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Abstract— This paper addresses system identification of FIR
models with quantized measurements in a worst-case setting. It
is assumed that measurements are collected through a multi-
threshold sensor and that the system output is corrupted by
unknown but bounded noise. The main contribution of the
paper consists in the solution of the optimal input design
problem for identification of a scalar gain. This result allows one
to design a suboptimal input for a FIR model of arbitrary order.
Moreover, for a selected configuration of the sensor thresholds,
an upper bound on the time complexity of the identification
problem is derived.

I. INTRODUCTION

System identification with quantized measurements is

gaining increasing attention both for the number of con-

texts where analog-to-digital conversion is needed and for

the attractive theoretical developments attained in recent

years. Typical contexts involving quantized measurements

are sensor networks and networked control systems. Since

data transmission band limitations are usual constraints in

large/integrated systems interconnected through communica-

tion channels, the need for studying the quality of iden-

tification algorithms as related to the measurement quan-

tization has become a typical issue in networked control

systems. Moreover, most sensors used in monitoring and

control systems for industrial production plants or chemical

processes are quantized devices, in the sense that they are

characterized by threshold values, according to which the

output is digitized. Quantized measurements occur when

several single-threshold sensors are used to measure the same

quantity or the sensor is a multi-threshold device. Binary

or quantized measurements are often used in automotive

applications, where optimization of the ignition system and

combustion is an important task. The basic reason for the

widespread diffusion of binary/quantized sensors is mainly

related to their relative low cost and to the fact that, no matter

how simple are the control laws adopted, monitoring and

control of industrial plants often calls for the measurement

of a large number of variables.

The seminal paper [1] introduced and motivated very

clearly the basic identification problem, providing a frame-

work to deal with the binary information case. Of course,

while the literature on regular measurements provides exact

or approximated solutions to almost all of the basic issues,

like estimation quality evaluation, model complexity and

unmodeled dynamics, optimal input design, time complexity
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and estimate convergence (see, e.g. [2]), the scenario is quite

different when dealing with quantized measurements. The

main difficulty in this case is to deal with a discontinuous

nonlinearity present in the sensor, which reduces drastically

the information conveyed by measurements. In [1] several

important results on time complexity and input design have

been obtained for FIR models both in a stochastic and a

worst-case setting. The quantized measurement case has been

addressed in [3], [4] in a stochastic setting. In the second

paper a complete characterization of optimal estimators for

system gains is provided together with a suboptimal input

design strategy for FIR models in the multi-threshold sensor

case. In [5] a worst-case setting is taken based on the set

membership paradigm of uncertainty representation [6]–[8],

and time complexity for system gain estimates is computed

exactly for the binary case. Also, a suboptimal input design

strategy for FIR models is devised in the same paper.

The aim of the present paper is to extend the analysis in [5]

to the multi-threshold sensor case. More specifically, system

gains estimation is dealt with and an algorithm for one step

optimal input selection is provided for such problem. This

result can be used to devise a suboptimal input for a generic

FIR model in the same way as in [5]. As expected, the time

complexity issue reveals a formidable task for the quantized

measurement case. For a specific threshold selection strategy,

an upper bound on the time complexity is derived, showing

the improvement achievable with respect to the binary case.

The paper is organized as follows. Section II introduces

notation and problem formulation. In Section III the problem

of optimal input design for the noise-free case is tackled.

These results are extended to the noisy measurements case

in Section IV. In Section V an upper bound on the time

complexity is reported. Numerical examples are presented in

Section VI, while concluding remarks and future perspectives

are reported in Section VII.

II. PROBLEM FORMULATION

Let RN denote the N -dimensional Euclidean space. A

sequence of real numbers {x(t), t = 1, . . . , N} will be

identified with a vector x ∈ RN and ||x||p will be the

standard ℓp norm. Let Bp(c, r) = {x ∈ RN : ||x− c||p ≤ r}
be the ball of radius r ≥ 0 and center c ∈ RN in the ℓp

norm.

Let us consider an n-th order FIR SISO linear time-

invariant model

y(t) =

n∑

i=1

θi u(t − i + 1) + d(t) (1)
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where u(t) is the input signal, bounded in the max norm

||u||∞ ≤ U , and d(t) denotes the output disturbance. The

model parameters {θi, i = 1, . . . n} represent the truncated

system impulse response. The disturbance d(t) is assumed

to be bounded by a known quantity, i.e., |d(t)| ≤ δ, t =
1, 2, . . .. The true system generating the data is assumed to be

exponentially stable. Notice that due to exponential stability

of the system and boundedness of the input u(t), unmodeled

dynamics (i.e., the system impulse response tail {θi, i = n+
1, . . .}) can be easily accounted for by suitably tuning the

noise bound δ.

