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Abstract— This paper shows the successful application of an
iterative learning controller (ILC) to the Free Electron Laser
FLASH at DESY, Hamburg, a plant of large international inte-
rest for research in physics, chemistry, biology, and engineering.
First experimental results demonstrate the applicability of the
ILC approach to the low level radio frequency system which
controls the electron acceleration.

I. INTRODUCTION

Free Electron Lasers use linear particle accelerators, which

increase the energy of the electrons by interaction with

electromagnetic radio frequency (RF) fields [1]. They are

operated in pulsed mode, e.g. every second there is a pulse

for approximately one millisecond. This pulsed system has

the following properties:

• the characteristic disturbances and uncertainties only

show small changes from pulse to pulse,

• between pulses, several hundred milliseconds could

be used for computing optimal parameters and input

signals for the next pulse,

• the FPGA structure of the digital intra pulse controller

allows arbitrary input signals at a frequency of 1 MHz,

• appropriate models could be identified by standard

methods from measurement data.

Thus, an Iterative Learning Control (ILC) strategy appears

to be well suited to control this plant [2]. For the application

of ILC, the following questions need to be answered [3]:

• which algorithm is appropriate for implementation?

• which type of model is needed by the chosen algorithm?

• how can such models be obtained?

These questions will be addressed in this paper as follows:

Section II gives a description of the FEL along with details

of the RF system for the linear accelerator with its digital

control system, followed by Section III, where a black

box model of this RF system is derived. After introducing

the Iterative learning control algorithm in Section IV, its

implementation on the real time system is described. Finally,

experimental results of the first tests are shown in Section V,

followed by the conclusions.

II. THE FREE ELECTRON LASER FACILITY FLASH

A. Basic System Structure

For many research activities a light source that is able

to resolve objects on an atomic level would be favorable,
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e.g. in molecular biology. Furthermore, laser light is used

for a variety of experiments because it can be better focused

compared to other light sources; it is monochromatic, and

very short pulses can be produced.

A Free Electron Laser (FEL) produces laser radiation with

tunable wavelength. At the German Electron Synchrotron

(DESY) in Hamburg the X-ray Free Electron Laser research

project XFEL is conducted. The goal of the project is to build

a Free Electron Laser operating in the X-ray wavelength by

the year 2012 [1].

The process uses a linear particle accelerator, which in-

creases the energy of electrons by interaction with electro-

magnetic radio frequency (RF) fields to a desired value.

These fields are required to follow a reference with very

small amplitude as well as phase errors. Figure 2 shows the

structure of the Vacuum Ultraviolet FEL (FLASH) which

is already working at DESY. The linear accelerator consists

of resonators for the RF-fields housed in cryomodules. The

RF-fields inside these superconducting resonator cavities are

supplied by an actuator system for a finite time interval and

then turned off again periodically.
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Fig. 1: One RF-pulse in superconducting cavities

In Figure 1 the amplitude of the desired envelope of

the RF-field is displayed for one RF-pulse as a function

of time. The field inside the accelerator cavities has to be

kept constant once the required amplitude for the appropriate

energy gain of the electrons has been reached at the end of

the so called filling phase. During the flat top phase the

electron beam is injected into the accelerator. When the

electron beam has passed, the RF-field is turned off and

the field amplitude decays. The envelope of the RF-field

oscillation must be kept constant in amplitude and phase

during the flat top time interval to transfer a precise amount

of energy to the electrons.
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Fig. 2: A Free Electron laser with front end, accelerating structures and undulators

Once the system is set up to a desired operating point, the

reference signal remains unchanged for a large number of

pulses. Therefore repetitive disturbances can be suppressed

by finding an optimal feedforward control signal to minimize

the deflection from the reference. The adaption of the driving

signal is calculated by using an iterative learning control

algorithm proposed in [4]. Further information can be found

in [5], [6], and [7]. For this procedure as for feedback

controller design a good model of the system dynamics is

needed. Therefore black box models have been identified.

B. RF System of the Linear Accelerator

The acceleration takes part in the resonators where stan-

ding RF-waves (modes) provide the energy. The resonance

frequency of 1.3 GHz for the desired acceleration mode

is determined by the geometry. If the length of the cavity

changes, the resonance frequency changes as well. Due to

the relatively thin walls, the resonators become susceptible to

mechanical vibrations called microphonics which detune the

resonance frequency. The high power RF-fields in the cavities

lead to deformation of the cavity walls and therefore detuning

as well. Induced currents cause Lorentz forces acting on the

metal surroundings during the pulse sequence. Measurements

have shown that detuning can result in a change up to

∆ f ≈ 500Hz of the resonance frequency. Since the Lorentz

force is induced every time the electric field is generated,

the Lorentz force detuning is considered deterministic and

repetitive.

