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Abstract— This paper considers a high efficiency energy
management control strategy for a hybrid fuel cell vehicle. The
proposed switching architecture consists of a bank of neural
network based controllers designed using statistical learning
theory. The use of different power sources and the presence
of different constraints make the power management problem
highly nonlinear. Probabilistic and statistical learning methods
are used to design the weights of a neural network and the
switching strategy is used to implement different controllers
designed on the considered operative conditions. The proposed
controller increases the efficiency of the whole system and
reduces the fuel consumption during a given path. Numerical
results are obtained using the model of a real hybrid car,
“Smile” developed by FAAM, using a stack of fuel cells as
the primary power source in addition to ultracapacitors and a
lithium battery pack. The results are compared with those of a
single neural network based controller and the perfomance is
shown to be satisfactory in terms of fuel consumption and the
efficiency of the whole system.

I. INTRODUCTION

In recent years, pollution problems and the increasing cost

of fuel have pushed the car companies to study alternatives

to the inefficient and polluting internal combustion vehicles.

The increase in the size and weight of passenger cars have

made those standard vehicles more polluting and expensive

([4]). Electric Vehicles (EVs) are the most efficient zero-

emission vehicles on the market. Unfortunately, the long

recharge time, the lower amount of energy stored, the lower

performance, and the higher cost compared with similar

internal-combustion vehicles have limited the acceptance

of these cars in the current car market. Hybrid Electric

Vehicles (HEVs) are considered a compromise between

the two extremes of thermal and electric vehicles. HEVs

actually combine the efficiency of electric cars with the

high autonomy of conventional vehicles and are considered a

potential solution to the pollution problem. The combination

of electric motors with various storage elements (i.e. fuel cell,

thermal engine, ultracapacitors, etc..) brought about more

complex systems, as well as different control strategies to

manage the vehicle powertrain ([13]).

Hybrid vehicle controllers are based on a supervisor that

chooses, in the presence of different constraints, the best

power path to satisfy the power demands of the drive line,

while minimizing the fuel consumption and the production

of polluting gases. Various solutions were developed in
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the literature in order to achieve different performances:

Dynamic Programming and Quadratic Programming are used

to minimize the fuel consumption over all paths ([11],

[12], [14]). Heuristic controllers, based on Boolean of fuzzy

logic rules, are used to minimize the fuel consumption

using different vehicular variables such as torque demand

or car speed ([9], [12]). Artificial neural networks have

also been used to achieve various performance objectives

during different driving cycles ([10], [9]). An alternative

solution to analytical optimization approaches is provided

by statistical learning methods ([15]). In a previous work

([17]), we used statistical learning to train the weights of

a single Neural Network based controller to minimize a

performance index. In this paper, a switching architecture is

implemented and a bank of neural network based controllers

are trained using Statistical Learning Theory (SLT). The

switching architecture is designed to work in four different

operating conditions: acceleration, constant speed, stand-by,

and regenerative brake, that are obtained by analyzing the

power demand in a given HEV. Statistical learning theory is

used to choose the networks’ weights of each neural network

based controller in order to reduce the fuel consumption

(hydrogen) during sample paths. The resulting controller is

applied to a Fuel Cell Electric Vehicle (FCEV) called “Smile”

and produced by FAAM S.p.A. (Italy). The vehicle has a

fuel cell stack, that convert hydrogen to electric power using

hydrogen as the primary power source. A buffer of energy

in the powertrain is provided by the lithium battery pack and

ultracapacitors. The performance of the proposed controller

is evaluated via numerical simulation and compared with

the results obtained in our earlier paper ([17]). The paper is

organized as follows. In Section II the powertrain and main

power devices are described. The details of the Switching

Neural Network based Controller (SNNC) are discussed in

Section III, while statistical learning theory is presented in

Section IV. The results of the numerical simulations and a

comparative analysis between the SNNC and a single Neural

Network based Controller (NNC) are reported in Section V,

and the paper concludes with comments on the performance

of the proposed controller and an analysis of future work.

