
Linear Programming Techniques

for the Identification of Place/Transition Nets

Maria Paola Cabasino, Alessandro Giua, Carla Seatzu

Abstract— In previous works we presented a procedure based
on integer programming to identify a Petri net, given a finite
prefix of its language. In this paper we show how to tackle
the same problem using linear programming techniques, thus
significantly reducing the complexity of finding a solution. The
procedure we propose identifies a net whose number of places
is equal to the cardinality of the set of disabling constraints.
We provide a criterion to check if the computed solution has
a minimal number of places, and, if such is not the case, we

discuss two approaches to reduce this number.

I. INTRODUCTION

Identification is a classical problem in system theory:

given an observed behavior, it consists in determining a

system whose behavior approximate the observed one.

In the context of Petri nets, it is common to consider as

observed behavior the language of the net, i.e., the set of

transition sequences that can be fired starting from the initial

marking. Assume that a language L ⊂ T ∗ is given, where

T is a given set of n transitions. Let this language be finite,

prefix-closed and let k an integer greater than or equal to

the length of the longest string it contains. The identification

problem we consider consists in determining the structure of

a net N , i.e., the matrices Pre, Post ∈ Nm×n, and its initial

marking M0 ∈ Nm such that the set of all firable transition

sequences of length less than or equal to k is Lk(N, M0) =
L.

Note that the set L explicitly lists positive examples, i.e.,

strings that are known to belong to the language, but also,

implicitly, defines several counterexamples, namely all those

strings of length less than or equal to k that do not belong

to the language. Thus from the observed language one can

construct a set of enabling constraints E , i.e., a set of pairs

(y, t), such that transition t should be enabled after sequence

σ has fired, where y is the firing vector of σ, and a set of

disabling constraints D, i.e., a set of pairs (y, t) such that

transition t should not be enabled after sequence σ has fired,

where y is the firing vector of σ.

In previous work [3] we showed that this problem (and

a related series of more general identification problems) can

be solved using integer programming. The main drawback of

this approach is its computational complexity, in the sense

that the number of variables grows exponentially with the

length of the longest string in L, and problems of this kind

may easily become intractable.

M.P. Cabasino, A. Giua and C. Seatzu are with the Dept. of Electrical
and Electronic Engineering, University of Cagliari, Piazza D’Armi, 09123
Cagliari, Italy. Email: {cabasino,giua,seatzu}@diee.unica.it.

In this paper we show how to tackle the same problem

using linear programming techniques, thus significantly re-

ducing the complexity of solving an identification problem.

The main idea is to look for particular solutions of the

identification problem that are called D-canonical, i.e., nets

with a number of places equal to the cardinality of the

set D. We show that: (a) if a given identification problem

has solution, then it also has a D-canonical solution; (b)

this particular solution can be computed solving a linear

programming problem.

The procedure we propose identifies a net whose number

of places is equal to the cardinality of the set of disabling

constraints, which may be large, although an equivalent net

with a much smaller number of places may exist. We provide

a criterion to check if the computed solution has a minimal

number of places, and, if such is not the case, we discuss

two approaches to reduce this number.

In an on-line learning context, that is usually adapted in

the traditional identification paradigms, positive and negative

examples are presented to the learner on-the-fly. The learner

holds a current hypothesis/model that supports all positive

examples (and none of the negative examples) provided thus

far. This problem, that from a computational point of view

is easier than that considered in this paper, can be solved

using our procedure considering only positive examples and

negative examples and giving no constraints on strings that

are neither positive nor negative examples.

Among previous approaches for Petri net identification

(see [3] for a detailed discussion) we would like to recall

the work of Hiraishi [9], Meda and Mellado [12], [13],

Bourdeaud’huy and Yim [2], Dotoli et al. [6], [7], Li et al. in

[10], Chung et al. [4]. We also mention the approach based

on the theory of regions whose objective is that of deciding

whether a given graph is isomorphic to the reachability graph

of some free labeled net and then constructing it (see Badouel

and Darondeau [1] for a survey).

II. PRELIMINARIES

In this section we first recall the Petri net formalism

used in the paper, referring to [14] for a comprehensive

introduction to Petri nets.

Then we define a special class of linear constraint sets

and prove an important property of such a class, that will be

useful in the solution of our identification problem.

