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Abstract— Convex relaxations of nonconvex problems are a
powerful tool for the analysis and design of control systems.
An important family of nonconvex problems that are relevant
to the control field is that of quadratic distance problems.
In this paper, several convex relaxations are presented for
quadratic distance problems which are based on the sum-of
squares representation of positive polynomials. Relationships
among the considered relaxations are discussed and numerical
comparisons are presented, in order to highlight their degree
of conservatism.

I. INTRODUCTION

Quadratic distance problems play a key role in the analysis
and synthesis of control systems. Indeed, a number of prob-
lems can be formulated as the computation of the minimum
distance, in a weighted l2-norm, from a point to a polynomial
surface in a finite dimensional space. Just to mention a
few examples: the computation of the l2 parametric stability
margin of a control system affected by parametric uncertainty
[1], the estimation of the domain of attraction of equilibria of
nonlinear systems via quadratic Lyapunov functions [2], the
D-stability of real matrices [3] that plays a key role in the
analysis of singularly perturbed systems [4], the computation
of the region of validity of optimal linear H∞ controllers for
nonlinear systems [5], the characterization of the frequency
plots of an ellipsoidal family of rational functions [6].

In general, quadratic distance problems are not convex.
The great advances made in the last two decades in the
solution of convex problems [7], [8], has motivated re-
searchers to develop powerful tools for devising convex
relaxations of nonconvex problems, i.e. to formulate convex
problems whose solution is a bound of the optimum of the
original problem. Within this context, it has been recently
recognized that positivity of polynomial forms can be tack-
led effectively through SemiDefinite Programming problems
(SDPs). A fundamental result which has been widely used
states that a sufficient condition for a polynomial to be
positive semidefinite is that it can be expressed as a Sum
of Squares (SOS) [9], [10]. Since it is known that testing if
a polynomial is an SOS is equivalent to solving a system of
Linear Matrix Inequalities (LMIs) [11], [12], it is possible
to generate a number of convex relaxations for problems
involving positivity of polynomials, see [13] and references
therein. Several SOS-based techniques for unconstrained and
constrained optimization of rational functions have been
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presented in [14]. Convex relaxations based on the theory
of moments, which can be viewed as a dual approach to the
SOS paradigm, have been widely investigated, see e.g. [15],
[16].

As long as quadratic distance problems are concerned, a
convex relaxation based on homogeneous polynomial forms
(i.e., polynomials whose terms have the same degree) has
been proposed in [17]. Another family of relaxations for
distance problems (not necessarily quadratic) relies on results
from algebraic geometry, like the Positivstellensatz [12],
[18]. By using these results it is possible to construct
several relaxations whose degree of conservatism depends
on the specific choice of the structure of the polynomial
multipliers involved in the relaxation and on the degree of
such polynomial.

In this paper, different convex relaxations for quadratic
distance problems are reviewed and their properties are
discussed. The main result is to show that the relaxation
based on homogeneous forms introduced in [17] is equivalent
to a relaxation based on Positivstellensatz involving a non-
homogeneous polynomial of the same degree. Moreover, ex-
amples are presented in which Positivstellensatz relaxations
of higher degree allow one to achieve less conservative re-
sults. Finally, numerical comparisons between the considered
relaxations are reported for randomly generated quadratic
distance problems.

The paper is organized as follows. Quadratic distance
problems are formulated in Section II. Section III presents
some basic material about the SOS representation of positive
polynomials and introduces the convex relaxations. The
main contributions are reported in Section IV: equivalence
between two different relaxations is established and numer-
ical comparisons among all the considered relaxations are
provided. Concluding remarks are given in Section V.

II. QUADRATIC DISTANCE PROBLEMS

Let us consider the optimization problem
min ξ′Qξ
s.t. w(ξ) = 0 (1)

where ξ ∈ Rn, Q ∈ Rn×n is a positive definite symmetric
matrix and w(x) is an n-variate polynomial of degree m.
Due to the generality of the polynomial constraint, (1) is in
general a nonconvex optimization problem.
Let Qf ∈ Rn×n be such that Q = Q′fQf and in-
troduce the new variables x = Qfξ. Define w(x) =
w(Q−1

f x)w(−Q−1
f x), and consider the new optimization

problem
min ‖x‖2
s.t. w(x) = 0 (2)
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where

w(x) =
m∑

i=0

w2i(x), (3)

and w2i(x), 1 ≤ i ≤ m, are homogeneous polynomial forms
of degree 2i. Notice that the polynomial constraint in (2)
contains only terms of even degree.
The following result can be proven [17].

