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Abstract— The concept of ”average passivity” is introduced
making use of the Differential Difference Representation (DDR)
of nonlinear discrete-time dynamics. It gives a first insight to-
wards the introduction of a passivity notion which is equivalento
to the continuous-time criterium when applied under sampling.

I. INTRODUCTION

Robust control strategies based on passivity properties or

more in general dissipativity concepts [17], [6] are widely

investigated from theory to practice in terms of Lyapunov

design or H∞ control as many other efficient approaches for

capturing and respecting the physical structure of the process

(see for example [3], [15], [2] and the references therein).

Specialized studies were developed in discrete time [7], [4],

[10], [13], [14] where additional difficulties occur due to

generic nonlinearity in the control variable of the dissipation

inequalities. The notion of passivity itself deserves a deeper

analysis in discrete time. In particular, in a sampled data

context, the study is further complicated since the sampled

equivalent model of a passive continuous-time plant does

not satisfy a standard discrete-time dissipation inequality.

Such a pathology reflects into the fact that eventhough some

dissipation inequality is preserved see [9], [16], standard

discrete-time passivity of the sampled model is lost. How do

evolve dissipation inequalities under sampling needs specific

attention as it directly affects the digital redesign.

In a linear context, it has been shown in [5], that passivity

under zero-order-holding sampling device is maintained with

respect to a ”modified” output matrix. Such a result is

presently generalized to nonlinear input-affine dynamics with

respect to a ”modified” output matrix. Then, such a ”modified

output mapping” is interpreted as the average of the ”true

output mapping” over the sampling time so providing an

interesting physical meaning. This is made possible by con-

sidering the equivalent representation of sampled dynamics

as two coupled differential/difference equations. Arguing

so, it becomes possible to define passivity concepts for

nonlinear discrete-time dynamics without direct input-output

link. Average dissipativity concepts are so introduced for

nonlinear discrete-time dynamics in their differential differ-

ence representations - DDR- [11]. The case of linear time

invariant dynamics is studied as an example. The paper is

organized as follows. Section II recalls dissipativity concepts
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and criteria for continuous-time input-affine systems Σc. On

these bases, the studied problem is described. Assuming Σc

dissipative with supply rate < u, y > and storage function

V , is its sampled equivalent dynamics dissipative?, with

respect to what output mapping ? what supply rate? what

storage function?. In section III, after recalling the dif-

ferential/difference representation of discrete-time dynamics

specialized for dynamics under sampling we describe the

”modified” output mapping with respect to which passivity

under sampling is preserved at the the sampling instants.

The case of linear systems studied in [5] is recovered. In

section IV, a novel average dissipativity notion is introduced

for nonlinear discrete-time dynamics in their DDR. Sufficient

conditions are described through KYP-type properties. The

case of linear time invariant systems is discussed as an

example so providing in the discrete-time linear context too

novel concepts of average dissipativity, average passivity or

average positive realness. The main contribution in Section

V says that under sampling continuous-time passivity is

transformed into average passivity over each sampling time.

For, we interpret the ”modified ” output as the average with

respect to the input signal of the ”real” output mapping.

Dissipation inequalities under sampling are described. These

definitions are applied to the elementary RC circuit.

II. PROBLEM SETTLEMENT AND SOME RECALLS

The continuous-time case - In this paper, we consider single

input-affine dynamics Σc over X = Rn

ẋ = f(x) + u(t)g(x) (1)

with output mapping y = h(x). The set of admissible inputs

consists of all U -valued piecewise continuous functions

defined on R, f and g are smooth (i.e. C∞) vector fields

and h is a smooth mapping. Without loss of generality we

assume f(0) = 0 and h(0) = 0.