II. FUEL CELL ELECTRIC VEHICLE

Fuel cells (FCs) are electrochemical devices that convert

the chemical energy of Hydrogen directly into electric energy

without any combustion byproducts. The combination of fuel

cells and electric batteries allows us to design clean (zero

emission) and high efficiency vehicles. As shown in figure

1, the configuration of the FCEV powertrain consists of a
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Fig. 1. Powertrain scheme of a fuel cell electric vehicle

battery pack, a fuel cell stack (PEM), an ultracapacitor bank

and an inverter that provides power to the electric motor. The

fuel cell stack, by a dc/dc converter (Boost), is in parallel

with the battery and the supercapacitors bank are connected

to the power bus by a Buck/Boost converter. Note that while

a boost converter allows us to push power from the fuel cell

stack to the battery, the Buck/Boost converter works in both

directions. The fuel cell stack provides the main power to the

vehicle while the ultracapacitors and the lithium battery pack

supply and receive power, during acceleration and braking,

respectively. Finally, the inverter converts the DC voltage into

an AC voltage used to drive the motor. Along a given path,

the amount of power required by the vehicle is provided by

the different power devices as described by the following

equation:

Pt(t) = Pfc(t) + Puc(t) + Pbat(t). (1)

where Pt(t) is the power required by the inverter at each

time instant, and Pfc(t), Puc(t) and Pbat(t) are the power

portions provided by the fuel cell, the ultracapacitors, and the

battery pack, respectively. The low-level control architecture

of the power devices is shown in figure (II), where Ifc(kT )
and Vfc(kT ) are the current and voltage provided by the fuel

cell, Ifc
ref (kT ) is the reference signal for Controller1 and

represents the current required to the fuel cell stack. Ibs(kT )
is the current output of the Boost converter. The hydrogen

consumption ∆h(kT ) is a nonlinear function of the fuel cell

current Ifc(kT ). Iuc(kT ) and Vuc(kT ) are the current and

voltage of the ultracapacitors, Iuc
ref (kT ) is the amount of

current required by the ultracapacitors while Ibb(kT ) is the

current output of the Buck/Boost. Ibat(kT ) and Vbat(kT ) are

the current and the voltage of the battery packs, respectively.

All the devices are modelled using a linear approximation as

described in ([17]). The power provided by the fuel cell stack

is controlled by the boost converter. The current provided by

this device is set up by Controller1, using the reference

signal Ifc
ref (kT ). Another device (the Buck/Boost converter)

is used to push and pull power from the ultracapacitors to the

battery pack. The reference signal Iuc
ref (kT ) is the current

required to the ultracapacitors bank and is controlled by

Controller2. A complete analysis of the model is provided

in ([7]). By using an intelligent control strategy to generate

the two control inputs, Ifc
ref (kT ) and Iuc

ref (kT ), it is possible

to obtain a reduction in the fuel consumption (hydrogen)

while achieving other performance objectives.

Fig. 2. Low level control architecture of the FCs current Ifc(T ) and
utracapacitors current Iuc(T ) in a FCEV

III. SWITCHING NEURAL NETWORK BASED CONTROL

As described earlier, a major aim of this paper is to

develop a switching control system that integrates with the

low-level control architecture in order to reduce the fuel

consumption along a given path. In order to achieve this

objective, a bank of neural network based controllers and

a switching strategy are proposed in order to generate the

two control inputs Iuc
ref (kT ) and Ifc

ref (kT ) used as reference

signals in the low level architecture. In figure 3 the acquired

data of an experimental test is presented. The particular shape

of the data suggests dividing the trajectory into four different

regions associated with four different drive configurations.

Region 1 is associated with a low power request by the

vehicle. In this case, the velocity of the vehicle is low, and the

requested power is low (stand-by mode) or negavite (short

regenerative brakes). Region 2 may be associated with a hard

regenerative task because the vehicle’s velocity is high and

the power is highly negative. Region 3 is defined for a high

vehicle speed and a low request of power. This region is

associated with a constant speed path. Finally, Region 4 is

associated with an accelerating or an uphill path. In this

case, the vehicle velocity is low with a corresponding large

amount of power request. The continuous lines in figure

3 are plotted to divide the data into the four regions. The

dashed lines are hysteresis thresholds to avoid the continuous

switching between two different regions. Points in figure 3

depend only on the power request and the vehicle velocity

and are thus functions of the drive path and the drive action.