Proposition 2.1: Problems (1) and (2) attain the same
minimum value cmin. Moreover, if ξmin and xmin are the
values at which the minimum is attained in (1) and (2)
respectively, then xmin = Qfξmin.
Proposition 2.1 states that problems (1) and (2) are equiva-
lent. Problem (2) is called a Canonical Quadratic Distance
Problem (CQDP) [17].

The following assumptions on CQDPs are made.
Assumption 2.1: The set {x ∈ Rn : w(x) = 0} is not

empty.
Assumption 2.2: There exists δ > 0 such that for any

‖x‖ < δ it holds w(x) > 0.
Assumption 2.3: For any δ > 0, there exist y, z ∈ Rn such

that: ‖xmin − y‖ < δ, ‖xmin − z‖ < δ, and w(y)w(z) < 0.
Assumptions 2.1 and 2.2 are made without loss of generality
and allow one to avoid trivial cases. Assumption 2.3 states
that in any neighborhood of the optimal point xmin, the
constraint function w(x) changes sign. This assumption is
not restrictive in most optimization problems of practical
interest.

In the next section, several convex relaxations are pre-
sented for the CQDP (2)-(3).

III. CONVEX RELAXATIONS

In order to introduce the convex relaxations, it is necessary
to recall some basic material about the SOS representation
of positive polynomials. The main idea is that a polynomial
form is positive semidefinite if it can be expressed as the
sum of squares of suitable polynomial forms. Such sufficient
condition can in turn be expressed in terms of an LMI
feasibility test, as explained in the following.
Let us consider for simplicity a homogeneous polynomial
form f(x) in x ∈ Rn of degree 2m. We say that f(x) is pos-
itive (semidefinite) if f(x) ≥ 0 ∀x. Such form can always be
expressed as f(x) = x{m}

′
(F + L)x{m}, where: x{m} ∈

Rd denotes a vector containing all monomials xi1
1 · · ·xin

n for
which i1 + . . .+ in = m; F ∈ Rd×d is a suitable symmetric
matrix; L is a matrix belonging to the linear subspace
L =

{
L = L′ ∈ Rd×d : x{m}

′
Lx{m} = 0 ∀x ∈ Rn

}
. Let

L(α) be a parameterization of the subspace L, with α ∈ RdL .
Then, feasibility of the LMI constraint

F + L(α) ≥ 0 (4)

implies that the homogeneous form f(x) is positive. In the
literature, feasibility of (4) is simply denoted by the statement
“f(x) is SOS”, meaning that the polynomial form f(x) can
be expressed as a sum of squares. It is known that feasibility
of (4) is only a sufficient condition for positivity of f(x).
Indeed, there exist polynomial forms that are positive but are

not SOS (see e.g. [19], [20]). However, there are families of
homogeneous forms for which positivity is equivalent to be-
ing SOS. In particular, the SOS representation is a necessary
and sufficient condition for positivity in the following cases:
(i) quadratic forms; (ii) two-variate homogeneous forms of
any degree; (iii) three-variate homogeneous forms of degree
four.

When addressing positivity of a generic polynomial form
of degree 2m (including all lower degree terms), the above
reasoning can be repeated, the only difference being that the
base vector x{m} must contain all monomials in x of degree
less or equal to m.

A. Relaxation based on homogeneous forms

In [17], it has been shown that CQDPs can be solved via
a one-parameter family of SOS-based positivity tests. In the
following, the main features of this convex relaxation are
summarized.
Let Bc denote the boundary of the l2 ball of radius

√
c, i.e.

Bc = {x : ‖x‖2 = c}. By Assumption 2.2, for sufficiently
small c, w(x) > 0 for all x ∈ Bc. Moreover, Assumption
2.3 guarantees that in any neighborhood of the intersection
between Bcmin and w(x) = 0, there exist points in which
w(x) < 0. This suggests that the solution of a CQDP can be
computed via a sequence of “cutting” tests. Specifically, the
solution cmin of problem (2) is given by
cmin = sup {c̄ ∈ R : w(x) ≥ 0, ∀x ∈ Bc ∀c ∈ (0, c̄]} .