Observations at the system output are taken by a multi-

valued sensor with P known thresholds C1, . . . , CP , such

that

s(t) = σ(y(t)) ,





0 if C0 < y(t) ≤ C1

1 if C1 < y(t) ≤ C2

...

P if CP < y(t) ≤ CP+1

(2)

where C0 , −∞, CP+1 , +∞.

Let θT = [θ1, θ2, . . . , θn] ∈ Rn denote the FIR parameter

vector and φT (t) = [u(t), . . . , u(t − n + 1)] the regressor

vector. Then, (1) can be expressed as

y(t) = φT (t) θ + d(t). (3)

Let Θ0 = Bp(c0, ε0) represent the prior information

available on the FIR parameter vector. Let us denote by

u, s ∈ RN the input signal {u(t), t = 1, . . . , N} and the

sequence of discrete measurements {s(t), t = 1, . . . , N},

respectively. For a given input-output realization {u, s} of

length N , the problem feasible parameter set is defined as:

FN = {θ ∈ Θ0 : φT (t) θ ≤ C1 + δ if s(t) = 0;

C1 − δ < φT (t) θ ≤ C2 + δ if s(t) = 1;

...

CP − δ < φT (t) θ if s(t) = P ; t = 1, . . . , N}.
(4)

The worst-case local identification error is defined as

ep(N, u, s) = inf
c∈Rn

sup
θ∈FN

‖θ − c‖p . (5)

For a fixed input sequence u, let us define the global worst-

case error with respect to the disturbance realization as

ep(N, u) = sup
s

ep(N, u, s) . (6)

The aim of the optimal input design problem is to compute

an input sequence providing the minimum worst-case iden-

tification error [9], i.e.,

ep(N) = inf
u:‖u‖∞≤U

ep(N, u) . (7)

For a given level of accuracy ε < ε0, we define the time

complexity of Bp(c0, ε0) as the minimum time length of the

experiment such that the optimal worst-case error reaches

the accuracy ε, i.e.

N(ε) = min
ep(N)≤ε

N. (8)

In the literature on identification with quantized measure-

ments, it is customary to restrict the class of input signals by

requiring that the input sequence excite any FIR parameter

independently (see e.g., [1], [5]). In [5], the shortest input

sequence exciting any FIR parameter independently has been

provided. More precisely, it has been proven that to excite

independently k times the n coefficients of a FIR, one needs

an input sequence of length N equal to:

N = k(n + 1)
n

2
. (9)

In this paper, we will assume to use such kind of input

sequence. This allows one to focus on the optimal excitation

of a single FIR parameter, in order to build effective subop-

timal procedures for FIR models of arbitrary order. Hence,

in the next sections, the problem of optimal input design for

identification of FIR systems of order 1 (gains) for both the

noise-free and noisy case will be addressed.

III. IDENTIFICATION OF GAINS: NOISE-FREE CASE

In this section, we consider a FIR of order n = 1 in the

noise-free case, i.e.,

y(t) = au(t).

Let us assume that the sign of a is known. If it is

unknown, it can be easily detected by performing an initial

testing condition as reported in [1]. Hereafter, we assume

a > 0, and so the prior information is a ∈ [a0, a0], with

a0 > 0. Moreover, let the input signal be bounded, i.e.,

0 < u(t) ≤ U .

Let us denote by Ft = [at, at] the feasible parameter set

at time t. The aim of the input design problem (7) is to

choose the input signal u(t) as a function of the available

information up to time t − 1, i.e.,

u(t) = η(Ft−1; t)

in order to minimize the size of the feasible set at time t,
that is

u∗(t) = arg D∗t (10)

where D∗t is the optimal diameter of the feasible set:

D∗t = inf
u : 0<u≤U

sup
s : s=σ(y)
y∈u·Ft−1

(at − at). (11)

Remark 1: In [1] it has been shown that the optimal input

at each time t in presence of binary measurements is

u∗(t) =
2C

at−1 + at−1

where C denotes the binary threshold value. By applying

such an input, the feasible set size is reduced by a factor

1/2 at each time t, i.e., at − at = 1
2 (at−1 − at−1).