We review some basic concepts related to the notions of

passivity and dissipativity (see [17], [6], [3], [15], [2] for

further details). Let w be a real-valued function on U × Y ,

called the supply rate, we assume that for any u ∈ U and

for any x0 ∈ X , the output y(t) of Σc is such that
∫ t

0

|w(y(s), u(s))|ds < ∞ for all t ≥ 0. (2)

Definition 2.1: Σc with supply rate w is said to be dissipa-

tive if there exists a C0 nonnegative function V : X → R,

called the storage function which satisfies V (0) = 0 such

that for all u ∈ U , x0 ∈ X , t ≥ 0

V (x(t)) − V (x0) ≤

∫ t

0

w(y(s), u(s))ds (3)
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with x(t) = Φ(t, x0, u).
The last inequality is called the dissipation inequality. Dis-

sipative systems with supply rate given by the inner product

w(y, u) =< u, y >= yT u (4)

where the super script T denotes transpose are passive

systems satisfying

V (x(t)) − V (x0) ≤

∫ t

0

yT (s)u(s)ds. (5)

Definition 2.2: Σc with supply rate w is said to be lossless

if for all u ∈ U , x0 ∈ X , t ≥ 0

V (x(t)) − V (x0) =

∫ t

0

w(y(s), u(s))ds. (6)

Definition 2.3: Σc is positive real if for all u ∈ U , t ≥ 0

0 ≤

∫ t

0

yT (s)u(s)ds (7)

whenever x0 = 0.

Passivity can be characterized in terms of the Kalman-

Yakubovitch-Popov property [3]: there exists a C1-

nonnegative function V : X → R with V (0) = 0 s.t. ∀x ∈ X

LfV (x) ≤ 0; LgV (x) = hT (x). (8)

Proposition 2.1: If Σc satisfies the KYP property, then it

is passive with storage function V . Conversely, a passive

system having a C1 storage function has the KYP property.

We note that the KYP property can be interpreted as the

infinitesimal version of the dissipation inequality (6).

The discrete-time case - Considering now a discrete-time

dynamics Σd in the form of a map

xk → xk+1 = F (xk, uk) (9)

the definition below is usual.

Definition 2.4: Σd with output mapping y = h(x) is passive

if there exists a C0 nonnegative function V : X → R, which

satisfies V (0) = 0, such that for all uk ∈ Ud, all xk ∈ X

V (xk+1) − V (xk) ≤ yT
k uk (10)

or equivalently

V (xN ) − V (x0) ≤

N
∑

i=0

yT
i ui (11)

for all N ≥ 0, ui ∈ Ud; i.e the stored energy along

any trajectory from x0 to xN does not exceed the supply.

Accordingly, one defines discrete-time losslessness replacing

the inequality (10) by an equality and discrete-time positive

realness when yT
k uk ≥ 0.

Remark. From (11), a passive system with a positive definite

storage function is Lyapunov stable. Reciprocally, V is not

increasing along trajectories such that yk = 0. Recalling that

such a constraint defines the zero dynamics, one deduces

that a passive system with a positive storage function V has

a Lyapunov stable zero dynamics. KYP-type properties in

discrete-time have been described in [7], [4], [10].

Some notations - In the sequel, ef = 1+
∑

i≥1

Li
f

i! , indicates

the operator Lie series associated with a smooth vector field

f on X regarded as the Lie derivative Lf =
∑n

i=1 fi(x) ∂
∂xi

,

1 indicates the identity operator and In the identity function

on Rn; for any smooth real valued function h, the following

result holds efh(x) = h(efx).

III. PASSIVITY UNDER SAMPLING

Assuming some dissipation inequality as in (3) and the con-

trol piecewise constant, we investigate the possible preser-

vation under sampling of such inequality. More precisely,

assuming Σc dissipative with supply rate (4) and computing

its sampled equivalent model, for u(t) constant over time

intervals of length δ ∈]0, T ∗], a finite interval (uk ∈ Ud), the

nonlinear difference equation

xk → xk+1 = eδ(f+ukg)xk = F δ(xk, uk) (12)

with output mapping y = h(x) describes Σδ, the sampled

equivalent model to (1) in the form of a map; i.e. the state

evolutions (resp. output evolutions) of (12) and (1) coincide

at the sampling instants t = kδ (k ≥ 0), under constant input

u(t) = uk for t ∈ [kδ, (k+1)δ[ for the same initial condition

x0.

