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Abstract— This paper presents an optimizing control scheme
for simulated moving beds (SMB) that allows multi-rate (MR)
sampled measurements to be incorporated into the control and
estimation problem in a clear and transparent manner. This
is particularly relevant for chiral separations where online
monitoring requires the combination of various analytical
techniques that may operate on widely varying time scales. An
MR periodic linear time-varying (PLTV) model is derived for
the SMB process. The cyclic nature of the process is exploited
by formulating the MR PLTV model within a repetitive model
predictive control framework. Simulation results for a chiral
separation are presented. The proposed multi-rate controller
is able to deliver increased productivity while respecting the
process and product specifications.

I. INTRODUCTION

Simulated Moving Bed (SMB) is a continuous chromato-

graphic process used to separate into two fractions a mixture

of molecules dissolved in a fluid phase. The separation prin-

ciple is based on the different affinities of the molecules in

the mixture to the solid-phase which moves countercurrently

to the direction of the fluid. The SMB consists of a loop

of ncol columns where the fluid circulates in one direction

(Fig. 1). The desired countercurrent flow between the two

phases is achieved by switching the inlet and outlet ports

in the direction of the fluid flow every t∗ seconds, which

results in a simulated countercurrent movement of the solid

with respect to the fluid. This periodic switching gives rise

to a cyclic behavior of the process, which does not achieve

a steady state with constant process variable profiles, but

rather a cyclic steady state, where these profiles are repeated

periodically. A detailed description of the process can be

found elsewhere [1].

Economic advantages, like higher productivity and lower

solvent consumption, have firmly established SMB in recent

years as the state-of-the-art technology for complex separa-

tion tasks in the areas of pharmaceuticals, fine chemicals and

biotechnology, especially for the purification of species char-

acterized by low selectivities, i.e. difficult to separate, such

as chiral molecules for single enantiomer drug development.

Nevertheless, the full exploitation of the economic advan-

tages of SMB has been hindered mainly by the uncertainty in

physical properties of the mixture, i.e. its adsorption behavior

on the solid phase, which is a limiting factor in the optimal

design and operation of the SMB separations. Furthermore

the determination of the adsorption behavior is by itself a
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very difficult and time-consuming task. These facts enforce

the selection of conservative operating conditions that will

guarantee the fulfillment of the strict purity requirements in

the face of uncertainty, at the price of sacrificing productivity.

The full economic potential of the SMB can be exploited by

using a proper feedback control scheme. Several approaches

have been proposed and a detailed review of these different

control schemes may be found in the literature [3], [4]. In

general, the bottleneck of these approaches is again, the need

for accurate data about the adsorption behavior.

In the past years, the control group at ETH Zurich proposed

and verified experimentally an SMB control scheme which

guarantees the fulfillment of product and process specifica-

tions, such as minimum purities and maximum allowable

pressure drop, while optimizing the economics of the process

[3], [5]. It is noteworthy that this controller requires only

minimal information on the adsorption behavior of the com-

ponents to separate, i.e., only the linear adsorption isotherm,

which can be determined experimentally in a straightforward

and reliable manner.

Recently, multi-rate controllers and estimators have been

presented in various areas, like polymerization processes [2].

This paper presents a multi-rate model predictive controller

that combines optical detector signals with high performance

liquid chromatography (HPLC) measurements, i.e. ′fast′ and
′slow′ sampled-data, in a systematic way. In this way, the
′fast′ sampled-data allows one to follow the cyclic time

evolution of the process, while the ′slow′ sampled-data

incorporates the information about the product quality.

This paper is structured as follows: Section II gives a

brief description of the virtual SMB plant and monitoring

techniques considered in this work. Section III explains in

detail the development multi-rate SMB model and the control

problem formulation. In section IV the effectiveness of

this control approach is assessed and demonstrated through

simulations on a virtual SMB unit for the separation of the

guaifenesin enantiomers. Finally, conclusions are presented.