(5)
This means that cmin can be found by solving a family of
nonnegativity tests on polynomial w(x), for x belonging to
a given set Bc. Unfortunately, such tests generally amount to
solving nonconvex optimization problems.

An equivalent but more compact characterization of cmin

involves nonnegativity tests on homogeneous forms. Indeed,
let us introduce the function w(·; ·) : Rn×R→ R such that

w(x; c) =
m∑

i=0

‖x‖2(m−i)w2i(x)
cm−i

, (6)

where w2i(x) are the homogeneous forms in (3). It turns out
that w(x; c) is a homogeneous form in x of degree 2m for
all c 6= 0. In [17], it has been proven that

w(x) ≥ 0 ∀x ∈ Bc ⇐⇒ w(x; c) ≥ 0 ∀x ∈ Rn.

In other words, nonnegativity of a polynomial w(x) for
x belonging to a given set Bc can be checked by testing
nonnegativity of a suitable homogeneous form. From the
above discussion, it can be concluded that the solution of
problem (2) is given by
cmin = sup {c̄ ∈ R : w(x; c) ≥ 0 ∀x ∈ Rn ∀c ∈ (0, c̄]} .

(7)
Now the idea is to relax the inequality constraint in (7) to
an SOS constraint, so that it can be formulated as an LMI.
This allows one to obtain a lower bound on cmin via a one-
parameter family of LMI feasibility tests. Indeed, let
ĉHmin = sup {c̄ ∈ R : w(x; c) is SOS ∀c ∈ (0, c̄]} . (8)

Then, ĉHmin ≤ cmin. In practice, the lower bound ĉHmin can be
computed within the desired precision by checking whether
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w(x; c) is SOS for different values of the scalar parameter
c. Hereafter, we will denote (8) as an H-relaxation of the
CQDP (2).

Some remarks on the methods described above can
be made. The only source of conservativeness in the
H-relaxation is due to the gap between positive homogeneous
forms and SOS. An algebraic test has been devised for
checking tightness of the computed lower bound. Moreover,
the lower bound is known a priori to be tight in the cases
when the SOS representation of homogeneous forms is
equivalent to positivity.

B. Positivstellensatz relaxations

A family of convex relaxations that has been widely used
in recent years for different optimization problems relevant to
control system analysis and design is based on the so-called
Positivstellensatz [12], [18], [21]. This is a fundamental result
in algebraic geometry that provides a necessary and sufficient
condition for unfeasibility of a set of polynomial constraints.
Just to illustrate the main idea, a simplified version is stated
next.

Proposition 3.1: Let f(x), g(x) and h(x) be given poly-
nomials in x ∈ Rn. Then, the following conditions are
equivalent:

1) The set {x ∈ Rn : f(x) ≥ 0, h(x) = 0, g(x) 6= 0}
is empty.

2) There exist two SOS polynomials s0(x), s1(x), a
polynomial t(x) and a nonnegative integer k such that
s0(x) + s1(x)f(x) + t(x)h(x) + g(x)2k = 0.

The result in Proposition 3.1 can be exploited in order to
devise SOS-based convex relaxations of CQDPs.

A first way to proceed, proposed in [12], is to notice that
emptiness of the set

Ec = {x ∈ Rn : c− ‖x‖2 ≥ 0, w(x) = 0, ‖x‖2 − c 6= 0}
(9)

implies that c is a lower bound to the solution cmin of
(2). By choosing in Proposition 3.1 s0(x) = 0, t(x) =
(‖x‖2 − c)p(x), and k = 1, it turns out that a sufficient
condition for emptiness of set (9) is that there exist a
polynomial p(x) such that ‖x‖2 − c+ p(x)w(x) is SOS.
Hence,

ĉPmin = sup {c̄ ∈ R : ∃p(x) s.t.
‖x‖2 − c+ p(x)w(x) is SOS ∀c ∈ (0, c̄]

} (10)

is a lower bound of cmin. It is worth observing that (10) is
a convex problem, whose constraint is an LMI in both c and
the coefficients of the multiplier polynomial p(x). Hence, it
can be solved via a single SDP and does not require a search
over the parameter c. Problem (10) will be denoted as a P-
relaxation of the CQDP. On the other hand, the conservatism
of the P-relaxation depends not only on the specific choice
of the Positivstellensatz multipliers, but also on the degree r
of the polynomial p(x). It will be shown in Section IV that
the degree of p(x) which allows one to obtain a tight lower
bound can be very high, thus requiring the solution of large
SDPs.