A. The DDR of sampled dynamics

In place of a map (9), an alternative state space repre-

sentation of discrete-time dynamics as two coupled dif-

ferential/difference equations modeling the free and con-

trolled dynamics respectively has been proposed in [11]. The

usefulness of such a representation has been discussed in

several papers putting in light how to characterize struc-

tural and control properties in discrete time in a format

comparable to their differential geometric formulations usual

in a continuous-time setting. These analogies are further

employed when sampled dynamics are investigated. In this

case, the DDR associated with a sampled dynamics de-

scribed in the form of a map exists and is uniquely defined

due to the invertibility of the drift term: for sufficiently

small δ ensuring series convergence, (12) is drift invertible

F δ(x, 0) = eδfx; (F δ)−1(x, 0) = e−δfx = F−δ(x, 0) and

so is F δ(x, u) (with inverse F−δ(x, u)), for u ∈ Ud, a

neighborhood of 0. It follows that, equivalently to (12), the

sampled dynamics Σδ can be described by two coupled

equations [12]; i.e. for all τ ∈]0, δ]

x+ = eτfx; x+(0) = x+ (13)

dx+(τu)

d(τu)
= Gτ (x+(τu), τu) (14)

setting by definition

Gτ (., τu) :=
dF τ (., τu)

dτu
|F−τ (.,τu) (15)

=
1

τ

τ
∫

0

e−sadf+uggds = Gτ
1 +

∑

i≥1

(τu)i

i!
Gτ

i+1.
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Given xk ∈ X and uk ∈ Ud, integrating (14) between 0 and

δuk for the initial state condition x+(0) specified by (13),

x+(0) = x+ = eδfxk, one recovers (12) at time t = (k+1)δ

xk+1 := x+(δuk) = x+(0) +

∫ δuk

0

Gδ(x+(v), v)dv (16)

and identically for any smooth output mapping

h(xk+1) := h(x+(δuk)) (17)

= h(x+(0)) +

∫ δuk

0

LGδ(.,v)h(x+(v))dv.

Combinatoric relations between these two representations of

the sampled equivalent Σδ to Σc are in [12].

B. Usual passivity under sampling

From (5) written at time t = (k + 1)δ for x0 = xk and

u(τ) = uk; τ ∈ [kδ, (k + 1)δ[, it follows that if Σc passive

with storage function V , then for all δ ∈]0, T ∗], its sampled

equivalent dynamics Σδ satisfies the dissipation inequality

V (xk+1) − V (xk) ≤ (

∫ δ

0

yT (s)ds)uk (18)

for all uk ∈ U , xk ∈ X , k ≥ 0.
It is possible to interpret (18) as the discrete-time dissipation
inequality of the form (10) for some ”modified output
mapping”. For, set Hδ(xk, uk)

H
δ(xk, uk) :=

∫ δ

0

y
T (s)ds =

∫ δ

0

e
s(f+ukg)

h(xk)ds (19)

=

∫ δ

0

e
sf

h(xk)ds + uk

∫ δ

0

(

∫ s

0

LGs(.,τuk)h(x+(τuk))dτ

)

ds.

Theorem 3.1: Assuming Σc with output mapping y = h(x)
passive (resp. lossless or positive real) with storage function

V , then for all δ ∈]0, T ∗], uk ∈ Ud, its sampled equivalent

dynamics Σδ with output mapping Hδ(., uk) defined in (19)

is discrete-time passive (resp. lossless or positive real) with

the same storage function V .

Proof: It must be shown that the discrete-time dissipa-

tion inequality holds for all uk ∈ Ud, xk ∈ X , k ≥ 0

V (xk+1) − V (xk) ≤< uk, Hδ(xk, uk) > (20)

For, it is sufficient to rewrite
∫ δ

0
y(s)ds in (18) as

∫ δ

0
h(x+(suk))ds with

x
+(suk) = e

s(f+ukg)
xk = e

sf
xk +

∫ s

0

G
s(x+(τuk), τuk)dτ.