II. PROCESS DESCRIPTION

A. SMB Virtual Plant

A racemic mixture of the guaifenesin enantiomers (A and

B) is to be separated in a four-section SMB unit with ncol =
8 columns arranged in a 2-2-2-2 configuration as shown in

Fig. 1. The dynamical model for simulation of the SMB

unit is obtained by interconnecting the dynamical models of

each chromatographic column. The single-column dynamics

are modelled with the equilibrium dispersive model (EDM)

and the adsorption behavior of both components inside the

columns is described by a linear adsorption isotherm, with
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Fig. 1. Scheme of an SMB unit. The dashed lines indicate the inlet/outlet
positions after the first switch. The primary, slow-sampled measurements
are taken by the HPLC in the extract and raffinate ports. The secondary,
fast-sampled measurements are recorded by the UV absorbance detector.

Henry’s constants HA and HB . The mathematical model is

completed by considering the corresponding node balances

between the columns and the proper boundary and initial

conditions. The parameters of the system under consideration

are reported in section IV.

B. Concentration determination of chiral mixtures

Enantiomers have the same chemical and physical prop-

erties, except for their rotation of polarized light and their

behavior in chiral environments. This makes the pool of

available analytical methods to determine the concentrations

of both enantiomers in a mixture rather limited.

1) Optical detectors: Through a combination of a UV

absorbance detector and a polarimeter the concentrations of

a pair of enantiomers in the stream j, cA,j(t) and cB,j(t) can

be determined at a given time t. Commercial UV absorbance

detectors give very accurate and reliable measurements,

whereas the limiting factor in this approach is the very

low accuracy of today’s commercially available polarimeters

for this kind of applications. Since performance of the

controller will greatly depend on the precision and accuracy

of the analytical methods it relies on to get the feedback

information, we refrain from the use of polarimeters in this

control approach to avoid a deterioration in the performance.

As a result the fast sampled-data from the UV absorbance

detector will render only the sum of the concentrations of A

and B.

SUV,j(t) = kUV (cA,j(t) + cB,j(t)) (1)

where SUV,j is the signal read form the UV detector and

kUV is the calibration factor. The UV detector is placed at

the end of column 8, i.e. j = 8, as depicted in Fig. 1.

2) HPLC measurements: It is possible to collect samples

of the mixture over a period of time τ and analyze them

with an HPLC system. These measurements will deliver the

average concentrations of both species, cave
A,j,τ and cave

B,j,τ , in

the stream j over the period of time τ

cave
i,j,τ =

∫ τ

0
ci,j(t)Qj(t)dt
∫ τ

0
Qj(t)dt

(2)

for i = A,B. The factor Qj(t) is the flow rate of stream

j, from which the sample was collected. As in the ’cycle

to cycle’ controller [5], we collect samples of the extract

and raffinate streams j = E,R, over a period of time

τ = ncol t
∗, the cycle time. The HPLC measurements are

therefore taken at rather low frequencies. As mentioned

earlier, HPLC technology is well established and so these

measurements are highly accurate and reliable.

In this work we present a framework to systematically

combine fast- and slow-sampled measurements. In this way,

it is possible to combine the two most accurate methods for

chiral concentration determination, UV absorbance detectors

and HPLC measurements.

III. MULTI-RATE MPC

A. Control concept

The core of the control concept is the integration of

the optimization and control of the SMB unit [3]. The

novel feature presented in this work is the extension of the
′cycle to cycle′ control concept that uses the low frequency

sampled data as feedback information, to incorporate the

high frequency UV signal as secondary measurements [5].

A scheme of the control concept is shown in Fig. 2.