Let us define

v(t) ,
1

u(t)
. (12)
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Let us suppose to apply an input u(t), and let the sensor

response be s(t) = i, i = 0, . . . , P . This means that Ci <
y(t) ≤ Ci+1, i.e., (since u(t) > 0)

Ci v(t) < a ≤ Ci+1 v(t). (13)

Thus, the posterior feasible set will be1

Ft = Ft−1 ∩ [Ci v(t), Ci+1 v(t)]

= [at−1, at−1] ∩ [Ci v(t), Ci+1 v(t)] , [at , at]. (14)

From (12)-(14), we can rewrite problem (10)-(11) as

u∗(t) =
1

v∗(t)

where

v∗(t) = arg
{

inf
v≥1/U

max
i=0,...,P(

min{at−1, Ci+1 v} − max{at−1, Ci v}
)}

.
(15)

Let us define

vi(t − 1) ,
at−1

Ci
, vi(t− 1) ,

at−1

Ci
, i = 1, . . . , P. (16)

Since we focus on the optimal input design at a generic time

t, for ease of notation the dependance on time will be omitted

when it is clear from the context. So, the feasible set at time

t−1 will be denoted by F = [a, a]. Thus, let V ∗ , [vP , v1]
and

Hi : a = Ci v , i = 1, . . . , P.

In Fig. 1, the values vi, vi and the lines Hi are depicted

for an example with P = 3.

v1v2v3 v1v2v3 v

a

a

a

H1H2H3

Fig. 1. Example of vi, vi and Hi for P = 3.

We can now state the following lemma.

Lemma 1: There exists an optimal solution of (15) such

that v∗ ∈ V ∗.
Proof: By contradiction, let us assume that ∄v∗ ∈ V ∗.

For example, let v∗ < vP . One has

y = a u∗ =
a

v∗
>

a

a
CP > CP .

So, the sensor output is s = P independently of the real

position of a, and hence no reduction of the feasible set is

obtained. Thus, either v∗ is not optimal or any element of

V ∗ is also optimal. Both cases lead to a contradiction. A

similar reasoning can be repeated for the case v∗ > v1.

1With a slight abuse of notation we will always denote feasible sets by
closed intervals.

By using Lemma 1, the optimal input is such that:

u∗(t) ≤ sup
v∗∈[vP (0), v1(0)]

1

v∗
=

1

vP (0)
=

CP

a0

.

Hence, a sufficient condition for the optimal input to satisfy

u∗(t) ≤ U , is U ≥ CP

a
0

. From now on, we will enforce this

hypothesis.

Let us sort the values vi, vi, i = 1, . . . , P , in increasing

order and rename them as v̂1 ≤ v̂2 ≤ . . . ≤ v̂2P . By

construction one has v̂1 = vP and v̂2P = v1. Let us define

the intervals

W1 = [v̂1, v̂2], W2 = [v̂2, v̂3], . . . , W2P−1 = [v̂2P−1, v̂2P ].
(17)

By construction
2P−1⋃

j=1

Wj = V ∗. (18)

For j = 1, . . . , 2P − 1, let us define

D(j) = inf
v∈Wj

max
i=0,...,P

(min{a, Ci+1 v} − max{a, Ci v})

(19)

and v(j) be the argument where the infimum in (19) is

achieved.

Let us now analyze problem (19), i.e., the original problem

(15) whose admissible solution set is restricted to an interval

Wj . To simplify notation, let us drop the index j and denote

the left and right bounds of the interval by vL and vR,

respectively, i.e., Wj = [vL, vR].
Let us define

m = arg min
i=1,...,P

{i : vi ≤ vL} (20)

M = arg max
i=1,...,P

{i : vi ≥ vR}. (21)

The following lemma holds.

Lemma 2: Let v ∈ [vL, vR]. For each k < m one has

Ckv ≤ a, while for each k > M one has Ckv ≥ a.

Proof: Let us assume k < m. By (20) one has vL < vk.

Since by construction vk can only be an extremal point of

the interval [vL, vR], one has vk ≥ vR. So, it follows that

Ck v ≤ Ck vR ≤ Ck vk = Ck
a

Ck
= a.

Let us now consider k > M ; hence, one has vR > vk.

Following the same reasoning, one has vk ≤ vL, giving

Ck v ≥ Ck vL ≥ Ck vk = Ck
a

Ck
= a.