Another source of disturbance is the electron beam itself.

While it is passing the accelerating structure, the charged

particles gain energy from the present RF-field which leads

to fluctuations in the present amount of energy stored in the

system. The following bunches of charged particles will be

influenced by these fluctuations, which have to be minimized

by the control system. One can assume that the bunch arrival

time will be constant from pulse to pulse, thus having the

properties of a repetitive disturbance.

C. Digital Control System

The actuator system receives a precise RF signal of

1.3GHz from the master oscillator (MO). This low power

sinusoidal signal can be changed by the vector modulator

in amplitude and phase. The output signal of the vector

modulator is amplified by a klystron, which is a radio

frequency amplifier. The amplified RF waves are transferred

from the klystron to the cavities inside the cryomodules

via a waveguide transmission and distribution system. For

economical reasons, one high power klystron supplies all

8 − 32 cavities of an RF station, thus RF fields can not

be influenced in each cavity individually – the system is

underactuated.

The superconduction cavity simulator and controller (SIM-

CON) is based on field programmable gate array (FPGA)

structures. It allows the implementation of fast algorithms.

A block diagram of the Low Level Radio Frequency (LLRF)

control system is presented in Fig. 3, where the lower

part shows the digital FPGA controller. The LLRF control

system has the task of keeping the pulsed RF fields in the

superconducting cavities of the RF station at the reference

value during the flat top phase of one RF pulse shown in

Figure 1.

After measuring the actual RF-field by pickup antennas,

the signals are downconverted to an intermediate frequency

of 250kHz. The real (I) and imaginary (Q) field measurement

signals go through analog-digital-converters (ADC) with a

sampling frequency of 1MHz. An overview of the signals

shown in Fig. 3 is represented in terms of I and Q com-

ponents.

• Input signals uI,uQ: Control signals of the actuator

system are directly acting on the vector modulator.

• Output signals yI,yQ: The real and imaginary part of the

sum of the RF-field voltage vectors of eight cavities.

• Reference signals rI,rQ: Reference signals of the real

and imaginary part of the vector sum of the RF-field’s

voltage vectors given by look-up tables for the specified

field gradient.

• Feedforward signals fI, fQ: Part of the control signals

determined by open loop control.

• Control signals uc,I,uc,Q: The learning controller output

signals, updating the previous iteration input signals

• Control error signals eI,eQ: Deviations in real and

imaginary part of the output signals from the reference

signals.

A calibration of the measurement signals is done for

compensation of effects resulting e.g. from different cable

lengths. The control algorithm usually uses the vector sums

of all calibrated measurement signals of the individual ca-

vities as signals to be controlled, because of the lack of

individual actors for each cavity.

The desired setpoint could even be reached with pure feed-

forward control if the input signals are sufficiently adapted

to the disturbance sources. Strong disturbances are caused

by the Lorentz forces which are deterministic from pulse to
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Fig. 3: Structure of the RF system with master oscillator, vector modulator, klystron, cryomodule,

measurement and calibration system and the FPGA implemented control system

pulse. It is possible to compensate these by smooth changes

of the input signal over the flattop. Moreover, transients

induced by the beam are predictable, and the arrival time

is known. An increase in the driving power will keep these

fluctuations low. Both compensations have a positive effect

on a feedback control performance by keeping the control

error signals small.

To predict the system behavior, it is essential to have

an adequate model of the underlying system dynamics. The

following section gives a brief outline of the identification

procedure which was used for modelling.

III. SYSTEM MODELING

Although additional external disturbances and a number

of nonlinearities in the actuator system are known to be

relevant for a broad range of operation setpoints, stan-

dard identification procedures for linear time invariant (LTI)

models could be used to estimate black box models that

can be validated at specific setpoints [13]. The subspace

identification method N4SID, provided by Matlab’s System

Identification Toolbox [15] is used to estimate parameters

A,B,C,D of a black box state space model

ẋ(t) = Ax(t)+Bu(t) ,

y(t) = C x(t)+Du(t) ,

where u = (uI uQ)T and y = (yI yQ)T denote the system

input and output vector, respectively and x is the state vector

of the system. The flat top phase of the pulse is of main inte-

rest for control and is at the same time marking the systems

operation point. Only measurements from this period are

used for system identification. Persistent excitation signals

can be injected into the accelerator system by superimposing

random signals on standard feedforward tables with defined

setpoints. A typical input sequence for the feedforward table

is shown in Fig. 4.
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Fig. 4: Input Disturbances on both channels during flat top

In the first 500µs (filling phase), the actuator system is

operated at maximum power. In the flat top phase starting

from 500µs, the inputs are first reduced by a factor of 0.5 to

reach the setpoint and soon after, the zero mean excitation

signal is added to both inputs, see Fig. 4. A high amplitude

leads to a good signal to noise ratio. In Fig. 5 measured

vs. simulated signals are shown for an identified 3rd order

model.