The control problem is formulated as a constrained dynamic

Fig. 2. Scheme of the multi-rate control concept.

optimization problem within the repetitive MPC (RMPC)

framework [6]. The productivity and solvent consumption

represent the cost function to be optimized, while the

hardware restrictions and product quality specifications are

imposed as constraints. The controller makes use of a sim-

plified periodically linear time-varying (PLTV) SMB model

to predict and optimize the performance of the unit over a

predefined number of cycles, the so-called prediction hori-

zon, np. The simplified PLTV SMB model requires only the

linear isotherm information, HA and HB , about the mixture

to be separated. This scheme is implemented according to

a receding horizon strategy. The states are estimated using
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a periodic Kalman filter. The measurements, optimization

and control actions are performed N times within a cycle.

In this approach the switch time t∗ is fixed a priori. The

internal flow rates in the four sections of the unit, QI ,

QII , QIII , QIV , are used as manipulated variables. The

primary measurements are the concentration levels in the

extract (E) and raffinate (R) streams averaged over one

cycle, cave
A,E , cave

B,E , cave
A,R, cave

B,R. The secondary measurement

is the sum of the concentrations of the enantiomers recorded

by the UV detector fixed at the outlet of column 8, i.e.

(cA,8(t) + cB,8(t)).

B. Modeling

The key idea here is to develop a reduced-order PLTV

model for estimation and control purposes starting from

the first principles, hybrid nonlinear model. Since standard

model reduction techniques have been developed for linear

time-invariant (LTI) systems, we first transform, or lift, the

full-order PLTV model into an LTI model to apply a balanced

model reduction. We then unlift the reduced-order LTI model

to get the desired reduced-order PLTV and incorporate it into

the RMPC formulation. The simplification procedure follows

the same steps as presented in [5] and [6] and extends it for

multi-rate systems along the lines presented in [7].

1) First principles, hybrid nonlinear model: The SMB

unit can be described by first principles models. These

models are systems of partial differential equations (PDEs),

describing the behavior of the two enantiomers inside each

chromatographic column as a function of position, z, and

time, t. To complete the mathematical model, the PDEs are

combined with algebraic equations (AEs) that account for the

node balances. Note that every t∗ seconds, the input/output

ports are switched and the configuration of the unit changes,

giving rise to a new system of PDEs and AEs that describe

the dynamics of the SMB unit. The simplification procedure

starts by discretizing the space coordinate z in ng ·ncol grid

points. The ncol systems of PDEs and AEs can then be

simplified to ncol systems of nonlinear ordinary differential

equations (ODEs). An SMB unit with ncol = 8 columns

separating ns = 2 species and discretized in ng = 40 grid

points per column, gives rise to ncol systems of ODEs of

neq = ng · ns · ncol = 640 equations each. Each system of

ODEs can be recast in the following form

dc

dt
= fp(c,Q)

cout = g
p
out(c)

cuv = gp
uv(c) p = 1, . . . , ncol (3)

Here, the index p denotes the number of different in-

put/output port configurations of the SMB unit. The vector

Q comprises the internal flow rates in the four sections, i.e.,

QI , . . . , QIV , and c is the state vector containing the internal

concentration values along each column h, i.e., c̄i,h,g(t) for

i = A,B, h = 1, . . . , ncol and g = 1, . . . , ng . The primary

measurements cout are the concentration levels of the two

enantiomers in the raffinate and extract outlets streams, i.e.,

cA,R(t), cB,R(t), cA,E(t), cB,E(t), where the samples will

be collected over one cycle to compute the average concen-

trations according to (2). The secondary measurements cuv

is the signal recorded from the UV absorbance detector.

2) Multi-rate linear model: The ODE systems in (3) are

linearized and subsequently discretized in time. For details

on how to choose the linearization point please refer to [5].