Remark. The result can be extended to system Σc with with

direct input-output link by considering ȳ = h̄(x, u) in place

of h(x). in such a case (19) generalizes as

H̄δ(xk, uk) :=

∫ δ

0

es(f+ukg)h̄(xk, uk)ds =

∫ δ

0
esf h̄(xk, uk)ds + uk

∫ δ

0
(
∫ s

0
LGs(.,τuk)h(x+(τuk), uk)dτ )ds.

C. The linear case as an example

Let (A, B, C) be the minimal realization of a linear time

invariant - LTI - continuous-time system on Rn

ẋ = Ax + Bu; y = Cx

assumed passive with quadratic V = 1
2xT Px (P ≥ 0 a

symmetric positive matrix); i.e. V̇ ≤ yT u.

Under zero-order holding device, the sampled equivalent

(Aδ := eδA, Bδ :=
∫ δ

0
eτABdτ, C) to (A, B, C) does not

maintain passivity; i.e. the equivalent discrete-time dissipa-

tion inequality V̄ (xk+1) − V̄ (xk) ≤ yT
k uk does not hold

true for V̄ = V ; i.e. passivity is lost under sampling. A

major obstruction is the lack of direct input-output link.

To overcome this problem, it has been proposed in [5] to

modify the output mapping of the sampled equivalent model

so that to get preservation of the dissipativity inequality as

well as preservation of the continuous-time energy at the

sampling instants. More precisely, the LTI sampled system

(Aδ, Bδ, Cδ, Dδ), with output mapping

yδ(xk, uk) = Cδxk + Dδuk (21)

with Cδ = C
∫ δ

0 eτAdτ and Dδ = C
∫ δ

0 Bτdτ satisfies at

the sampling instants the dissipation inequality

V (xk+1) − V (xk) ≤< uk, yδ(xk, uk) >

so recovering the linear version of (19). The same holds

true when considering linear systems with direct input-output

link.

In the sequel we show that the right member of (20) can

be interpreted as the supply rate associated with a certain

average output mapping directly deduced from the adopted

DDR. For, average dissipativity is introduced.

IV. A NOVEL AVERAGE PASSIVITY IN DISCRETE-TIME

As above specialized to the sampled case, under some mild

conditions (invertibility of the drift or invertibility of f(x, ū)
for some ū ∈ Ud), any nonlinear difference equation (12)

can be represented as two coupled difference and differential

equations - DDR - (see [11] for further details).

x+ = F0(x); x+(0) = x+ (22)

dx+(u)

du
= G(x+(u), u) (23)

so getting for all uk ∈ Ud

xk+1 := x+(uk) = x+(0) +

∫ uk

0

G(x+(v), v)dv (24)

and for any mapping h : X → R

yk+1 = h(x+(uk)) := h(x+(0)) +

∫ uk

0

LG(.,v)h(x+(v))dv.

(25)

In this framework, a discrete-time system is described by

(22-23) and the output mapping y+(u) = h(x+(u)). It has to

be stressed that such a representation induces u-dependency

of the output mapping through u-dependency of the state

dynamics at the basis of the definitions introduced below.
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Definition 4.1: Given Σd with output mapping y(u) =
h(x+(u)) then, for any fixed vd ∈ Ud, yav(vd) denotes the

average output mapping over ]0, vd] of y(u) defined as

yav(vd) :=
1

vd

∫ vd

0

h(x+(v))dv. (26)

It is now possible to enounce standard dissipativity concepts

making reference to such an an average output mapping so

introducing the ”average dissipativity ” notions.

Definition 4.2: Σd is said to be average passive if there

exists a C0 nonnegative function V : X → R, called the

storage function, such that for all uk ∈ Ud , xk ∈ X , k ≥ 0

V (xk+1) − V (xk) ≤ yT
av(uk)uk. (27)

Definition 4.3: Σd is said to be average lossless if for all

uk ∈ Ud, xk ∈ X , k ≥ 0, the equality holds true

V (xk+1) − V (xk) = yT
av(uk)uk. (28)

Definition 4.4: Σd is said to be average positive real if for

all uk ∈ Ud , xk ∈ X , k ≥ 0

0 ≤

∫ uk

0

y(v)dv = yT
av(uk)uk (29)

whenever x0 = 0.

The following Lemma is a direct consequence of the adopted

state-space structure.