A more general relaxation based on Positivstellensatz can
be obtained by following a reasoning similar to that adopted
in Section III-A to derive the H-relaxation. Let us define the
set

E ′c = {x ∈ Rn : c− ‖x‖2 = 0, w(x) = 0}. (11)

Then, one can write the solution of the CQDP (2) as

cmin = sup {c̄ ∈ R : E ′c is empty ∀c ∈ (0, c̄]} . (12)

By applying Proposition 3.1, a sufficient condition for empti-
ness of the set E ′c turns out to be the existence of polynomials
p(x) and t(x) such that

p(x)(‖x‖2 − c) + t(x)w(x)− 1 is SOS. (13)

Therefore, one can compute a lower bound to cmin as

ĉGP
min = sup {c̄ ∈ R : ∃p(x), t(x) s.t.
p(x)(‖x‖2 − c) + t(x)w(x)− 1 is SOS ∀c ∈ (0, c̄]

}
.

(14)
Since the SOS condition in (13) is not linear in both c
and the coefficients of p(x), the computation of the lower
bound ĉGP

min requires a search over c and the solution of a
one-parameter family of SDPs. We will denote the convex
relaxation (14) as a GP-relaxation. It will be shown in
Section IV that the H-relaxation is a special instance of the
GP-relaxation.
Notice that a GP-relaxation requires to fix the degrees of
both polynomials p(x) and t(x). In order to restrict the
family of GP-relaxations, we will choose such degrees so
that deg{p(x)} = deg{t(x)}+deg{w(x)}−2 = deg{t(x)}+
2(m − 1). This implies that the maximum degree of the
SOS constraint (13) is always k = deg{t(x)} + 2m. To
highlight this, we will denote by GPs a GP-relaxation of
degree s = k − 2m = deg{t(x)}.

IV. RELATIONSHIPS BETWEEN DIFFERENT RELAXATIONS

In this section, relationships between the SOS-based re-
laxations introduced in Section III are investigated.

A. Equivalence between relaxations H and GP0

The main result of this paper is to establish the equivalence
between the H-relaxation and the GP0-relaxation.

Theorem 4.1: Let c < cmin. Then, the following state-
ments are equivalent:

a) w(x; c) is SOS
b) there exist a polynomial p(x) of degree 2(m−1) and a

scalar t0 such that q(x) = p(x)(‖x‖2− c) + t0w(x)−1
is SOS.

Proof : a)⇒ b). Let w(x; c) be SOS for some c < cmin.
Then, let us choose

p(x) =
m−1∑
i=0

p2i(x) (15)

where

p2i(x) = t0

i∑
j=0

(
‖x‖2(i−j)w2j(x)

c(i−j+1)

)
− ‖x‖

2i

ci+1
. (16)

With this choice of the polynomial multiplier p(x), it turns
out that q(x) is a homogeneous form. Indeed, by writing
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q(x) =
∑m

i=0 r2i(x), where the r2i(x) are homogeneous
forms of degree 2i, it can be observed that

r0(x) = t0w0 − t0w0 + 1− 1 = 0
r2i(x) = t0w2i(x)

+t0
(∑i−1

j=0
‖x‖2(i−1−j)w2j(x)

c(i−j) − ‖x‖
2(i−1)

ci

)
‖x‖2

−t0
(∑i

j=0
‖x‖2(i−j)w2j(x)

c(i−j)

)
+ ‖x‖2i

ci ,

for i = 1, 2, . . . ,m− 1.

(17)

By noticing that

−t0
(∑i

j=0
‖x‖2(i−j)w2j(x)

c(i−j)

)
= −t0w2i(x)− t0

(∑i−1
j=0

‖x‖2(i−j)w2j(x)

c(i−j)

)
.