The resulting discrete time, state-space, PLTV SMB model

has the following structure

xk(n + 1) = A(n)xk(n) + B(n)uk(n)

yc
k(n) = Cc(n)xk(n)

ys
k(n) = Cs(n)xk(n) (4)

for n = 0, . . . , N − 1

x ∈ Rneq , u ∈ Rnu , yc ∈ Rnyc , ys ∈ Rnys

The variables x and u are the state and input vectors compris-

ing the internal concentration profiles and the internal flow

rates, respectively. yc and ys are the primary and secondary

outputs, respectively. The state, input and output vectors are

defined in terms of deviation variables with respect to the

reference cyclic steady state profiles used for linearization

[3]. Here, k is the cycle index and n is the time index

running within the cycle; N is the number of time steps

within a cycle used for time discretization. In the equations

above, nyc = 4, nys = 1 and nu = 4 are the number

of primary and secondary measurements and manipulated

variables, respectively. For the transition from one cycle to

the next, we impose the continuity requirement

xk+1(0) = xk(N) (5)

The output yc
k(n) of the PLTV model in (4) describes the

instantaneous concentrations of both components in the two

outlet streams for each time step n within the cycle k. Never-

theless, the primary measurements will be the concentration

of both species in extract and raffinate averaged over one

cycle. Therefore, the PLTV model has to be modified such

that the required average concentrations are directly given by

the primary model output, i.e. a ′cycle to cycle′ SMB model.

For this purpose, the model in (4) is lifted, i.e. successively

substituted for the time steps n = 0, . . . , N−1. The ′cycle to

cycle′ SMB model providing the average concentrations for

one cycle as primary output and all secondary measurements

of cycle k as secondary outputs can be cast as

xk+1(0) = Φxk(0) + ΓUk

Y
c,ave
k = Πcxk(0) + GcUk

Ys
k = Πsxk(0) + GsUk (6)

U ∈ R(N×nu), Yc,ave ∈ Rnyc , Ys ∈ R(N×nys )

For the sake of space, please refer to [5] for the details on the

construction of the state space matrices. The inputs, primary

and secondary outputs of one cycle have been grouped as

Uk =
[

uT
k (0) · · · uT

k (N − 1)
]T

Y
c,ave
k =

[
y

c,ave
A,E,k y

c,ave
B,E,k y

c,ave
A,R,k y

c,ave
B,R,k

]T
(7)

Ys
k =

[

ysT

k (0) · · · ysT

k (N − 1)
]T
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3) Repetitive Model predictive control formulation: So

far, a multi-rate ′cycle to cycle′ SMB model has been

developed. In this section it is reformulated within the RMPC

framework [6]. A brief explanation of the unlifting procedure

to obtain now a reduced order PLTV model is given below.

A more detailed description can be found in [3].

The resultant lifted model in (6) can be used to develop a

feedback formulation, that utilizes the secondary measure-

ments as they become available. For a more efficient online

implementation, the order of the model is first reduced via

balanced model reduction from neq = 640 to ñeq = 26
states. In the following, the superscript (·) stands for both

primary, (c,ave), and secondary measurements, (s). Notice

that once the cycle-to-cycle description in (6) has been

reduced, it can be expressed in terms of incremental changes

by differencing the model for two successive cycles as

follows

∆x̃k+1(0) = Φ̃∆x̃k(0) + Γ̃∆Uk (8)

Ȳ
(·)
k = Ȳ

(·)
k−1 + Π̃(·)∆x̃k(0) + G(·)∆Uk

where x̃ is the state vector of the reduced-order ′cycle to

cycle′ SMB model with ñeq states. The matrices Φ̃, Γ̃,

Π̃
(·)

and G(·) are the corresponding state-space matrices

of appropriate dimensions. Here, ∆ indicates the backwards

difference with respect to the cycle index, e.g., ∆Uk =
Uk − Uk−1 and ∆x̃k(0) = x̃k(0) − x̃k−1(0). To unlift the

model let us define

δk(n) , ∆x̃k+1(0)

ȳ
c,ave
k (n) , Ȳ

c,ave
k

ȳs
k(n) , Ȳs

k,

with ∆uk(j) = 0 for j ≥ n (9)

This implies that the same input as for cycle k − 1 is

implemented starting at time n of the cycle k. Using these

definitions, (8) can be rewritten as

δk(n) = Φ̃∆x̃k(0)

+
[

Γ̃0 · · · Γ̃n−1

] [
∆uT

k (0) · · · ∆uT
k (n − 1)