A. Background on Petri nets

A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set of m places; T is a set

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA16.3

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 514

of n transitions; Pre : P ×T → N and Post : P ×T → N

are the pre– and post– incidence functions that specify the

arcs; C = Post − Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each

place of a P/T net a nonnegative integer number of tokens,

represented by black dots. We denote M(p) the marking of

place p. A P/T system or net system 〈N, M0〉 is a net N
with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may

fire yielding the marking M ′ = M + C(· , t) = M + C · ~t,
where ~t ∈ Nn is a vector whose components are all equal

to 0 except the component associated to transition t that is

equal to 1. We write M [σ〉 to denote that the sequence

of transitions σ is enabled at M , and we write M [σ〉 M ′

to denote that the firing of σ yields M ′. Note that in this

paper we always assume that two or more transitions cannot

simultaneously fire (non-concurrency hypothesis).

A marking M is reachable in 〈N, M0〉 iff there exists

a firing sequence σ such that M0 [σ〉 M . In such a case

the state equation M = M0 + C · ~σ holds, where ~σ ∈ Nn

is the firing vector of σ, i.e., the vector whose ith entry

represents the number of times the transition ti is contained

in σ. The set of all markings reachable from M0 defines the

reachability set of 〈N, M0〉 and is denoted R(N, M0).
Given a Petri net system 〈N, M0〉 we define its free-

language1 as the set of its firing sequences

L(N, M0) = {σ ∈ T ∗ | M0[σ〉}.

We also define the set of firing sequences of length less than

or equal to k ∈ N as:

Lk(N, M0) = {σ ∈ L(N, M0) | |σ| ≤ k}.

Finally given a language L ⊂ T ∗ and a vector y ∈ Nn we

denote

L(y) = {σ ∈ L | ~σ = y}

the set of all sequences in L whose firing vector is y.

B. Special constraint sets

We define a special class of linear constraint sets (CS).

Definition 1: Given A ∈ Rm×n and b ∈ Rm, consider

the linear constraint set:

C(A, b) = {x ∈ Rn | Ax ≥ b}.

The set C(A, b) is called:

• ideal: if x ∈ C(A, b) implies αx ∈ C(A, b) for all α ≥
1;

• rational: if A ∈ Qm×n and b ∈ Qm, i.e., if the entries

of matrix A and of vector b are rational. �

The following result provides a simple characterization of

ideal CS’s.

Proposition 2: A linear constraint set C(A, b) is ideal if

b ≥ 0.

1As it will appear in the next subsection, free specifies that no labeling
function is assigned to the considered Petri net system.

Proof. Since Ax ≥ b ≥ 0 then for all α ≥ 1 it holds

A(αx) ≥ Ax ≥ b, hence it is ideal. �

Proposition 3: If a CS is ideal and rational, then it has

a feasible solution if and only if it has a feasible integer

solution.

Proof. The if part is trivial.

To prove the only if part, we reason as follows. If there

exists a solution there exists a basis solution xB , i.e., such

that

xB = A−1
B b,

where AB is obtained by A selecting a set of basis columns.

If the CS is rational the entries of AB and b are rational,

hence the entries of A−1
B and of xB are rational as well.

If the CS is ideal, we just need to multiply the rational

vector xB by a suitable positive integer to obtain an integer

solution. �

III. P/T NET IDENTIFICATION

The problem we consider in this paper can be formally

stated as follows.

Problem 4: Let L ⊂ T ∗ be a finite prefix-closed lan-

guage2, and

k ≥ max
σ∈L

|σ|

be an integer greater than or equal to the length of the longest

string in L. We want to identify the structure of a net N =
(P, T, Pre, Post) and an initial marking M0 such that

Lk(N, M0) = L.

The unknowns we want to determine are the elements of the

two matrices Pre, Post ∈ Nm×n and the elements of the

vector M0 ∈ Nm. �

Associated to an identification problem are the two sets

defined in the following.

Definition 5: Let L ⊂ T ∗ be a finite prefix-closed lan-

guage and let k ∈ N be defined as in Problem 4.

We define the set of enabling conditions

E = {(y, t) | (∃σ ∈ L) : |σ| < k, σ ∈ L(y), σt ∈ L}
⊂ Nn × T

(1)

and the set of disabling conditions

D = {(y, t) | (∃σ ∈ L) : |σ| < k, σ ∈ L(y), σt 6∈ L}
⊂ Nn × T.

