instance, i.e. it

cannot be zero).

Condition (10) then follows by studying the evolution of

v3∞ w.r.t. a2: it can indeed be checked that the derivative of

v3∞ w.r.t. a2 is positive as long as (10) holds (notice, when

computing this derivative, that in v3∞, k1 + a1, k2 + a2, k3

only depend on the chosen rate of convergence, and not on

a2).

Finally, (11) directly follows from (9) and (10).

This result can be interpreted as follows:

For system (8), the amplification gain (between ξ3 - third

component of ξ - and y) is 1
a2

. Then property (10) of

proposition 3.1 says that for a given convergence rate (in

means), the achieved variance on the estimation of ξ3 is

indeed reduced when increasing the amplification gain,

but only up to 1
a20

. This means that amplification indeed

improves the observer performances for ξ3 reconstruction,

only up to a certain gain.

Expression (11) then gives the corresponding minimal

variance which can be achieved: from it, it can be checked

that this minimal value grows when the observer is made

faster (by noting that changing poles pi of A − KC into

λpi roughly turns into changing ki’s into λiki’s).

Now coming back to the original problem of force

reconstruction, it can be noticed that system (6) can be

turned into (8) by :

ξ1 = z1

ξ2 = z2 + f
m

z1

ξ3 = z3

m

a1 = f
m

a2 = 1
mG

where G is the considered tunable amplification gain.

From this, and proposition 3.1, we get the ’optimal gain’ for

force reconstruction given by:

Gopt =
1

ma20
, (12)

and the corresponding achieved minimal variance:

vopt = m2v3∞0. (13)

This actually corresponds to the minimal variance which can

be achieved for a fixed convergence rate: namely it gives a

characterization of the minimal force which can be detected

given a sensor noise variance, taking dynamics into account:

this makes it a dynamical version of the minimal detectable

force analysis proposed in [4] for instance. It also recalls

how reducing even more this minimal detectable force can

be obtained by making the observer slower.

IV. SIMULATION VALIDATION

Let us consider here as an example a device similar to

the one presented in [4], namely with numerical values for

model (1)-(2) given by:

m = 0.22e − 12kg, f = 4.7e − 11Nsm−1, k = 1Nm−1,

S = 3.4e − 8m2, D = 20e − 6m.
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Let us also consider the estimation of nanoN forces

(typically FD = 1e − 9N in the simulations), and a sensor

noise significantly larger than the cantilever motion induced

by such a force (see figure 2 for the x response to FD when

V0 = 0, and the corresponding simulated measurement y).
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Fig. 2. Response to force FD in position x (top) and measurement y
(bottom)

For this example, we will illustrate how with an observer

corresponding to a given convergence rate in means (a given

set of poles for A − KC) the estimation accuracy for FD

can indeed be improved by gain amplification.

All simulations have been performed with the nonlinear

model (5).

The observer gain has been chosen so as to achieve a

convergence rate of about 1ms.

In this context, simulation results are presented for

two different tuned gains: a first one with no amplification

(G = 1, corresponding to V0 = 0V ), and a second one with

a large one (G = 10, corresponding to V0 = 62.5V ). The

respective estimation results and errors for FD can be seen

on figures 3 and 4.
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Fig. 3. Estimation (top) and error (bottom) for FD = 1e−9 at t = 0.02s
and G = 1
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Fig. 4. Estimation (top) and error (bottom) for FD = 1e−9 at t = 0.02s
and G = 10
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From those figures, the results are consistent with the

analysis of previous section: for a given convergence

rate, the estimation accuracy can indeed be improved

by increasing the amplification gain. Furthermore, this is

obtained for quite reasonable values of the voltage V0 (they

can even become smaller depending on the device numerical

characteristics).

The variations of V0 w.r.t. the desired gain G, as well

as the corresponding achieved variance, are reported for this

example on figure 5 below (for G ∈ [1, 10]).
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Fig. 5. V0 (top) and achieved asymptotic variance on FD (bottom) vs
amplification gain G

From this, it is clear that increasing the gain of only a

few units significantly improves the accuracy, while the

voltage is only to be increased from 0 up to an asymptotic

value of about 62V (consistent with expression (7) from

which V0 approaches 2D
3

√

kD
3ε0S

= 62.66V as G goes to

infinity). Theoretically, the optimal gain and variance given

by (12)-(13) here correspond to a much larger value of

the gain equal to 1.95e5, for which the variance reaches

8.11e − 22N2. A zoom of the variance of figure 5 in those

values of gain is given in figure 6, where it can be seen

how an optimal variance is indeed reached, and after the

optimal gain, the variance becomes worse again (however in

practice, this effect is not really significant in the estimation

results).
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Fig. 6. Achieved asymptotic variance on FD vs amplification gain G near
optimality

All those results are in very good accordance with the

analysis of previous section. As an extension, it can finally

be checked how classical parametric amplification also

improves observer performances in a similar fashion, when

estimating some harmonic force FD on the basis of an

extended system as in the analysis of section III: simulation

results in that respect are presented on figures 7 and 8

(estimation errors) for two different magnitudes of the

excitation voltage, while a full analysis in this configuration

is left for further studies (typically in this case, the excitation

frequency has also an effect [4], [10], [5]).
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0.26sin(2w0t + π
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V. CONCLUSIONS AND FUTURE WORKS

In this work, it has been analytically shown how some

appropriate amplification gain in a system can improve the

estimation performances of an observer w.r.t. measurement

noise. This has been emphasized in the context of weak

force measurement where noises are of significant effect.

The analysis has only been carried out w.r.t. sensor noise

since the proposed excitation cannot improve the results w.r.t.

other noises. But it can of course be combined with usual

filtering properties of observers in that respect. This will be

part of future studies. Extending this analysis to the more

classical parametric amplification case will also be part of

further developments, as well as including robustness study.
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