(18)

one gets r2i(x) = 0 for i = 0, 1, . . . ,m − 1. Therefore the
polynomial q(x) boils down to

q(x) = r2m(x) = t0

(∑m
i=0

‖x‖2(m−i)w2i(x)
cm−i

)
− ‖x‖

2m

cm

= t0w(x; c)− ‖x‖
2m

cm .
(19)

Since w(x; c) is SOS, there exists a positive semidefinite
symmetric matrix Q such that w(x; c) = x{m}

′
Qx{m}.

Let D be a positive definite diagonal matrix such that
‖x‖2m = x{m}

′
Dx{m}. Being w(x; c) = w0

‖x‖2m

cm +∑m
i=1

‖x‖2(m−i)w2i(x)
cm−i , one can write Q = w0

cmD + ∆, for
a suitable symmetric matrix ∆. Then, one has

t0w(x; c)− ‖x‖
2m

cm = x{m}
′ ( t0w0−1

cm D + t0∆
)
x{m}

(20)
By selecting t0 such that t0 ≥ w0+1

w0
, and recalling that

w0 > 0 (due to Assumption 2.2), one has

t0w0 − 1
cm

D + t0∆ ≥ w0

cm
D + ∆ = Q ≥ 0

and therefore by (19) and (20) one can conclude that
p(x)(‖x‖2 − c) + t0w(x)− 1 is SOS.
b)⇒ a). Now, let us assume that q(x) is SOS for some
polynomial p(x) of degree 2(m− 1) and a constant t0. Let
us write p(x) as

p(x) =
m−1∑
i=0

p2i(x) +
2m−2∑
i=0

δi(x), (21)

where the homogeneous forms p2i(x) are the same as in
(16), and the δi(x) are homogeneous forms of degree i. By
substituting (21) into q(x), one has that

q(x) = t0w(x; c)− ‖x‖
2m

cm
+

(
2m−2∑
i=0

δi(x)

)(
‖x‖2 − c

)
.

This means that there exists a positive semidefinite symmet-
ric matrix M , such that

q(x) =


1
x
x{2}

...
x{m}



′

M


1
x
x{2}

...
x{m}

 . (22)

Let us partition matrix M as

M =


M0,0 M0,1 M0,2 . . . M0,m

M1,0 M1,1 M1,2 . . . M1,m

M2,0 M2,1 M2,2 . . . M2,m

...
...

...
. . .

...
Mm,0 Mm,1 Mm,2 . . . Mm,m


so that, by grouping terms of the same degree in (22) one
gets the relationships

t0w(x; c)− ‖x‖
2m

cm
+ δ2m−2(x)‖x‖2 =

= x{m}
′
Mm,m x{m} (23)

δ2(m−1−i)(x)‖x‖2 − c δ2(m−i)(x) =

=
2i∑

j=0

x{m−j}′Mm−j,m−2i+j x
{m−2i+j} (24)

for i = 1, . . . ,m

where it has been assumed x{j} = 0 for any negative j and
δ−1(x) = 0, to obtain a more compact notation.
By adding equation (23) and all equations (24) multiplied by
‖x‖2i

ci , one obtains

t0w(x; c)− ‖x‖
2m

cm + δ2m−2(x)‖x‖2+∑m
i=1

‖x‖2i

ci

{
δ2(m−1−i)(x)‖x‖2 − c δ2(m−i)(x)

}
=

= t0w(x; c)− ‖x‖
2m

cm =

= x{m}
′
Mm,m x{m}+∑m

i=1
‖x‖2i

ci

∑2i
j=0 x

{m−j}′Mm−j,m−2i+j x
{m−2i+j}.

(25)
Let us assume for the sake of exposition that m is even (the
case when m is odd is analogous). Then, the right hand side
term of (25) can be rewritten as

t0w(x; c)− ‖x‖
2m

cm
= ve(x)′Meve(x) + vo(x)′Movo(x)

(26)
where

ve(x) =



‖x‖m

cm/2

‖x‖m−2

c(m−2)/2x
{2}

...
‖x‖2

c x{m−2}

x{m}


, vo(x) =



‖x‖m−1

c(m−1)/2x

‖x‖m−3

c(m−3)/2x
{3}

...
‖x‖3
c3/2 x

{m−3}

‖x‖
c1/2x

{m−1}


and

Me =


M0,0 M0,2 . . . M0,m

M2,2 . . . M2,m

. . .
...