Lemma 4.1: Given Σd, (27) rewrites as

V (F0(xk)) − V (xk) +

∫ uk

0

LG(.,v)V (x+(v))dv

≤

∫ uk

0

h(x+(v))dv. (30)

According to this, some sufficient KYP-type properties can

be given to describe discrete-time average passivity.

Proposition 4.1: Given Σd, if there exists a C1 nonnegative

function V : X → R with V (0) = 0 such that for all x ∈ X

V (F0(x)) − V (x) ≤ 0 (31)

LG1V (x) = hT (x); LGi
V (x) = 0; i ≥ 2 (32)

then Σd is average passive for any uk ∈ Ud with storage V .

Proof: The result is a direct consequence of

(30). (31) corresponds to setting uk = 0 while

(32) can be interpreted as the infinitesimal version of
∫ uk

0
LG(.,v)V (x+(v))dv ≤

∫ uk

0
h(x+(v))dv rewritten as

uk

∫ 1

0 LG(.,suk)V (x+(suk))ds ≤ uk

∫ 1

0 h(x+(suk))ds.

Regarding losslessness, the conditions are also necessary.

Proposition 4.2: Given Σd, if there exists a C1nonnegative

function V : X → R with V (0) = 0 such that for all x ∈ X ,

(32) hold true and

V (F0(x)) − V (x) = 0 (33)

then Σd is average lossless for any uk ∈ Ud, with storage

function V . Conversely, average losslessness of Σd with

storage V implies (33-32).

These notions can be extended to systems with direct input-

output link.

A. Systems with direct input link

Given a discrete-time system described by (22-23), consider

now the output mapping h̄(., u) : X × U → X , so defining

ȳ+(u) = h̄(x+(u), u. The dissipation inequality rewrites as

V (x+(uk)) − V (xk) ≤ ȳT
av(uk)uk

or equivalently

V (F0(xk)) − V (xk) +

∫ uk

0

LG(.,v)V (x+(v))dv

≤

∫ uk

0

h̄T (x+(v), v)dv. (34)

Proposition 4.1 and Proposition 4.2 generalize as follows.

Proposition 4.3: Given Σd with output mapping ȳ =
h̄(x, u) = h̄1 +

∑

i≥1
ui

i! h̄i, if there exists a C1nonnegative

function V with V (0) = 0 such that for all x ∈ X

V (F0(x)) − V (x) ≤ 0 (35)

LGi
V (x) = h̄T

i (x); i ≥ 1 (36)

then Σd is average passive with storage V .

Proposition 4.4: Given Σd with output mapping ȳ =

h̄(x, u) = h̄1 +
∑

i≥1
ui

i! h̄i, if there exists a C1nonnegative

function V : X → R, with V (0) = 0, such that for

all x ∈ X (33-36) hold true, then Σd, is average lossless

with storage function V . Conversely, a discrete-time average

lossless system with C1 storage V satisfies (33-36).

This analysis shows that average dissipativity concepts do

correspond to standard dissipativity concepts provided one

makes reference to the average output mapping defined as in

(26). This provides a key tool to deal with systems without

direct input-output link by setting any standard dissipativity

based control property on the DDR and its average output

making reference to dissipativity average notions. As an

example, the interconnection of two average passive systems

is still average passive through connection with the average

output mapping.

B. The linear case as an example

Given a LTI dynamics with direct input-output link

(Ad, Bd, Cd, Dd) in its DDR form

x+ = Adx;
dx+(u)

du
= Bd; ȳ = Cdx

+(u) + Ddu

with average output

ȳ
d
av(uk) = CdAdxk +

1

2
(CdBd + Dd)uk

let us characterize discrete-time average passivity.
Theorem 4.1: Let (Ad, Bd, Cd, Dd) the minimal realization
of a LTI system, the matrix inequality

(

AT
d PAd − P AT

d PBd − AT
d CT

d

BT
d PAd − CdAd −Dd − CdBd + BT

d PBd

)

≤ 0

has a solution for a symmetric matrix P ≥ 0 iff

(Ad, Bd, Cd, Dd) is average passive with supply rate V (x) =
1
2xT Px.
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V. SAMPLED AVERAGE PASSIVITY

Let us now specialize these notions to the sampled case.