(2)

�

Clearly, a solution to Problem 4 is a net 〈N, M0〉 such

that:

• for all (y, t) ∈ E transition t is enabled after the firing

of all σ ∈ L(y), i.e., M0[σ〉My[t〉, where My = M0 +
C · y represents the marking reached after the firing of

sequence σ.

• for all (y, t) ∈ D transition t is disabled after the firing

of σ ∈ L(y), i.e., M0[σ〉My¬[t〉.

2A language L is said to be prefix-closed if for any string σ ∈ L, all
prefixes of σ are in L.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.3

515

We can characterize the number of places required to solve

our identification problem.

Definition 6: Let L be a finite prefix-closed language on

alphabet T , whose words have length less than or equal to

k. Given the set of disabling conditions (2) let mD = |D|.
We say that a Petri net system 〈N, M0〉 with set of places

P and Lk(N, M0) = L, is D-canonical if

1) |P| = mD;

2) there exists a bijective mapping h : D → P such that,

for all (y, t) ∈ D, place p = h(y, t) satisfies

My(p) , M0(p) + C(p, ·) · y < Pre(p, t),

i.e., place p disables t after any σ ∈ L(y). �

In simple words, a net system 〈N, M0〉 is D-canonical if

a different place is associated to each element in the set of

disabling constraints D.

Proposition 7: Let L be a finite prefix-closed language on

alphabet T , whose words have length less than or equal to

k.

If there exists a net system 〈Ñ , M̃0〉 such that

Lk(Ñ , M̃0) = L, then there exists a net system 〈N, M0〉
that is D-canonical.

Proof. Let

P(y,t) = {p ∈ P̃ | M̃0(p) + C̃(p, ·) · y < ˜Pre(p, t)}

be the set of all places of Ñ that disable transition t after

sequence σ ∈ L(y) has occurred (here C̃ is the incidence

matrix of Ñ). For each pair (y, t) ∈ D let h(y, t) be one place

arbitrary selected from P(y,t); let P be the set of selected

places and m = |P|.
Two different cases may occur.

Case 1: m = mD, i.e., a different place has been selected

from any set P(y,t). In such a case we define N as the net

obtained from Ñ removing all places not in P (if any), and

assume M0 as the restriction of M̃0 to places in P . We claim

that Lk(N, M0) = L. In fact, since we have removed some

places from 〈Ñ , M̃0〉 then L(Ñ, M̃0) ⊆ L(N, M0). On the

other hand, by construction we know that for all words wt
of length less than or equal to k it holds

wt 6∈ L(Ñ , M̃0) =⇒ wt 6∈ L(N, M0),

hence Lk(N, M0) = Lk(Ñ , M̃0) = L.
By construction, a different place in P is associated to any

couple (y, t) ∈ D, thus proving that 〈N, M0〉 is D-canonical.

Case 2: m < mD , i.e., some place p ∈ P has been

selected from P(y,t), P(y′,t′), P(y′′,t′′), . . ., for two or more

different pairs (y, t), (y′, t′), (y′′, t′′), . . . in D. In such a case

we add to the net — without changing its language — ad-

ditional places p′, p′′ . . . such that Pre(p, ·) = Pre(p′, ·) =
Pre(p′′, ·) = · · · , Post(p, ·) = Post(p′, ·) = Post(p′′, ·) =
· · · , and M0(p) = M0(p

′) = M0(p
′′) = · · · , thus obtaining

a net with mD places.

We redefine h(y′, t′) = p′, h(y′′, t′′) = p′′, Function h
is now bijective and the resulting net system is D-canonical.

�

Theorem 8: Let us consider a finite prefix-closed lan-

guage on alphabet T , whose words have length less than

or equal to k and let E and D be the corresponding sets of

enabling and disabling conditions.

Let

N (E ,D) ,






























M0 + Post · y
−Pre · (y + ~t) ≥ 0 ∀(y, t) ∈ E

M0(p(y,t)) + Post(p(y,t), ·) · y
−Pre(p(y,t), ·) · (y + ~t) ≤ −1 ∀(y, t) ∈ D

M0 ∈ R
mD

≥0

Pre, Post ∈ R
mD×n
≥0

(3)

Consider a net system 〈N, M0〉 with N = (P, T, Pre,
Post). The system 〈N, M0〉 is a D-canonical solution of

the identification problem 4 iff Pre, Post, M0 are integer

solutions of CS (3).

Proof: We first show that any integer solution 〈N, M0〉
of CS (3) is a solution of Problem 4.