An investigation of the system properties as well as the

disturbances motivated the idea to use an Iterative Learning

Controller (ILC) in order to increase the performance of the

system during the flat top phase.

IV. ITERATIVE LEARNING CONTROL

Iterative Learning Control (ILC) is used for repetitive pro-

cesses consisting of a number of trials each representing the

same procedure. Since the system to be controlled is driven

in pulsed mode, the accelerating process is considered to be

repetitive. Moreover, the disturbances show this behavior as
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well.

An ILC uses measures of the performance of previous

trials in order to improve the next trial by updating the inputs.

The objective of an ILC can be described by

‖ek‖→ 0 as k → ∞ , k ∈ N , (1)

where ek = (eI eQ)T denotes the tracking error vector signal

of the desired trajectory of the k th trial.

One recently proposed iterative learning control algorithm

is the Fast–Norm–Optimal Iterative Learning Controller (F–

NOILC), which uses the system model in a state space repre-

sentation [4]. The small number of computations between the

trials is favorable for the given hardware setup. In order to

be able to compute an optimal input signal, a criterion has to

be determined that reflects the goal of the control task and

thus, the quality of the input. This is done by solving the

following minimum-norm optimization problem:

uk+1 = argmin
uk+1

{Jk+1(uk+1) : ek+1 = r−yk+1, yk+1 = Guk+1} ,

(2)

with the performance index

Jk+1(uk+1) = ‖ek+1‖
2
Y +‖uk+1 −uk‖

2
U , (3)

where the norms ‖ · ‖ are defined as ‖u‖2
U = uT W2 u and

‖y‖2
Y = yT W1 y for the input and output spaces U and

Y, respectively. The system model is estimated during the

identification procedure and represented as matrix

G =











CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...

CAN−1B CAN−2B · · · CB











. (4)

The performance criterion described in (3) can be rewritten

as

Jk+1 =
N

∑
t=1

[r(t)− yk+1(t)]
TW1(t)[r(t)− yk+1(t)]+

+
N−1

∑
t=0

[uk+1(t)−uk(t)]
TW2(t)[uk+1(t)−uk(t)] . (5)

TABLE I: Control Algorithm F-NOILC

First level (before operation):

K(t) = AT K(t +1)A+CTW1(t +1)C
−[AT K(t +1)B{BT K(t +1)B+W2(t +1)}−1

BT K(t +1)A]

α(t) = {I +K(t)BW−1
2 (t)BT }−1

β (t) = α(t)AT

γ(t) = α(t)CTW1(t +1)

ω(t) = W−1
2 (t)BT

λ (t) = (BT K(t)B+W2(t))
−1BT K(t)A

Second level (between trials):

ξk+1(t) = β (t)ξk+1(t +1)+ γ(t)ek(t +1)

Third level (between sampling instants):

uk+1(t) = uk(t)−λ (t){xk+1(t)− xk(t)}+ω(t)ξk+1(t)

The quantities W1(t) and W2(t) represent time varying

weighting matrices which have to be symmetric and posi-

tive definite for all t. The (k + 1)th trial control input is

determined such that it reduces the tracking error e while

keeping the deviation from the control input used in the kth

trial small. The F-NOILC algorithm is given in Table I.

The algorithm is divided into three levels. In the first level

the algorithm is initialized. In the second level computations

are carried out between trials, such as the calculation of a

predictive component. The input signals with a state feedback

component are computed in the third level, which represents

computations between the sampling instants of a trial.

A. Simulations

Fast and efficient computation is important when com-

puting the updated input signal before the next trial starts.

The time interval between two consecutive RF-pulses is

approximately 0.1s, where the computed update of the input

signal must be transferred into the FPGA. At this moment

a state feedback controller is not implemented on the real

machine. Therefore the system model is used to estimate

the states before the next trial starts, e.g the third level

computations are done in the second level. Small model

variations in this have a strong influence on the performance

of the algorithm. To overcome this drawback in future an

output feedback scheme will be used.

In order to ensure that system components are not damaged

when the algorithm is implemented on the real plant, the

input signals are limited as shown in Fig. 6. The limits are

set to the maximum and minimum values of the input signals

during the filling and the decay phase.