]T

ȳ
(·)
k (n) = Ȳ

(·)
k−1 + Π̃

(·)
∆x̃k(0) (10)

+
[

G
(·)
0 · · · G

(·)
n−1

] [
∆uT

k (0) · · · ∆uT
k (n − 1)

]T

where Γ̃n and G
(·)
n are the nth columns of the matrices Γ̃

and G(·), respectively, corresponding to the input at time

n. Note that δk(N) = ∆x̃k+1(0), ȳ
c,ave
k (N) = Ȳ

c,ave
k and

ȳs
k(N) = Ȳs

k by definition (9). The model in (10) can be

written for two consecutive time steps, i.e., for time n and

n + 1, and taking the difference, one obtains




δk(n + 1)
ȳ

c,ave
k (n + 1)

ȳs
k(n + 1)





︸ ︷︷ ︸

z̄k(n+1)

= I
︸︷︷︸

Ā





δk(n)
ȳ

c,ave
k (n)

ȳs
k(n)





︸ ︷︷ ︸

z̄k(n)

+





Γ̃n

Gc
n

Gs
n





︸ ︷︷ ︸

B̄(n)

∆uk(n)

(11)

The outputs can then be expressed as

yk(n) =

[
0 Hc(n) 0
0 0 Hs(n)

]

︸ ︷︷ ︸

C̄(n)





δk(n)
ȳ

c,ave
k (n)

ȳs
k(n)





︸ ︷︷ ︸

z̄k(n)
Hc(n) =I for n = 0 (12)

Hc(n) =0 for n = 1, . . . , N − 1

Hs(n) =

[
0

︸ ︷︷ ︸

nys×n·nys

I
︸ ︷︷ ︸

nys×nys

0
︸ ︷︷ ︸

nys×(N−1−n)·nys

]

Note that the output vector y comprises the primary and sec-

ondary process outputs at time n. The primary measurements

though, are available only at the beginning of the cycle, i.e.

n = 0. The transition from cycle-to-cycle completes the

time-varying description of the system.




δk+1(0)
ȳ

c,ave
k+1 (0)
ȳs

k+1(0)





︸ ︷︷ ︸

z̄k+1(0)

=





Φ̃ 0 0

Π̃c I 0

Π̃s 0 I





︸ ︷︷ ︸

Ψ̄





δk(N)
ȳ

c,ave
k (N)

ȳs
k(N)





︸ ︷︷ ︸

z̄k(N)

(13)

The disturbances of the process are modelled as a stochastic

difference equation capturing the effect of model errors and

periodic disturbances that repeat themselves from cycle to

cycle and the effect of random disturbances. The PLTV

model in (11) - (13) can be written in the following compact

form

z̄k(n + 1) = Āz̄k(n) + B̄(n)∆uk(n)

yk(n) = C̄(n)z̄k(n) for n = 0, . . . , N − 1

z̄k+1(0) = Ψ̄z̄k(N) (14)

which constitutes the basis for the formulation of the state

estimation filter presented next.

4) Time-varying periodic Kalman filtering: A periodically

time-varying Kalman filter is found to be best suited for a

recursive correction of the model errors by combining the

model estimation and the available measurements. The one-

step-ahead correction for the time-varying system in (14) is

given by

z̄k(n + 1|n) = Āz̄k(n|n − 1) + B̄(n)∆uk(n) (15)

+ Kk(n)
[
ymeas

k (n) − C̄(n)z̄k(n|n − 1)
]

z̄k+1(0| − 1) = Ψ̄z̄k(N |N − 1) n = 0, . . . , N − 1

where z̄k(n + 1|n) denotes the prediction of z̄k(n + 1)
based on measurements available up to time n. Kk(n) is

the periodic time-varying Kalman filter gain matrix. Given

the covariance matrices Rv and Rw of the white noise

sequences vk and wk, respectively; a periodic time varying

filter gain Kk(n) and covariance matrix of the estimate

Pk(n), can be computed as in [3]. Instead of using Kk(n)
and Pk(n), at each time step, one can, a priori iterate on the

periodically time-varying Riccati difference until it converges

to a periodic “steady-state” solution, i.e., Pk(n) −→ P∞(n)
and obtain the periodic steady-state gain matrices, i.e.,