• Any constraint M0+Post ·y−Pre ·(y+~t) ≥ 0 can be

rewritten as My = M0 + (Post − Pre) · y ≥ Pre(·, t)
or equivalently My ≥ Pre(·, t) where M0[σ〉My for

all σ ∈ L(y). This shows that transition t is enabled

on 〈N, M0〉 from marking My and by induction on

the length of σ (since language L is prefix-closed) we

conclude that σt ∈ L.

• Assume that sequence σ ∈ L(y) is firable on the net

and M0[σ〉My . If for at least a place p in the net it

holds M0(p)+Post(p, ·) ·y−Pre(p, ·) · (y +~t) ≤ −1,
then My = M0 + (Post − Pre) · y 6≥ Pre(·, t) or

equivalently My 6≥ Pre(·, t). This shows that transition

t is not enabled on 〈N, M0〉 from marking My and we

conclude that σt 6∈ L.

Since net 〈N, M0〉 satisfies all enabling and disabling con-

straints, Lk(N, M0) = L.

We now show that any solution of CS (3) is D-canonical.

In fact, the mapping h(y, t) = p(y,t) for each couple (y, t) ∈
D is bijective.

We now show that any D-canonical net system 〈N, M0〉
with Lk(N, M0) = L is a solution of CS (3). In fact, let

h : D → P be the bijective function of the net system. If we

define p(y,t) = h(y, t) for all (y, t) ∈ D, then all equations

in CS (3) are satisfied. �

Proposition 9: The linear CS (3) is ideal and rational.

Proof: We first observe that the linear CS (3) can be

rewritten as a set of linear inequalities of the form Ax ≥ b
as follows. Let us denote as prei and posti the i-th row of

matrices Pre and Post, respectively, for i = 1, . . . , mD.

For any (y, t) ∈ E the first matrix inequality in (3) can be

rewritten as the following set of mD scalar inequalities:

[

1 yT −(y + ~t)T
]

·





M0,i

postTi
preT

i



 ≥ 0

where i = 1, . . . , mD. Analogously, for any (y, t) ∈ D the

second scalar inequality in (3) can be rewritten as:

[

−1 −yT (y + ~t)T
]

·





M0,i

postTi
preT

i



 ≥ 1.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.3

516

This defines matrix A and vector b. Since A and b have inte-

ger entries, CS (3) is rational. Since b ≥ 0, by Proposition 2

CS (3) is ideal. �

The following theorem provides a practical and efficient

procedure to solve our identification problem.

Theorem 10: The identification problem 4 admits a solu-

tion if and only if the (linear) CS (3) is feasible.

Proof: (if) By Proposition 9 CS (3) is ideal and rational

thus by Proposition 3 if it has solutions, then it also has

feasible integer solutions. However, by Theorem 8 this also

implies that such integer solutions are also solutions of the

identification problem 4.

(only if) If there exists a solution of Problem 4, by

Proposition 7 there also exists a net system that is D-

canonical. But all D-canonical systems are solutions of CS

(3) by Theorem 8, thus CS (3) is feasible. �

Note, finally, that once a solution of CS (3) is found, if this

solution is rational we can always find an integer solution by

simply multiplying Pre, Post and M0 by a suitable α ≥ 1.

IV. PLACE REDUCTION

One drawback of the identification procedure outlined in

the previous section consists in the requirement that the net

contains a number of places equal to mD = |D| although an

equivalent net with a smaller number of places may exist.

Note that in the worst case the cardinality of the set D can

be |T |k [3].

We propose two (types of) approaches to overcome this

problem. In the first approach, that we call place pre-

reduction, CS (3) is written in a modified form, using a

reduced number of places. In the second approach, that we

call place post-reduction, we first determine a solution of the

standard CS (3) obtaining a net with mD places and then

we identify redundant places that can be removed without

affecting the correctness of the result.

A. Place pre-reduction

We start with a general result that allows one to check if

the net obtained by solving CS (3) has a minimal number

of places. The test we propose requires solving a series of

modified CS’s and this is why we present this result in the

subsection devoted to the pre-reduction.