Lemma 2 states that for v ∈ [vL, vR], the only thresholds

that are able to reduce the size of the feasible set are Ci

such that m ≤ i ≤ M . The other thresholds do not provide

any additional information and so can be neglected when

addressing problem (19). For instance, referring to Fig. 1,

let us suppose vL = v3 and vR = v2. Then, one has m = 1
and M = 2. In fact, only the functions H1 and H2 take on

values in the interval [a, a], for v ∈ [vL, vR]. Notice that,

by Lemma 2, if m > M it follows that no reduction of F
would be obtained for u such that v ∈ [vL, vR].
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Lemma 2 allows us to compute the feasible set F at time t
as a function of the measurements s(t), when v ∈ [vL, vR]:

F =





[a , Cm v] if s = m − 1
[Cs v , Cs+1 v] if m ≤ s ≤ M − 1
[CM v , a] if s = M.

Let us define the functions Fi(v), i = m − 1, . . . , M , as

follows

Fm−1(v) = Cm v − a

Fi(v) = (Ci+1 − Ci) v , i = m, . . . , M − 1 (22)

FM (v) = a − CM v .

Notice that functions Fi represent the size of F depending on

s and on the input applied at time t such that v ∈ [vL, vR].
Then, (19) can be rewritten as

D(j) = inf
v∈[vL, vR]

max
i=m−1,...,M

Fi(v). (23)

The next lemma provide the explicit solution of prob-

lem (23).

Lemma 3: Let Q = max
i=m,...,M−1

(Ci+1 − Ci). Then, the

solution of (23) is given by

D(j) =





max{Cm vL − a, Q vL} if vc ≤ vL

max
{

a Cm−a CM

Cm+CM
, Q a

Q+CM

}
if vL < vc < vR

a − CM vR if vc ≥ vR

where

vc = min

{
a + a

Cm + CM
,

a

Q + CM

}
.

Moreover, the argument at which the solution of (23) is

attained is

v(j) =






vL if vc ≤ vL

vc if vL < vc < vR

vR if vc ≥ vR.
Proof: Let

q = arg max
i=m,...,M−1

(Ci+1 − Ci). (24)

Since for any v ∈ [vL, vR] one has Fi(v) ≤ Fq(v) = Q v,

for any i = m, . . . , M − 1, it is possible to rewrite (23) as

D(j) = inf
v∈[vL, vR]

max {Fm−1(v), Fq(v), FM (v)}

= inf
v∈[vL, vR]

max {Cm v − a, Q v, a − CM v} . (25)

Being Fi(v) linear in v, the v(j) at which the infimum in

(25) is achieved lies either at the extremes vL, vR, or at one

of the intersections between Fm−1(v), Fq(v), FM (v).
First, let us suppose that the optimum is achieved at some

ṽ ∈ (vL, vR). We want to show that ṽ cannot be such that

Fm−1(ṽ) = Fq(ṽ) > FM (ṽ). Indeed, being Fm−1(v) and

Fq(v) increasing functions of v, there exists ε > 0 such that

ṽ − ε ∈ (vL, vR), FM (ṽ − ε) < Fm−1(ṽ − ε) < Fm−1(ṽ)
and FM (ṽ − ε) < Fq(ṽ − ε) < Fq(ṽ). This leads to a

contradiction, because

max{Fm−1(ṽ − ε), Fq(ṽ − ε), FM (ṽ − ε)} <

< max{Fm−1(ṽ), Fq(ṽ), FM (ṽ)}.

Now, let us define vm−1 and vq satisfying respectively

Fm−1(vm−1) = FM (vm−1), Fq(vq) = FM (vq). It is

immediate to check that

vm−1 =
a + a

Cm + CM
, vq =

a

Q + CM
.

According to the above reasoning the only candidate solu-

tions v(j) are vL, vR, vm−1, vq . By noticing that vc =
min{vm−1, vq}, one has that only the following three cases

can occur.

i) vc ≤ vL. Being Fm−1(v) and Fq(v) increasing functions

of v and FM (v) a decreasing function of v, this means that

max{Fm−1(v), Fq(v)} ≥ FM (v), ∀v ∈ [vL, vR]. Hence,

the minimum is attained at vL and takes on the value

max{Fm−1(vL), Fq(vL)} = max{Cm vL − a, Q vL}.

ii) vL < vc < vR. In this case the minimum is attained at

vc and the corresponding feasible set size turns out to be

max{FM (vm−1), FM (vq)} = max
{

a Cm−a CM

Cm+CM
, Q a

Q+CM

}
.

iii) vc ≥ vR. This means FM (v) ≥ max{Fm−1(v), Fq(v)},

∀v ∈ [vL, vR] and then the minimum is attained at vR and

takes on the value FM (vR) = a − CM vR.