The following weighting matrices led to satisfactory re-

sults:

W1 = 100× I2×2 and W2 = I2×2
. (6)

For the simulation input and output disturbances are used

to model the influences of the electron beam on the real

machine, which is the main source of repetitive disturbance
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Fig. 6: Limits for input signals

to be controlled. The results for the flat top phase are

shown in Fig. 7. As the number of trials increases, the

output signals approach the desired setpoint (SP) trajectory.

Rejection of the included input and output disturbances can

also be observed. Since the input signal reaches the given

limits in the beginning of the phase, the output signal only

approaches the setpoint slowly in the first 100 µs.

Convergence speed and long time stability of the ILC
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Fig. 7: Output and input signals after 20 iterations

is very important for realtime user operation. Therefore

the algorithm is tested on the real plant in presence of

measurement disturbances and possible plant variations.

V. EXPERIMENTAL RESULTS

The F–NOILC was successfully implemented on the real

plant at the DESY test facility. The results are shown in

Fig. 8 to 10. The state variables required for the state

feedback component are computed using the identified model

of the plant,as already described before. The weighting

matrices are set to the values in (6). Because of the large

computation time the input signals are computed for a whole

trial at each iteration. The number of iterations is set to 10.
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Fig. 8: Measured output signals
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Fig. 9: Measured output signals (flat top phase)

Fig. 8 and Fig. 9 show an increasing and decreasing trend

of the first and the second output signal during the flat top

phase, respectively. This is the general behavior caused by

the detuning effects described before. However, increasing

the number of trials, both output signals approach the desired

setpoint. After 10 iterations, the output signals show only

small deviations from the reference trajectory. Since only

the signals during the flat top phase are controlled, the input

signals of the filling and the decay phase are kept constant

as illustrated in Fig. 10.

Considering the output signals yI and yQ as the real and ima-

ginary part of an output vector, respectively, the amplitude

and phase of the vector can be computed. In order to evaluate

the performance of the F–NOILC, the peak–to–peak error of

the amplitude (A) is computed as follows:

eA,p2p =
‖max(eA(t))−min(eA(t))‖

‖set pointA‖
, (7)

with eA(t) = yA(t)− rA(t), where y(t) and r(t) are the

output signals and the reference signals, respectively.
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The RMS-error is computed as

eA,rms =

√

1
Tf t

1200

∑
k=500

e2
A(k) (8)

with t0, f t defining the beginning of the flat top phase and

Tf t the time interval of the flat top phase. For the phase (φ )

the errors are computed similarly. The results are given in

Table II.

TABLE II: Performance objectives and performance achie-

ved with F-NOILC

Amplitude A Phase φ

eA,p2p eA,rms eφ ,p2p eφ ,rms

F-NOILC 1.06% 31.76 2.42% 0.2879◦

P-controller 0.5% 0.1 1% 0.1◦

Objectives ≤ 0.1% ≤ 0.01 ≤ 0.1% ≤ 0.01◦

For comparison, the defined objectives as well as the

performance achieved using the already implemented pro-

portional feedback controller are given in the table. It can be

seen that the performance of the F–NOILC does not reach the

given objectives in open loop without realtime feedback [8].

However, the tracking errors of the F–NOILC after only

10 iterations are close to the values that were achieved

with the proportional controller and closed to the desired

values defined by the objectives. In future a combination of

a realtime feedback in combination with the ILC algorithm

has to be studied as well.

VI. CONCLUSIONS AND FUTURE WORKS

An Iterative Learning Controller (ILC) has been used to

improve the system performance of the accelerator. A Fast–

Norm–Optimal Iterative Learning Controller (F–NOILC)

was selected and its properties were investigated. First, a

simulation using a model obtained by system identification

was executed. After analyzing the results, the F–NOILC was

adapted by changing the realtime state feedback to an model

estimated input computation, in order to make it possible to

apply the controller to the real plant.

The adapted F-NOILC was successfully implemented at

the FLASH and first tests were run. Experimental results

were presented which show performance improvements of

the system to be controlled. Even though properties of the

control algorithm had to be changed and only tests with

a small number of iterations could be executed, the ILC

achieved good results.

So far it has not been possible yet to investigate the perfor-

mance of the controller when an electron beam is injected

into the system - experiments including the beam loading

will be carried out in the future, showing the importance

of the adaption of the feedforward signals,due to the fact

that the feedback itself is not able to compensate for this

repetitive disturbances. For further improvement of the per-

formance, tests with an increased number of iterations will

be performed to confirm long term stability. Moreover, im-

plementing the control algorithm in the FPGA will decrease

the computational time needed so that input signals can be

computed in every sampling period. A combination of the

ILC with the existing proportional controller or a MIMO-

LTI controller which is currently being developed [16], is

expected to further increase the control performance [11].
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