Mm,m



Mo =


M1,1 M1,3 . . . M1,m−1

M3,3 . . . M3,m−1

. . .
...

Mm−1,m−1

 .

Being M ≥ 0, one has also Me ≥ 0 and Mo ≥ 0. Then,
from (26) one has that t0w(x; c) is SOS. Being c ≤ cmin
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one has that w(x; c) ≥ 0 and hence also t0 ≥ 0. Therefore,
w(x; c) is SOS.♦

B. Conservatism of the H-relaxation

Theorem 4.1 has shown that a given value of c is feasible
for the H-relaxation if and only if it is feasible also for the
GP0-relaxation. This implies that the conservatism level of
the two relaxations is the same, i.e. ĉHmin = ĉGP0

min .
Let us now consider the GPs-relaxation for s > 0. An

interesting issue to address is whether there exist CQDPs
for which this relaxation provides less conservative results
with respect to the H-relaxation (or equivalently the GP0

one). By (7), the H-relaxation is conservative only if there
exist values of c ≤ cmin such that the homogenous form
w(x; c) is positive semidefinite but cannot be written as a
sum of squares. In the following, some examples of CQDPs
constructed in order to satisfy this requirement are presented.

Example 4.1: Consider a CQDP with m = 3 and n = 3,
such that

w(x) = 1− ‖x‖6 + 10fns(x), (27)

where fns(x) is a nonnegative homogeneous form which is
not SOS [17]. Let us consider for example the form

fns(x) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 + x6

3 (28)

introduced in [22]. One has that

w(x; c) = ‖x‖6
(

1
c3
− 1
)

+ 10fns(x).

Being w(x; 1) = 10fns(x) ≥ 0, by (7) it holds cmin ≥ 1.
Moreover, since w(x) = 0 for x1 = x2 = x3 = 1√

3
,

one can conclude that cmin = 1. However, by construc-
tion, w(x; 1) is not SOS and therefore ĉHmin < 1 will be
returned by the H-relaxation. Indeed, the relaxations H and
GP0 return ĉHmin = ĉGP0

min = 0.9851. If the GP2 relaxation is
considered one gets ĉGP2

min = 1 = cmin. This means that
for every c ≤ 1 it is possible to find a polynomial t(x)
of degree 2 and a polynomial p(x) of degree 6 such that
(13) holds. This is not surprising, because it is known that
fns(x)(x2

1 + x2
2 + x2

3) is SOS [12].
It is also interesting to analyze the performance of the
P-relaxation. Table I reports the values of ĉPmin as a function
of the degree r of the multiplier polynomial p(x). It turns
out that problem (10) returns a tight lower bound if r = 10.
Therefore, the P-relaxation is also less conservative than the
H-relaxation for this particular example.

r 0 2 4 6 8 10
ĉPmin

0 0.0037 0.0593 0.2198 0.7037 1

TABLE I ĉPmin as a function of r computed for Example 4.1.

Example 4.2: Consider the CQDP with n = 4 and m = 2,
such that

w(x) = 1− ‖x‖4 + 10fns(x)

and

fns(x) = x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3 + x4

4 − 4x1x2x3x4. (29)

This is a nonnegative form which is not SOS [19] and hence
the same reasoning as in Example 4.1 can be repeated. In this
case, by applying the H-relaxation one gets ĉHmin = 0.8633,
while the GP2-relaxation reaches the true optimum. The
P-relaxation achieves ĉPmin = 0.9350 for r = 10 (see Table
II). With the computing resources employed for the numer-
ical examples, it has not been possible to tackle problems
with r ≥ 12, corresponding to an LMI of size d ≥ 495 with
more than 105 free variables (all computations have been
performed by using SOSTOOLS [23] on a PC with processor
Intel Xeon 5150).

r 0 2 4 6 8 10
ĉPmin

0.0002 0.0182 0.1037 0.2950 0.6485 0.9350

TABLE II ĉPmin as a function of r computed for Example 4.2.