Definition 11: Consider a partition

Π(D) = {D1, D2, . . . , Dq}

of the set D. The sets Di are called blocks of partition Π(D).
We define the following CS

N (E , Π(D)) ,






































M0 + Post · y
−Pre · (y + ~t) ≥ 0 ∀(y, t) ∈ E

M0(pi) + Post(pi, ·) · y
−Pre(pi, ·) · (y + ~t) < 0 ∀(y, t) ∈ Di,

i = 1, . . . , q
M0 ∈ R

q
≥0

Pre, Post ∈ R
q×n
≥0

(4)

where E and n = |T | have the usual meaning as in

Theorem 10. �

The only difference between CS (4) and CS (3) consists

in the fact that in the former only q places (as many as

the blocks of partition Π(D)) are used: place pi (i =
1, . . . , q) will ensure that all disabling conditions in Di are

enforced. It is immediate to prove, with the same reasoning

of Proposition 9, that CS (4) is rational and ideal, and that

any of its integer solutions is a solution to the identification

problem 4.

Definition 12: Given the identification problem 4, a par-

tition Π(D) = {D1, D2, . . . , Dq} with q blocks is said to

be

• feasible if CS N (E , Π(D)) admits a solution;

• minimal if it is feasible and there exists no other

partition Π′(D) with q′ < q that is feasible.

�

Thus the number of blocks of a minimal partition repre-

sents the minimal number of places that a net solving the

given identification problem may have.

The following corollary trivially follows from the previous

definitions and from Theorem 10.

Corollary 13: A net with q places solution of the identi-

fication problem 4 exists iff there exists a feasible partition

Π(D) = {D1, D2, . . . , Dq} with q blocks solution of CS (4).

We now state an intuitive result that allows one to deter-

mine if a partition is minimal.

Proposition 14: A feasible partition with q blocks is min-

imal iff there exists no feasible partition with q − 1 blocks.

Proof: The only if part follows from the definition of

minimal partition.

To prove the if part we need to show that if no feasible

partition with q − 1 blocks exists, then no partition with a

smaller number of blocks is feasible. This can be proved

by contradiction, by means of the same argument used in

the proof of Proposition 7, Case 2. In fact, assume there

exists a feasible partition with q′ < q − 1 blocks; then there

exists a net solving the identification problem with q′ places.

However, we can add an arbitrary number of duplicate place

to this net and this implies that there exists a net solving the

identification problem with q′ + 1, q′ + 2, . . . , q − 1 places.

Thus, according to Proposition 13, there exists a feasible

partition with q − 1 blocks which is a contradiction. �

According to the previous proposition to prove that a

feasible partition Π(D) with q blocks is minimal it is

necessary to check the feasibility of all partitions D with

q − 1 blocks. However, the number of partitions of a set of

cardinality n into k blocks is given by the Sterling number

of the second kind3 S(n, k) [5] which may be too large for

an exhaustive analysis.

With the terminology introduced in this section, CS (3)

can be seen as a special case of CS (4) when the considered

3An explicit formula for the Sterling number of the second kind is

S(n, k) =
1

k!

k
X

j=0

(−1)k−j
“k

j

”

jn.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.3

517

partition Π(D) contains all singleton sets, i.e., it is the unique

partition with mD blocks. Thus it is possible to check if this

partition is minimal by checking that all partitions of mD−1
blocks (obtained by merging any two singleton sets) are not

feasible. There exists

S(mD, mD − 1) =
mD(mD − 1)

2

of these partitions.

Although the previous results provide a procedure for

reducing the number of places of a Petri net, a brute force

search to determine a minimal feasible partition is not viable

given the large number of such partitions. We conclude

this subsection with an informal discussion on how it may

possible to exploit some additional information on the net

to determine a feasible partition of cardinality smaller than

mD .

As an example, assume it is known that a transition t has

only one input place — such is the case if the net to identify

or a subnet of it containing t is a state machine. In such a

case, it is possible to consider a partition of D in which a

single block

D = {(y1, t), . . . , (yr, t)} ⊂ D

contains all disabling conditions for transition t and a

single place p will be used to disable t after a sequence

σi ∈ ∪r
i=1L(yi) has been executed.

As a second example, assume it is known that transitions

t and t′ are in a free choice relation, i.e., there exists a

place p = •t = •t′ that is the unique input place for both

transitions. In such a case, it is possible to consider a partition

of D in which a single block

D = {(y1, t), . . . , (yr, t), (y
′
1, t

′), . . . , (yr′ , t′)} ⊂ D

contains all disabling conditions for transitions t and t′ which

will be enforced by place p.