For this reason, the data plotted in figure 3 presents the

collection of different drive paths (city path, extra-urban path,

et. al.), with different drivers. The control inputs Ifc
ref (kT )

and Iuc
ref (kT ) can only change the management of the power

in the powertrain but they do not affect the power request,

and therefore have no effect on the stability of the system.

The closed-loop system is shown in figure 4, where

Pt(kT ) is the requested power by the vehicle along the

desired path, V (kT ) is the vehicle velocity and P y
t (kT ) is

the generated power by the three power devices. The number

µ is the selected neural network based controller at time
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Fig. 3. The power versus velocity in a general drive path

kT as generated by the Supervisor, and may only assume

the values µ = {1, 2, 3, 4}. The outputs of the radial basis

function (RBF) neural network may be expressed as:

Ifc
ref (kT ) = Θ

fc
µ

T
φ(κ(kT )) (2)

Iuc
ref (kT ) = Θ

uc
µ

T
φ(κ(kT )) (3)

where Θ
fc and Θ

uc are the matrix weight vectors of the RBF

network; each column of the matrix Θ
fc
µ and Θ

uc
µ is related

with a given operating condition. The vector φ(κ(kT )) ∈ R
n

is Gaussian and defined as

φi(κ(kT )) = exp

(

−
‖κ(kT ) − ci‖

2

σ2
i

)

, i = 1, 2, · · · , n

(4)

where n is the number of nodes, ci ∈ R
n are the centers of

the basis functions and σi are scaling or “width” parameters

([16]). The input vector κ(kT ) is defined in this paper as:

κ(kT ) = [SoCbat(kT ) SoCuc(kT ) Pfc(kT ) Pt(kT )]T

(5)

where SoCbat(kT ) and SoCfc(kT ) are two numbers ranging

between 0 and 1 and are proportional to the state of charge

of the battery and the ultracapacitors, respectively (0 when

the device is empty, 1 when the device is full charged).

The signals Pt(kT ) and Pfc(kT ) denote the power functions

defined in (1). In the proposed approach, the matrix of the

weight vectors Θ
fc and Θ

uc are designed using statistical

learning theory.

Fig. 4. Closed-loop scheme for the complete powertrain system

IV. STATISTICAL LEARNING THEORY

A general supervised learning problem was considered in

([5]). Assume there is a system producing input/output pairs

(x, y). Moreover, assume that each input is distributed ac-

cording to a probability measure F (x) (fixed but unknown),

and that y is returned according to a conditional distribution

F (y|x) (also fixed but unknown). Consider a “learning

machine” capable of implementing a set of functions fk(x) ∈
F , and that this learning machine is presented with a training

set of N independent and identically distributed (i.i.d.)

samples (x, y) = (x1, y1), ...(xN , yN ) distributed according

to F (x, y). Then, given a function L(y, fk(x)), that measures

the loss or discrepancy between the real system response y
and the function fk(x), the problem is to use the information

contained in (x, y) to choose fk such that the risk functional

R(fk(x)) =

∫

L(y, fk(x))dF (x, y) (6)

can be minimized, trying to reproduce the behavior of the

real system with the learning machine fk(x). This problem is

difficult to solve directly. First, there is the already mentioned

lack of knowledge of F (x) and F (y|x). Moreover it may be

difficult to come up with the actual form of fk(x) such that

the response of the system is exactly reproduced. Instead,

an approximation of the real fk(x) is estimated ([6]). This

optimization problem is then reformulated as follows. Given

a desired accuracy ǫ > 0 and confidence parameter δ ∈
(0, 1), find an estimate f̂k(x) of fk(x) such that

sup
F (x,y)

P r{R(f̂k(x)) ≥ inf
F

R(fk(x)) + ǫ} ≤ δ. (7)

or in other words, R(fk(x)) is within ǫ (small) of

inffk
R(fk(x)) with probability 1 − δ (high). To formalize

this concept, the following definition is considered:

Definition 1 (Approximate Near Minimum): Given

R(f) = R(fk(x)), ǫ > 0 and δ ∈ (0, 1), a number R0 ∈ R
is said to be an approximate near minimum of R(f) to

accuracy ǫ and confidence 1 − δ if

P r{|R0 − inf
F

R(f)| ≤ ǫ} ≥ 1 − δ (8)