For any fixed j, Lemma 3 gives the solution of problem (19).

The following theorem providing the optimal solution of the

original problem (10) is a direct consequence of Lemma 3.

Theorem 1: At a given time, the optimal solution u∗ of

(10) is given by u∗ =
1

v∗
, where

v∗ = v(j∗)

and

j∗ = arg min
j=1,...,2P−1

D(j).

The corresponding size of the feasible set turns out to be

D∗ = D(j∗).
Remark 2: Note that in the case P = 1, i.e., binary mea-

surements, V ∗ = W1 = [v1, v1], and so the optimal solution

of (10) coincides with that provided by Lemma 3. In this

case, one has m = M = 1, F0(v) = C1 v−a and F1(v) =
a−C1 v. The candidate minimizer is vc = a+a

2
1

C1

which by

construction belongs to [vL, vR] = [ a
C1

, a
C1

]. So, the optimal

input is u∗ = 2 C1

a+a , in accordance with what reported in

Remark 1.

Notice that the maximum reduction rate of the feasi-

ble set achievable in one step is 1
P+1 , i.e. diam(Ft) ≥

1
P+1 diam(Ft−1). In fact, for any fixed v, the P functions

Hi, i = 1, . . . , P , can divide the interval [a, a] at most

in P + 1 subintervals. Since in a worst-case setting, the

output is such to choose the larger subinterval, one has

diam(Ft) ≥
1

P+1 diam(Ft−1).
Based on the above observation, we can now state the

following result.

Theorem 2: There exists an input u∗ ≤ U such that

diam(Ft) = 1
P+1 diam(Ft−1) if and only if there exists

û ≤ U such that

û = Ci

[
P + 1 − i

P + 1
a +

i

P + 1
a

]−1

, i = 1, . . . , P. (26)

Moreover, if (26) holds, then u∗ = û.
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Proof: Let us assume that (26) holds and let v̂ = 1/û.

Since

v1 =
a v̂

P
P+1a + 1

P+1a
≤ v̂

and

vP =
a v̂

1
P+1a + P

P+1a
≥ v̂

one has v1 ≤ vP . By (16), there cannot be other breakpoints

v̂i in the interval [v1, vP ]. Hence, according to (20) and (21),

one has m = 1 and M = P . By (22) and (26) one has

F0(v̂) = C1 v̂ − a =
a − a

P + 1

Fi(v̂) = (Ci+1 − Ci) v̂ =
a − a

P + 1
, i = 1, . . . , P − 1 (27)

FP (v̂) = a − CP v̂ =
a − a

P + 1
.

Since the maximum possible reduction of the feasible set is

by a factor of P + 1, one has D∗ = a−a
P+1 and v∗ = v̂.

Conversely, assume that the maximum reduction is achieved

at some û = 1
v̂ . Then, the relationships (27) must hold and

(26) easily follows.

IV. IDENTIFICATION OF GAINS: NOISY CASE

In this section, let us consider the noisy case, i.e.,

y(t) = au(t) + d(t)

Let s(t) denote the sensor output and let 0 < u(t) ≤ U ,

δ > 0 and a ∈ [a0, a0]. Assume that U ≥ (CP − δ)/a0 > 0
and

C1 > δ. (28)

It will be shown that the optimal input procedure for the

noisy case can be formulated in a similar manner w.r.t. the

noise-free case. So, all the quantities defined in Section III

will be redefined accordingly.

Due to the presence of noise, (13) becomes

(Ci − δ) v(t) < a ≤ (Ci+1 + δ) v(t). (29)

Thus, the posterior feasible set is

Ft = Ft−1 ∩ [(Ci − δ) v(t) , (Ci+1 + δ) v(t)]

= [at−1, at−1] ∩ [(Ci − δ) v(t) , (Ci+1 + δ) v(t)]

, [at, at]. (30)

Let us define

vi ,
a

Ci − δ
, vi ,

a

Ci + δ
, i = 1, . . . , P (31)

and

H+
i : a = (Ci + δ) v , H−i : a = (Ci − δ) v , i = 1, . . . , P.