K∞(0), · · · ,K∞(N − 1).
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C. Optimization Problem

The controller has two main tasks. First, it should fulfill

the product specifications while respecting the process con-

straints. Second, the controller should optimize the perfor-

mance of the unit with respect to a given economic criterion.

These tasks can be cast as a linear program (LP), which will

be described in this section. The main idea is to incorporate

the product specifications and process limitations as con-

straints in the LP, while the economic criteria represent the

objective function for the optimization problem. Furthermore

the system dynamics are included as equality constraints of

the LP for numerical efficiency [8]. Each one of these points

is discussed and presented in the following.

1) System Dynamics - Prediction: It is well known, that it

is numerically efficient to have the input and state vectors of

every time step of the prediction horizon as decision variables

of the LP and include the system dynamics as equality

constraints [8]. When following the modelling approach

presented in the previous section, one faces a challenging

trade-off when including the system dynamics into the LP

as equality constraints:

On the one hand, in order to have a ”good” prediction with

high time resolution, one would need a rather fine time

griding during one cycle, i.e. a large number N of grid points

in time, which would result in large matrices build from the

PLTV model in (14). The number of time grid points per

cycle, N , generally lies in the order of 102, in our specific

case, it was chosen to be N = 64.

On the other hand, the SMB process exhibits slow dynamics,

which forces one to select rather long prediction horizons,

generally, in the range of six to eight cycles, to have ”good”

predictions. Therefore the total number of time steps one

would have to look into the future using model (14) to cover,

for instance, six cycles, would be, np = 6 · 64 = 384.

Furthermore, recall that the number of states of the model

considered in (14) is 94 and we have 4 inputs. The LP would

consist of at least (94+4) ·384 = 37′632 decision variables.

In the following, we show how the number of decision vari-

ables was reduced by one order of magnitude by considering

a reformulation of the multi-rate model developed in the

previous section.

The model in (14) is a PLTV model that maps the state z̄k(n)
into the next time step of the same cycle k, z̄k(n + 1).
The key idea here, is to transform the PLTV model in (14),

which maps the states from time step to time step, into a

PLTV model that maps the states from ′cycle to cycle′, i.e.

that maps the state z̄k(n) into z̄k+1(n). To do so, starting at

every time step n = 0, ..., N − 1 we lift the model for one

cycle. Note that this procedure had already been discussed

when transforming the PLTV model in (4) into the ′cycle to

cycle′ model in (6), nevertheless, there it had been applied

only for one time step, namely for n = 0, mapping xk(0)
into xk+1(0). Now we do the same for every time step n.

This yields N ′cycle to cycle′ models, each one mapping the

state at time step n of cycle k into the time step n of cycle

k + 1. This PLTV ′cycle to cycle′ SMB model can be cast

in the following compact form

z̄k+1(n) = Az̄k(n) + B(n)∆Uk(n) (16)

Yk(n) = C(n)z̄k(n) + D(n)∆Uk(n)

for n = 0, . . . , N − 1 Y ∈ Rnys ·N+nyc

These state-space matrices can be constructed through simple

successive substitution of the models in (14). Note that the

matrix A is not time dependent. From (14) we see that Ā = I

for all n, except for the cycle transition equation, therefore

A = Ψ̄. The inputs and outputs of the PLTV ′cycle to cycle′

SMB model are defined as

Yk(n) =
[
yT

k (n) ... yT
l (i) ... yT

k+1(n − 1)
]T

(17)

∆Uk(n) =
[
∆uT

k (n) ...∆uT
l (i) ...∆uT

k+1(n − 1)
]T

where i = n, n + 1, ...N − 1, 0, 1, ...n − 1

the cycle index l = k if n ≤ i ≤ N − 1 and l = k + 1 if

0 ≤ i ≤ n − 1.