Another important concept in optimization via randomized

algorithms is the so called “level” ([2], [1]). Loosely speak-

ing, the “level” describes a set of potential solutions that may

not be represented in the sample taken for optimization. If

the size of this set is large, the optimization may not be

valid, since the sample is not representative of the family

of possible solutions. On the other hand, if this set can be

guaranteed to be small, then there will be a small probability

of finding another solution that provides considerably better

performance than those found during the sampling. Combin-

ing the level with the confidence a new type of minimum is

defined, where the objective of high accuracy (ǫ) is replaced

by that of low probability of not finding the best solution

(α).
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A. Statistical Learning theory applied to the energy manage-

ment in a FCEV

Statistical learning theory may be used to solve the op-

timization problem when it is difficult to find an analytical

solution. In this paper, Statistical learning theory is used to

designing a SNNC and to reduce the fuel consumption in a

FCEV. In the following, the original optimization problem

is reformulated as a statistical learning one. Consider the

performance index J(·) related to the fuel consumption

J(Θfc
µ ,Θuc

µ , KT ) = α1

K
∑

j=0

∆h(Θfc
µ ,Θuc

µ , jT )T

+ α2|SoCbat(t0) − SoCbat(t1)|

+ α3|SoCuc(t0) − SoCuc(t1)| (9)

where K is the number of the samples required, ∆h(·) is

the fuel consumption function which depends on Ifc
ref (kT )

and Iuc
ref (kT ) and by (2) and (3) it is a function of Θ

fc
µ and

Θ
uc
µ . The terms |SoCbat(t0)−SoCbat(t1)| and |SoCuc(t0)−

SoCuc(t1)| are used to obtain at the end of the path the same

initial amount of energy stored in the power devices, and α1,

α2 and α3 are three design parameters. The minimum of the

performance index J(·) is achieved by the optimal weight

vectors Θ
fc
µ and Θ

uc
µ for each operating condition according

to statistical learning theory. Note that instead of looking

for a solution J∗(·) that guarantees that the cost function

(9) achieves its exact minimum, an approximate J0(·) is

calculated. The number of samples needed to guarantee that

the solution is sufficiently close to the optimal solution are

based on results that may be found in [2]. The minimum

value of the performance index is

J∗ = min
Υ∈R2n

J(Υ) = J(Υ∗), (10)

the optimal solution for the system. Denote by {Υ̂} the set

of the weight samples {Υ̂1, ...Υ̂N}, with Υ̂i = (Θfc
− ,Θuc

− ),
let

J0 = min
1≤i≤·N

J(Υ̂i) = J(Υ̂0), (11)

be the minimum performance value for the system over the

set of vectors {Υ̂} . We then have the following result (see

[2]).

Theorem 1 (Minimum number of input samples): The

minimum number of samples N that guarantee that J0 is a

probable near minimum to level α and confidence δ of J∗

is

N ≥
ln(1/δ)

ln(1/(1 − α))
. (12)

V. NUMERICAL RESULTS

Numerical tests of the proposed controller have been

performed on a model of a Fuel Cell Electric Vehicle (FCEV)

called “Smile” developed by FAAM of Monterubbiano

(Italy). Vehicle “Smile” is a commercial vehicle that

requires a main power of 5 kW and which has a maximum

velocity of 50 Km/h. The vehicle uses hydrogen (that is

converted to electric power by a fuel cell stack) as its

primary source and ultracapacitors for an energy buffer

as shown in figure (I). The fuel cell stack is produced by

“HydrogenicsTM ” and the Boost converter is a custom

made device. The module provides 12 kW of maximum

power, with a current ranging between 0 to 300 A and the

operating voltage ranging from 40 to 55 V. A complete

description of the mathematical model and the identification

phase are reported in ([7], [17]).

The ultracapacitors are produced by

Maxwell TechnologiesTM . The module has 165 F of

capacity and a voltage ranging between 24.3 and 48.6 V. In

order to avoid damage to this power device, Controlloer2

works under the constraint that the capacitor voltage is

in the required range. The State of Charge (SoC) is a

variable that represents the charged state of the device, and

is represented by a number between 0 to 1. The Battery

pack is composed of 19 lithium polymer cells produced

by Kokam, each with a nominal voltage of 3.7 V and 70
Ah each one. The nominal battery pack voltage is 70.3 V.

Different constraints are considered for the battery pack.