Let Σc and for all δ ∈]0, T ∗], let Σδ its sampled equivalent

dynamics defined in (13-14). The following result interprets

the right hand sides of (18) or (20) as the supply rate

associated with the average output mapping.

Proposition 5.1: Assuming Σc passive with storage function

V , then for all δ ∈]0, T ∗], its sampled equivalent dynamics

Σδ is sampled average passive with storage V ; i.e.

V (xk+1) − V (xk) ≤< δuk, yav(δuk > (37)

for all uk ∈ U , xk ∈ X , k ≥ 0 with yav(δuk) :=
1

δuk

∫ δuk

0 h(x+(v))dv.

Proof: A simple calculus shows that

∫ δ

0

yT (s)dsuk =

∫ δ

0

(es(f+ukg)h(xk))T ukds

=

∫ δ

0

hT (x+(suk))dsuk =

∫ δuk

0

hT (x+(v))dv

= yT
av(δuk)δuk.

Remark. According to such a definition Hδ(xk, uk) =
∫ δ

0
h(x+(σuk)dσ = δyav(δuk) and the continuous-time

energy function is preserved at the sampling instants.

These concepts yield to the achieved results below.

Theorem 5.1: Assuming Σc passive (resp. lossless or posi-

tive real) with storage function V , then for all δ ∈]0, T ∗], its

sampled equivalent dynamics Σδ is sampled average passive

(resp. sampled average lossless or sampled average positive

real) with the same energy function at the sampling instants.

Remark. The terminology sampled average passivity em-

phasizes that both the drift and the controlled vector field

of sampled dynamics Σδ are τ -dependent over ]0, δ] while

they are computed for a given fixed sampling time δ when

interpreted as discrete-time maps.

A. Systems with direct input-output link

The analysis can be generalized to output mapping of the

form ȳ = h̄(x, u) transformed under constant control into

h̄(x, uk) with average output over time interval of length δ

given by ȳav(δuk) := 1
δuk

∫ δuk

0
h̄(x+(v), uk)dv.

Proposition 5.2: Assuming Σc passive with output mapping

ȳ = h̄(x, u) and storage V , then for all δ ∈]0, T ∗], its

sampled equivalent dynamics Σδ is sampled average passive

with storage V and supply rate < δuk, ȳav(δuk >.
Proof: A simple calculus shows that

∫ δ

0

h̄
T (x(s), uk)dsuk =

∫ δ

0

(es(f+ukg)
h̄(xk, uk))T

dsuk

=
(

∫ δ

0

h̄
T (x+(suk), uk)ds

)

uk =

∫ δuk

0

h̄
T (x+(v), uk)dv

= ȳ
T
av(δuk)δuk.

Remark. We note that when dynamics under zero-order sam-

pling are considered, the continuous-time output mapping

h̄(x, u) is transformed into h̄(x, uk) so getting a dissipation

inequality which differs from (34) where the direct input-

output link affects the average.

B. The linear case as an example

Let (A, B, C) be the minimal realization of a LTI

continuous-time system on Rn assumed passive with

quadratic storage V = 1
2xT Px (P ≥ 0 a symmetric positive

matrix). The DDR over ]0, δ] of its sampled equivalent

(Aδ, Bδ, C) under zero-order-holding device is given by

x+ = Aτx;
dx+(τu)

d(τu)
=

1

τ
Bτ ; y(τuk) = Cx+(τuk)

It is a matter of computations to verify that the supply rates

associated with the output map (21) proposed in [5] for

a fixed given uk and the average over ]0, δuk] of y(τuk)
coincide; i.e.

< uk, yδ(xk, uk) >=< δuk, yav(δuk) > . (38)

In fact, an easy calculus shows that δyav(δuk) = Cδxk +
Dδuk because, for any τ ∈]0, δ]

Cx
+(τuk) = CA

τ
xk + C

∫ τuk

0

1

τ
B

τ
dv = CA

τ
xk + CB

τ
uk.