(32)

The optimal input design problem can be reformulated as in

(15)

v∗(t) = arg
{

inf
v≥1/U

max
i: i=0,...,P

(min{at−1, (Ci + δ) v} − max{at−1, (Ci − δ) v})
}

.

(33)

Following the same reasoning as in Section III, one can

introduce the restricted optimization problems

D(j) = inf
v∈Wj

max
i=0,...,P

(min{a,(Ci+δ)v}−max{a,(Ci−δ)v})

(34)
We can now state the following lemma, which is the coun-

terpart of Lemma 3 in the presence of noisy measurements.

Lemma 4: Let Q = max
i=m,...,M−1

(Ci+1 − Ci + 2 δ). Then,

the solution of (34) is given by

D
(j) =






max{(Cm + δ) vL − a , QvL} if vc≤vL

max
{

a Cm−a CM +δ(a+a)
Cm+CM

, Q a

Q+CM−δ

}
if vL <vc <vR

a − (CM − δ) vR if vc≥vR

where

vc = min

{
a + a

Cm + CM
,

a

Q + CM − δ

}
.

Moreover, the argument at which the solution is attained is

v(j) =






vL if vc ≤ vL

vc if vL < vc < vR

vR if vc ≥ vR.
Proof: Analogous to the proof of Lemma 3.

By Lemma 4, Theorem 1 applies as well to the noisy case

with D(j) given by (34), allowing the design of the optimal

input u∗ at each time t.
A necessary and sufficient condition for the optimal input

to actually reduce the size of the feasible set is given next.
Proposition 1: At a given time t, a reduction of the

feasible set is possible if and only if
at−1

at−1

>
CP + δ

CP − δ
. (35)

Proof: Sufficiency follows by an analogous result for

the binary case, see Theorem 14 in [1].

Now, let us prove that if
at−1

at−1

≤ CP +δ
CP−δ no reduction of

the feasible set size is achievable. Notice that, since by (28),

CP ≥ Ci > δ, i = 1, . . . , P , it follows that
at−1

at−1

≤ CP +δ
CP−δ ≤

Ci+δ
Ci−δ for all i = 1, . . . , P , or equivalently, by (31)

vi ≤ vi , for i = 1, . . . , P. (36)

We know that the optimal v must belong to V ∗ = [vP , v1],
and so, by (36), it must belong also to V = [vP , v1]. Let us

divide the set V into subsets Wi = [vi, vi−1], i = 2, . . . , P .

One has
⋃P

i=2 Wi = V . Let us assume that the optimal v
belongs to the set Wi∗ , i.e., v∗ ∈ Wi∗ , i∗ = 2, . . . , P , and

that the sensor output is s = i∗ − 1 (notice that this occurs

e.g., if a = a and d = δ). This means

(Ci∗−1 − δ) v∗ ≤ a < (Ci∗ + δ) v∗.

Moreover, one has

(Ci∗ +δ) v∗ ≥ (Ci∗ +δ) vi∗ =
(Ci∗ + δ)

(Ci∗ − δ)
at−1 ≥ at−1 (37)

and

(Ci∗−1−δ)v∗≤(Ci∗−1−δ)vi∗−1 =
(Ci∗−1− δ)

(Ci∗−1− δ)
at−1 =at−1.

(38)

By (37) and (38), one has

Ft =[at−1, at−1]∩[(Ci∗−1−δ)v∗, (Ci∗+δ)v∗]=[at−1, at−1]

and so no improvement can be obtained. Necessity follows

from arbitrariness of i∗.
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V. AN UPPER BOUND ON THE TIME COMPLEXITY

In this section, an upper bound on the time complexity

is provided, for the case when the thresholds are chosen

according to (26) and measurements are noise free.

Let F0 = [a0, a0] and let Dt be the diameter of the

feasible set at time t. Let us assume that the sensor has

P > 1 thresholds satisfying

Ci =

[
P + 1 − i

P + 1
a0 +

i

P + 1
a0

]
û , i = 1, . . . , P. (39)

for some û. We will devise an input selection strategy to

derive an upper bound on the time complexity. Let us start

by considering an optimal input which purses the maximum

reduction at time 1. Hence, let us choose u∗(1) according

to Theorem 2, i.e., u∗(1) = û with û satisfying (39). Thus,

one has D1 = D0

P+1 =
a0−a

0

P+1 independently of the output of

the sensor s(1). Let us assume that s(1) = P − 1. In the

following, it will turn out that such an output represents the

worst-case one. By (14), the feasible set at time 1 is

F1 = [CP−1 v∗(1), CP v∗(1)].