Example 15: Let us consider a language

L = {ε, t1, t1t2, t1t3, t1t2t3, t1t3t2, t1t3t3}

and let k = 3. We have additional information: the transition

t1 has only one input place and transitions t2 and t3 are

in a free choice relation. The set of enabling and disabling

constraints are respectively:

E = {(ε, t1), (t1, t2), (t1, t3), (y12, t3), (y13, t2), (y13, t3)}

and

D = {(ε, t2), (ε, t3), (t1, t1), (y12, t1), (y12, t2), (y13, t1)},

where y12, y13 are the firing vectors of t1t2 and t1t3 respec-

tively. The additional information allows us to consider two

different blocks of D :

D1 = {(t1, t1), (y12, t1), (y13, t1)} ⊂ D

and

D2 = {(ε, t2), (ε, t3), (y12, t2)} ⊂ D.

p1

t1

t2

t3

2

p2

3

Fig. 1. The Petri net systems in Example 15.

Let us observe that D = D1 ∪ D2, then the Petri net

solution has |P | = 2. A net system solution of N (E ,D)
computed with a commercial LP solver (LINDO) is reported

in Fig. 1.

Note that such a solution has been determined associating

a linear objective function f(M0, P re, Post) to N (E ,D),
and solving the resulting linear programming problem. In

particular, we assumed

f(M0, P re, Post) = 1T ·M0 + 1T · Pre · 1 + 1T · Post · 1.

Note finally that the solution we found out was integer. �

B. Place post-reduction

Once a net has been identified solving CS (3) (or even

CS (4)) it is always possible to check if some of the places

are redundant and can be removed without affecting the

correctness of the result. This check is based on the notion

of minimal hitting set defined in the following.

Proposition 16: Consider a net system 〈N, M0〉 solution

of the identification problem 4 and define for all disabling

conditions (y, t) ∈ D the set

P(y,t) = {p ∈ P | M0(p) + C(p, ·) · y < Pre(p, t)} (5)

consisting of all places of the net that disable transition t
after a sequence σ ∈ L(y) has been executed.

Assume P̂ ⊂ P is a hitting set for all P(y,t)’s, i.e., P̂ ∩

P(y,t) 6= ∅ for all (y, t) ∈ D. Then the net system 〈N̂ , M̂0〉

obtained from 〈N, M0〉 removing all places in P \ P̂ is a

solution of the identification problem 4.

Proof: As already discussed in the proof of Proposi-

tion 7 the removal of a place does not affect any enabling

condition. Furthermore, if P̂ is a hitting set for all P(y,t)’s

then it is capable of enforcing all disabling conditions in D.

Hence Lk(N̂ , M̂0) = Lk(N, M0). �

The places in P \ P̂ that can be removed from the net

system 〈N, M0〉 without changing its language Lk(N, M0)
are called redundant places.

Since the net Ñ has set of places P̂ , to obtain a net with

a minimal set of places we need to determine the minimal

hitting set. This problem is known to be NP-hard and there

exists several ways to compute minimal hitting sets (see [11]

for a review). Here we present a straightforward algorithm

based on integer programming.

Proposition 17: Consider a net system 〈N, M0〉 with

m = |P| places solution of the identification problem 4.

For all disabling conditions (y, t) ∈ D, let z(y,t) ∈ {0, 1}m

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.3

518

be the characteristic vector of set P(y,t) defined in (5), i.e.,

z(y,t)(p) = 1 if p ∈ P(y,t), else z(y,t)(p) = 0.
Consider the following integer programming problem

(IPP):

min 1T · x
s.t. xT · z(y,t) ≥ 1 ∀(y, t) ∈ D

x ∈ {0, 1}m

(6)

and let x∗ be an optimal solution.

Then a minimal hitting set for all P(y,t)’s is the set P̂ =
{p ∈ P | x∗(p) = 1}.

Proof: It is immediate to see that any feasible solution

x of IPP (6) is the characteristic vector of a hitting set for

all P(y,t)’s because it contains at least one element from

each of these sets (xT · z(y,t) ≥ 1). The optimal solution x∗

has the minimal number of non-zero components, hence it

corresponds to a minimal hitting set. �

Example 18: Let

L = {ε, t1, t2}

and k = 2. We observe that this is a particular case of a

language containing no word of length k, i.e., all words of

length k have to be disabled.

The set of enabling and disabling constraints are respec-

tively:

E = {(ε, t1), (ε, t2)}

and

D = {(t1, t1), (t1, t2), (t2, t1), (t2, t2)}.