The State of charge (SoC) of the battery ranges between 0
to 1. In fact, the battery may not be completely discharged

or over charged. The minimum and maximum battery pack

voltage are 51.3V and 79.8V, respectively. The maximum

current provided by the battery is limited to 200A but may

reach a peak of 700A, while the maximum current provided

to the battery is limited to −100 A.

The total power amount Pt(kT ) is obtained from the request

of power during a given drive test. The drive test is chosen

to be representative of a typical drive condition. For this

reason, different road conditions (uphill, downhill, and flat),

different velocities, and different drive conditions (speedup,

brake) are considered. Two different drive tests are used

here: the first is used to design the weight vectors, while

the second was chosen to test the proposed controller. In

figure (6), the vehicle velocity (top) and the request of

power (bottom) are shown as a function of time during

the training phase. figure (7) shows the power path used

to verify the performance of the proposed control. The

switching neural network based controller was designed

off line, using statistical learning theory as described in

the previous paragraph. The whole control scheme was

put in the closed-loop system, shown in figure 4, and the

SLT used to choose the neural network weights. The size

of the RBFN is chosen to be as small as possible, while

covering all the input space spanned by the input vector

κ(kT ). Therefore, the hidden layer is chosen to have 27

nodes to cover the input space spanned by the input vector

κ(kT ). The two weight matrices Θ
fc and Θ

uc are designed

to generate, using the switching signal generated by the

supervisor, the two control inputs Ifc
ref (kT ) and Iuc

ref (kT ).

The values of α and δ in 1 are chosen to be 0.01 and 10−3,

respectively. This leads to the number of samples N = 688.

figure 5 shows the switching control signal generated using

the required power and the velocity of the vehicle (see
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figure 3). figure 8 shows the control inputs generated by the

neural network controller using the second path described

in figure (7). Note that Ifc
ref (t) takes on positive values

only because the fuel cell stack is a power generator, while

the reference signal for the ultracapacitors Iuc
ref (t) may be

positive or negative. In figures 9, 10 and 11 the behaviors

of the voltage (top) and the current (bottom) during the

drive path are reported. The figures show that all the defined

constraints are satisfied. In figure 12, the states of charge

of the battery pack and of the ultracapacitors are shown.

The figures clearly show that the two power devices are

used as power buffers, and that the final amount of energy

is almost the same as the starting one. Therefore, all the

energy required during the drive path is provided by the fuel

cell. In Table I, a comparision between the SNNC controller

and the NNC controller (described in [17]) is provided.

Using a different control strategy, and without modifying

any hardware device, our approach allows us to achieve the

same performance while reducing the fuel consumption. A

fuel reduction of 3.84% may seem too small for one car,

but considering the large number of the cars, the overall

reduction is indeed large.

TABLE I

FUEL CELL ELECTRIC VEHICLE PERFORMANCES

NNC SNNC Improvement

Energy Provided 9708.7 kWh 9335.2 kWh 3.84%

Efficiency 41.20% 42.85% 1.65%
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Fig. 5. The switching sequence provided by the supervisor.

VI. CONCLUSIONS

In this paper, the energy management problem for an

FCEV is analyzed and solved using a SNNC designed

by statistical learning theory (SLT). A switching control

architecture is introduced to improve the performance of a

NNC. Four different regions, depending on four different

drive conditions, are used to design differents NNC using

SLT. SLT was used to design the matrix of weight vectors of

a SNNC with the aim to reduce the fuel consumption during

a given path. Numerical simulations show an improvement

of the performance compared with a single NNC. The use
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Fig. 6. Velocity and Power used for the training phase.
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Fig. 7. Velocity and Power used to evaluate the performance of the
proposed controller.

of a switching control instead of a single NNC is therefore

a potential solution to reduce the fuel consumption in a

FCEV. Our future work will focus on the implementation

of this approach to the real vehicle ”Smile“ produced by

FAAM. The possibility of using a clustering algorithm to

choose the path regions may also lead to an improvement of

the proposed work. The use of standard drive paths will be

considered in future works.
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Fig. 10. Voltage and Current provide by the Battety during the test.
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Fig. 11. Voltage and Current provide by the Ultracapacitors Bank during
the test.
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Fig. 12. State of Charge (SoC) of the Battery pack and Ultracapacitors,
respectively.
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