Let us now switch to the case t > 1. By (16), for i =
1, . . . , P, one has

vi(1) =
a1

Ci
=

CP−1 v∗(1)

Ci
, vi(1) =

a1

Ci
=

CP v∗(1)

Ci
.

(40)

Let us introduce the following lemma.

Lemma 5: Let s(1) = P − 1. For i = 2, . . . , P one has

vi(1) < vi−1(1).
Proof: Since by construction the P thresholds (39) are

equispaced, there exists q such that Ci = Ci−1 + q, i =
2, . . . , P.

By (40) one has

vi−1(1)

vi(1)
=

CP−1 Ci

Ci−1 CP
=

CP−1 Ci−1 + q CP−1

CP−1 Ci−1 + q Ci−1

= 1 +
q (CP−1 − Ci−1)

CP−1 Ci−1 + q Ci−1
> 1. (41)

By Lemma 1, v∗(2) ∈ [vP (1), v1(1)] , V ∗(1), and since by

construction vi(1) < vi(1), for all i = 1, . . . , P , by Lemma 5

one has

vP (1) < vP (1) < vP−1(1) < . . . < v2(1) < v1(1) < v1(1).

Let us now define

W1(1) = [vP (1), vP (1)]

W2(1) = [vP (1), vP−1(1)]
...

W2P−2(1) = [v2(1), v1(1)]

W2P−1(1) = [v1(1), v1(1)].

(42)

It is straightforward to verify that V ∗(1) =
2P−1⋃

j=1

Wj(1).

Let us now prove the next lemma for the case t > 1.

Lemma 6: Let u∗(1) = û satisfying (39), and assume

s(1) = P − 1. Then, the maximum reduction rate of the

feasible set at any time t > 1 is 1/2, i.e., Dt = 1
2Dt−1.

Proof: Let us prove the result for t = 2. A similar

reasoning can be repeated for any t > 2. By Theorem 1, it

follows that the optimal input can be computed by solving

problem (19) in each interval Wj(1). So, let us evaluate v(j)

for each subinterval Wj(1).
First, let us consider the subintervals Wj(1) where j is odd.

By (42), it follows that all these subintervals are of the form

[vi(1), vi(1)], i = 1, . . . , P . By (20)-(21) one has m = i
and M = i, and so only one threshold (namely Ci) is active

in [vi(1), vi(1)]. Hence, this case reduces to the binary case

and one has D(j) = D1

2 (see Remark 1).

Let us now consider the subintervals Wj(1) where j is even,

i.e., of the form [vi(1), vi−1(1)], i = 2, . . . , P . By (20)-(21)

one has m = i and M = i−1, and by Lemma 2 no reduction

of the feasible set can be obtained.

Summarizing, by Theorem 1, the optimal input u∗(2) pro-

vides a feasible set reduction rate of 1/2.

Since, after time t = 1, the uncertainty reduction rate is

1/2, the measurement s(1) = P − 1 actually represents the

worst-case sensor output realization at time t = 1.

In the following theorem an upper bound on the time

complexity is provided.

Theorem 3: The time complexity for reducing the diam-

eter of the feasible set from D0 to DN > 0 is

N(DN ) = 1 , if DN ≥
D0

P + 1

and

N(DN)≤

⌈
1−log2(P +1)+log2

(
D0

DN

)⌉
, if DN <

D0

P + 1
.

Proof: If DN ≥ D0

P+1 , it follows immediately from

Theorem 2. Let DN < D0

P+1 . Following the above reasoning,

if the thresholds are chosen according to (39), at t = 1 we

obtain a reduction rate of 1
P+1 . By Lemma 6, for t > 1 the

reduction rate is 1
2 . So,

D1 =
D0

P + 1
, D2 =

1

P + 1
·
D0

2
, . . . , DN =

1

P + 1
·

D0

2N−1
.

Hence, 2N−1 = 1
P+1 · D0

DN
and therefore

N − 1 = − log2(P + 1) + log2

(
D0

DN

)
(43)

which proves the theorem.