A net system solution of N (E ,D) is reported in Fig. 2.(a):

here it is obviously |P | = mD = 4.

Note that such a solution has been determined associating

the same linear objective function f(M0, P re, Post) used

in Example 15 to N (E ,D), and solving the resulting linear

programming problem.

We now try to reduce the number of places using the

place post-reduction approach. To this aim for any (y, t)
we compute the set P(y,t) defined as in equation (5). Being

P(t1,t1) = {p11, p12, p21}, P(t1,t2) = {p12, p21}, P(t2,t1) =
{p12, p21}, P(t2,t2) = {p12, p21, p22}, it is immediate to see

that a possible hitting set for all P(y,t)’s is P̂ = {p21}, that

is also minimal. The resulting net system 〈N̂ , M̂0〉 obtained

from the previous one removing all places in P \ P̂ is shown

in Fig. 2.(b). All solutions, obtained with LINDO, are integer.

�

It is important to observe that the place post-reduction

procedure does not necessarily ensure that the resulting

net is the solution of a given identification procedure with

the minimal number of places. In fact, it only determines,

amongst the solutions of a given identification procedure that

can be obtained from a solution N by removing places, the

one with a minimal number of places. The following example

will clarify this point.

Example 19: Let

L = {ε, t1, t2, t3}

(b)

p21

t1

t2

p11
t1

t2

(a)

p12

p21

p22

Fig. 2. The Petri net systems in Example 18.

p11

t1

t2

(a)

p12

p21

p22

t3

p23

p32

p33

p13

p31

p21
t1

t2

t3

p32

p31

(b)

(c) (d)

p21 p21 p32

t1

t2

t3

t1

t2

t3

Fig. 3. The Petri net systems in Example 19.

and k = 2, thus as in Example 18, all words of length k have

to be disabled. The set of enabling and disabling constraints

are respectively:

E = {(ε, t1), (ε, t2), (ε, t3)}

and

D = {(t1, t1), (t1, t2), (t1, t3), (t2, t1), (t2, t2),
(t2, t3), (t3, t1), (t3, t2), (t3, t3)}.

A net system solution of CS (3) is shown in Fig. 3.(a),

where obviously |P | = mD = 9. It has been determined

solving a linear programming problem whose objective func-

tion is the same of that used in Example 15.

Now, being P(t1,t1) = {p11, p12, p13, p21, p31}, P(t1,t2) =
{p12, p21}, P(t1,t3) = {p13, p31}, P(t2,t1) = {p12, p21},

P(t2,t2) = {p12, p21, p22, p23, p32}, P(t2,t3) = {p23, p32},

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.3

519

P(t3,t1) = {p13, p31}, P(t3,t2) = {p23, p32}, P(t3,t3) =
{p13, p23, p31, p32, p33}, it is easy to see that a possible

hitting set for all P(y,t)’s is P̂ = {p21, p31, p32}. The net

system 〈N̂ , M̂0〉 obtained from 〈N, M0〉 removing all places

in P \ P̂ is shown in Fig. 3.(b).

Note that the same hitting set can also be obtained solving

the IPP (6).

Such a solution is not minimal in terms of places, as it

can be verified using the place pre-reduction procedure.

To this aim we first look at a solution with two places,

namely using the notation of Definition 11, we check if there

exists a solution with only two blocks D′
1 and D′

2, obtained

by merging two of the three blocks

D1 = {(t1, t1), (t1, t2), (t2, t1), (t2, t2)},

D2 = {(t2, t3), (t3, t2), (t3, t3)}

and

D3 = {(t1, t3), (t3, t1)}

relative respectively to the places p21, p32 and p31 of the net

in Fig. 3.(b).

In particular, we find that CS (4) admits a solution when

D′
1 = {t1, t1), (t1, t2), (t1, t3), (t2, t1), (t2, t2), (t3, t1)}

and

D′
2 = {(t2, t3), (t3, t2), (t3, t3)},

where

D′
1 = D1 ∪ D3.

The resulting net 〈N̄ , M̄0〉 is shown in Fig. 3.(c), where P̄ =
{p21, p32}.