C. Numerical comparisons

Examples 4.1-4.2 have shown that it is possible to con-
struct quadratic distance problems for which the H-relaxation
is more conservative than the GPs relaxation with s > 0, and
also than the P-relaxation, provided that a multiplier p(x) of
sufficiently high degree is chosen.

In order to compare the performance of the proposed
relaxations, families of CQDPs have been randomly gen-
erated for different values of n and m. First, a set of
N = 10000 CQDPs with n = m = 2 has been considered.
The coefficients of the polynomial w(x) in (3) have been
randomly generated from a uniform distribution in [−1, 1].
Assumptions 2.1 and 2.2 have been fulfilled by choosing the
coefficients so that w(0) > 0 and w(x) = 0 for x = (1 1)′.
Being n = 2, it is known that for every c, w(x; c) ≥ 0
if and only if w(x; c) is SOS. Therefore in this case the
relaxations H and GP0 always return the optimal value cmin.
Conversely, the P-relaxation is in general conservative, and
its conservatism reduces as the degree r of p(x) is increased.
Table III reports the number NP (r) of CQDPs for which
ĉPmin is strictly less than cmin, for different values of r. The
average relative error of these NP (r) CQDPs

εP (r) =
1

NP (r)

NP (r)∑
i=1

cmin,i − ĉPmin,i(r)
cmin,i

is also provided. Even if this family of problems is relatively
simple, it can be observed that the P-relaxation may require a
very high degree of the multiplier p(x) in order to reach the
true optimum. Moreover, in the case when the optimum is
not reached the average relative error εP (r) is not negligible.

r 0 2 4 6 8
NP (r) 9651 1160 564 56 22
εP (r) 0.9981 0.3854 0.2163 0.2824 0.3879

r 10 12 14 16
NP (r) 8 8 6 6
εP (r) 0.7219 0.6472 0.6784 0.6341

TABLE III NP (r) and εP (r) for 10000 CQDPs with (n,m) =
(2, 2).
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A second set of experiments used has concerned 10000 ran-
domly generated CQDPs with (n,m) = (4, 3). We observed
that the H-relaxation always reaches the true optimum. This
has been verified by applying the algorithm for checking
tightness proposed in [17]. Table IV shows the number of
CQDP for which the P-relaxation returns conservative results
and the corresponding relative error, as a function of r.
Similar results have been obtained on 10000 randomly
generated CQDPs with (n,m) = (5, 2). Once again, the
H-relaxation always provides the true optimum. The perfor-
mance of the P-relaxation is reported in Table V.
These numerical experiments show that the conservatism
of the P-relaxation tends to increase with n and m, as it
is necessary to consider polynomial multipliers of higher
degree in order to approach the true optimum.

r 0 2 4
NP (r) 10000 9999 8467
εP (r) 0.9995 0.9633 0.4110

TABLE IV NP (r) and εP (r) for 10000 CQDPs with (n,m) =
(4, 3).

r 0 2 4
NP (r) 10000 10000 9670
εP (r) 0.9992 0.8931 0.3755

TABLE V NP (r) and εP (r) for 10000 CQDPs with (n,m) =
(5, 2).

V. CONCLUSIONS

In this paper, different convex relaxations have been
proposed and analyzed for an important class of noncon-
vex optimization problems relevant to the control field. It
has been shown that the considered family of quadratic
distance problems (CQDPs) can be solved either by ap-
plying a relaxation based on homogeneous forms or by
adopting a special instance of the Positivstellensatz, with
the same conservatism level. Moreover, the only source of
conservatism for such relaxations is due to the gap between
positive semidefinite forms and sums-of-squares. Numerical
experiments have shown that Positivstellensatz relaxations of
higher degree allow one to reduce this gap, at the price of
a higher computational burden. It has also been highlighted
that different choices of the polynomial multipliers generate
different structures of the SOS constraints, introducing a
trade off between the conservatism level and the degree of
the resulting polynomial constraint (or equivalently the size
of the corresponding LMI).

Ongoing work concerns both theoretical and practical
aspects. On one side, it is useful to pursue theoretical results
highlighting relationships between different relaxations, in
order to understand which relaxation should be used for
specific classes of optimization problems. Numerical experi-
ments are also necessary in order to assess the actual level of
conservatism of the proposed relaxations on problems arising
from real-world applications.
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