Remark 3: Since it is not guaranteed that the one step

ahead optimal input u∗(1) be the optimal input at a longer

time horizon, (43) provides an upper bound on the time

complexity. Moreover, notice that when DN < D0

P+1 , the

time complexity is reduced at least by (log2(P + 1) − 1)
samples w.r.t. to the binary case.

VI. NUMERICAL EXAMPLES

Example 1: Let us consider a FIR of order 1, and let F0 =
[1, 21], U = 10, δ = 0 (noise-free case). Let us assume the

sensor has 4 thresholds C1 =25, C2 =45, C3 =65, C4 =85.
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Notice that these thresholds satisfy (26) in Theorem 2 with

û = 5. In Figure 2, the size of the feasible set for different

values of a ∈ [1, 21] and different input lengths is reported

for the optimal input u∗ given by Theorem 1.

The diameter obtained by assuming only one threshold

(binary case) is also reported in Figure 2. Notice that in

this case the feasible set size is independent from the true

parameter location. As expected, the information provided

by the 4-thresholds sensor allows a faster reduction of

uncertainty.
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Fig. 2. Example 1: Feasible set size of a 4-thresholds sensor (solid)
compared with a binary one (dashed) for different values of the true
parameters a.

Example 2: Let us consider a FIR of order n = 10 and

let us assume that the a priori information on the impulse

response coefficients is 1 ≤ θi ≤ Mρi, M = 100, ρ =
0.75, i = 1, . . . , 10. Moreover, let us assume U = 50, δ = 1
and let the sensor have P = 5 equally-spaced thresholds,

namely Cj = 10 j, j = 1, . . . , 5.

Let us suppose we want to independently excite each FIR

coefficient 3 times. By applying the input strategy provided

in [5], one needs N = 3 n(n+1)/2 = 165 samples according

to (9). Then, each FIR coefficient will be excited by the

optimal input derived in Section IV.

Let us assume that the true parameter vector is θ∗ =
[58, 19, 31, 15, 6, 9, 10, 4, 3, 1]′. Moreover, let us choose the

noise signal d(t) in order to maximize the size of the feasible

set at time t. In Fig. 3 the feasible set bounds for each

parameter after applying the designed input signal of length

165, are reported.
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Fig. 3. Example 2: Feasible set bounds and true values of FIR parameters
(crosses), for an input signal independently exciting each parameter 3 times.
The system sensor has 5 thresholds.

TABLE I

NUMERICAL VALUES OF EXAMPLE 2 FOR EACH FIR COEFFICIENT

i D5 D1 R5 R1 Rmin

1 5.4111 11.3012 1.0944 1.2055 1.0408

2 2.2539 7.6403 1.1317 1.5163 1.0408

3 3.0437 6.1079 1.0998 1.2331 1.0408

4 1.8716 4.2528 1.1317 1.3431 1.0408

5 0.9241 3.0506 1.1769 1.7839 1.0408

6 1.1662 2.3474 1.1378 1.3242 1.0408

7 0.9407 1.8556 1.1033 1.2173 1.0408

8 0.5755 1.2756 1.1565 1.3935 1.0408

9 0.4316 0.9311 1.1565 1.3559 1.0408

10 0.1745 0.6498 1.1745 1.6498 1.0408

In Table I the final uncertainty of each parameter (diameter of

FN ) for the 5-thresholds sensor (D5) is compared with that

obtained with a binary sensor (D1) with threshold C = 50.

The last three columns denote the ratio aN

a
N

for both the multi

thresholds (R5) and binary (R1) sensors, and the minimum

value achievable (Rmin) as stated in (35). Notice that, since

C = CP , by (35) both cases have the same value of Rmin

(choosing a lower value of C would produce a higher value

of Rmin for the binary case). As expected, the table shows

that a larger number of thresholds will lead to a faster

reduction of uncertainty.

VII. CONCLUSIONS

In this paper, a solution to the one step ahead recursive

optimal input design problem for identification of systems

with quantized measurements has been proposed. The mea-

surement noise is assumed unknown but bounded and a

worst-case approach has been adopted. Improvements over

the binary measurement case is illustrated through numer-

ical examples and an analytical upper bound on the time

complexity is devised. Further research should be directed

to the optimal input design problem on a multi-step time

horizon, which unlike the binary case, is still an unsolved

problem. Likewise, the related issue of tight time complexity

bounds both for the noise-free and the noisy measurements

case needs a deeper investigation.
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