When considering ȳ = Cx + Duk, one has

δȳav(δuk) :=
1

uk

∫ δuk

0

(Cx+(v) + Duk)dv

= C

∫ δ

0

Aτxkdτ + ukC

∫ δ

0

Bτdτ + δDuk

so recovering the result in [5] presently rephrased in terms

of average output mapping; i.e.

< δuk, ȳav(δuk) >=< uk, C

∫ δ

0

Aτxkdτ >

+ < uk, C

∫ δ

0

Bτdτuk > + < uk, δDuk > .

C. Counter clockwise - CCW - input-output dynamics

In [1], a new input-output property, the counter clockwise

input-output dynamics - CCW - is proposed for the study

of positive feedback interconnections in both linear and

nonlinear contexts. Reinterpreting the CCW property as the

classical definition of passivity with respect to the derivative

of the output mapping, the following definition can be set.

Definition 5.1: Σc is CCW if it is passive with respect to

the inner product < u(t), ẏ(t) >; i.e. for any pair (x, u) so

that the output mapping is differentiable, there exists a C∞

nonnegative function V : X → R with V (0) = 0 such that

V (x(t)) − V (x0) ≤

∫ t

0

ẏT (s)u(s)ds. (39)

It is a matter of computation to verify that under sampling,

the dissipation inequality (39) specializes for any uk ∈ Ud,

xk ∈ X , k ≥ 0 as

V (xk+1) − V (xk) ≤ uk(yk+1 − yk) (40)
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so providing a dissipativity notion which makes sense in the

discrete-time context as it does not require a direct input-

output link. The following result holds in a linear context.
Theorem 5.2: Assuming (A, B, C) a minimal realization of
a LTI continuous-time system passive with respect to <
u, ẏ >=< u, CAx + CBu > - equivalently CCW - , then
its sampled equivalent is passive with respect to the inner
product < uk, CAδxk − Cxk + CBδuk > with the same
energy function at the sampling instants and supply rate
V (x) = 1

2xT Px; i. e. the matrix inequality
(

(Aδ)T P Aδ − P (Aδ)T P Bδ − (Aδ)T CT + CT

(Bδ)T P Aδ − CAδ + C −2CBδ + (Bδ)T P Bδ

)

≤ 0

has a solution for a symmetric matrix P ≥ 0.

It is interesting to compare the supply rate < uk, CAδxk −
Cxk + CBδuk > in Theorem 5.2 with the supply rate

< uk, Cδxk + Dδuk > in (21) and the supply rate <
uk, CAδxk + 1

2CBδuk > setting Ad = Aδ, Bd = Bδ, Cd =
C in Theorem 4.1.

D. A linear simulated example

We refer to the simple RC series connection with capacity

voltage Vout as output, to compare sampled average passivity,

average passivity and the CCW property with the continuous-

time and discrete-time criteria. One has

V̇out = −1/RCVout + 1/RCVin

with equivalent sampled dynamics

V
k+1out = e−δ/RCV

kout + (1 − e−δ/RC)V
kin

Under storage function ϑ = 1
2 (Vcap)

2RC, one computes

ϑ(x(t)) − ϑ(x0) ≤

∫ t

0

u(s)y(s)ds.

so getting under sampling

ϑ(xk+1) − ϑ(xk) ≤ uk

∫ δ

0

y(s)ds

δyav(δuk) = δuke
−δ/RC + RC(1 − e

−δ/RC)(yk − uk)

y
d
av(xk, uk) = e

−δ/RC
yk +

1

2
(1 − e

−δ/RC)uk.
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u(τ)y(τ)dτ    (1)
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Fig. 1. RC Circuit Supply Rates and Storage Function

Figure 1 illustrates the performances of average dissipativity

concepts for preserving passivity under sampling with the

same storage function. While the usual passivity inequality

is lost (6-3), the discrete-time average output and the sampled

average output are associated with supply rates which respect

this inequality, (4)-(5).

VI. CONCLUSIONS

The notion of average passivity has been introduced in

discrete time; it has been shown to restitute the continuous-

time criterium when applied under sampling. Its use for

discrete-time design might be investigated.
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