We can further on reduce the net finding a minimal

hitting set. Being, P(t1,t1) = {p21}, P(t1,t2) = {p21},

P(t1,t3) = {p21}, P(t2,t1) = {p21}, P(t2,t2) = {p21, p32},

P(t2,t3) = {p21, p32}, P(t3,t1) = {p21}, P(t3,t2) =
{p21, p32}, P(t3,t3) = {p21, p32}, the unique minimal hitting

set is P̂ ′ = {p21}. The net system 〈N̂ ′, M̂ ′
0〉 obtained from

〈N̄ , M̄0〉 removing all places in P̄ \ P̂ ′ is minimal and is

shown in Fig. 3.(d).

Note that in all cases, the net solutions, obtained with

LINDO, are integer. �

As a final remark we observe that the notion of redundant

place that we give here is different from the one of implicit

place used by other authors [8]. In fact, an implicit place is

a place that can be removed from a net system 〈N, M0〉
without changing its overall behavior L(N, M0). On the

contrary, a redundant place according to our definition is a

place that can be removed from the net without changing the

finite prefix behavior Lk(N, M0). Thus our notion is weaker

and the techniques used in [8] to determine implicit places

cannot be used in our framework.

V. CONCLUSIONS

We have presented a procedure to identify a

place/transition net from a finite prefix of its language.

The procedure is based on linear programming, and this

is a major advantage over previous approaches that were

based on integer programming. The number of places of the

resulting net may not be minimal, but we have discussed

several techniques that may be used to reduce it.

As a possible line for future research, we mention the

extension of this procedure to more general cases, such as

those based on the knowledge of the reachability/coverability

tree of the net to identify. Moreover, we plan to use the results

here presented in selected application domains.

REFERENCES

[1] E. Badouel and P. Darondeau. Theory of regions. Lecture Notes in

Computer Science: Lectures on Petri Nets I: Basic Models, 1491:529–
586, 1998.

[2] T. Bourdeaud’huy and P. Yim. Synthse de rseaux de Petri partir
d’exigences. In Actes de la 5me conf. francophone de Modlisation et

Simulation, pages 413–420, Nantes, France, September 2004.
[3] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of Petri nets

from samples of their languages. DEDS, 17(4):447–474, 2007.
[4] S.L. Chung, C.L. Li, J.C. Wu, and S.T. Wang. Online modeling

refinement for discrete event systems. Proc. of the IEEE Conference

on Systems, Man and Cybernetics, 3:2739–2744, 2003.
[5] W.F. (IV) Doran and D.B. Wales. The partition algebra revisited.

Journal of Algebra, 231(1):265–330, September 2000.
[6] M. Dotoli, M.P. Fanti, and A.M. Mangini. On-line identification of

discrete event systems by interpreted Petri nets. Proc. of the IEEE

Conference on Systems, Man and Cybernetics, 4:3040–3045, 2006.
[7] M. Dotoli, M.P. Fanti, and A.M. Mangini. Real time identification of

discrete event systems using Petri nets. Automatica, 4(5):1209–1219,
2008.

[8] F. Garcia-Valles and J.M Colom. Implicit places in net systems. In
Proc. of the 8th Int. Work. on Petri Nets and Performance Models,
pages 104 – 113, Zaragoza, Spain, 1999.

[9] K. Hiraishi. Construction of a class of safe Petri nets by presenting
firing sequences. In Jensen, K., editor, Lecture Notes in Computer

Science; 13th International Conference on Application and Theory of

Petri Nets 1992, Sheffield, UK, volume 616, pages 244–262. Springer-
Verlag, June 1992.

[10] L.X. Li, Y. Ru, and C.N. Hadjicostis. Least-cost firing sequence
estimation in labeled Petri nets. In Proc. 45th IEEE Conf. on Decision

and Control, San Diego, California USA, December 2006.
[11] L. Lin and Y. Jiang. The computation of hitting sets: Review and new

algorithms. Information Processing Letters, 86:177–184, 2003.
[12] M.E. Meda-Campaa and E. Lpez-Mellado. Incremental synthesis of

Petri net models for identification of discrete event systems. In Proc.

41th IEEE Conf. on Decision and Control, pages 805–810, Las Vegas,
Nevada USA, December 2002.

[13] M.E. Meda-Campaa and E. Lpez-Mellado. Required event sequences
for identification of discrete event systems. In Proc. 42th IEEE Conf.

on Decision and Control, pages 3778–3783, Maui, Hawaii, USA,
December 2003.

[14] T. Murata. Petri nets: Properties, analysis and applications. Proceed-

ings of the IEEE, 77(4):541–580, April 1989.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.3

520