This model is incorporated into the optimization problem

solved at time step n. For each time step n a set of equality

constraints with the corresponding PLTV ′cycle to cycle′

SMB model can be written over the prediction horizon to

incorporate the system dynamics. In this way, the initial

number of decision variables that would have been needed

with the model in (14) of 37′632 has been reduced to only

(94 + 256) · 6 = 2100, using the formulation in (16).

2) Product specifications and process limitations: The

product is required to have a minimum purity. The average

purity of the outlet stream j = E,R over one cycle is defined

as

P ave
E,k =

cave
A,E,k

cave
A,E,k + cave

B,E,k

, P ave
R,k =

cave
B,R,k

cave
A,R,k + cave

B,R,k

(18)

where each one of the average concentrations can be com-

puted with Eq. (2). The purities in (18) is a nonlinear function

of the concentration and flow rates and has to be linearized

to be compatible with the LP formulation. The constraints

for minimum purity over the prediction horizon np, can then

be formulated as

P ave
E,l ≥ Pmin

E − s1 with s1 ≥ 0 (19)

P ave
R,l ≥ Pmin

R − s2 with s2 ≥ 0 (20)

for l = k + 1, ..., k + np

where s1 and s2 are slack variables to soften the constraints

and avoid infeasibility problems. To account for the process

limitations, the manipulated variables, are constrained during

the whole operation with lower and upper bounds.

Qmax
j ≥ Qj ≥ Qmin

j for j = I, ..., IV (21)

3) Cost function: The cost function of the LP is defined

to maximize the productivity, in this case, by maximizing

the feed flow rate QF and to minimize the desorbent con-

sumption QD over a given prediction horizon np starting at
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Fig. 3. Outlet purities vs time measured in cycles (1 cycle = ncolt
∗ =

11.7 min). The dotted lines indicate a uncontrolled run under the starting
conditions.

time step n of cycle k.

min
∆U

(np)

k
(n), Z̄

(np)

k
(n)




λD Q

(np)
D

︸ ︷︷ ︸

QI−QIV

−λF Q
(np)
F

︸ ︷︷ ︸

QIII−QII




 + λss

(22)

where Q
(np)
D and Q

(np)
F are the cumulative solvent consump-

tion and feed throughput, respectively, over the prediction

horizon np. The weighting factors λD, λF and λs reflect

the relative preference given to the desorbent consumption

minimization, the feed throughput maximization and the

softening of the purity constraints, respectively. ∆U
(np)
k (n)

and Z̄
(np)
k (n) are the manipulated variables and states, re-

spectively, for the prediction horizon np, at time step n of

cycle k.

The set of inequalities in (19) - (21) and equality constraints

in (16) complete the formulation of the LP, which com-

prised 2200 variables, 10800 inequality and 3100 equality

constraints. A commercial solver, ILOG CPLEX 9.0 was

used to solve the LP. The maximum computation time was

found to be less than 0.6 s in a PC with a 2.4 GHz Intel

Core 2 Quad processor.

IV. SIMULATION RESULTS

In the following example a startup scenario with changing

specifications is presented to illustrate the performance of

the multi-rate controller to fulfill the specified minimum

purities by manipulating the four sectional flow rates.

The adsorption behavior of the chiral mixture to be

separated can be described by a linear isotherm with

Henry’s constants HA = 1.25 and HB = 0.61, which are

used for the model in the controller as well. The plant was

started up at the reference flow rate ratios with initially

clean columns and the controller was switched on at cycle

1. The parameters used in the cost function are λF = 0.825,

λD = 0.2 and λs = 1000 to stress the fact, that the purity

constraints should be softened to the least possible extent.

Note that no control action at the startup conditions leads to

very low purities as shown in the uncontrolled run in Fig.

3. The controller does not allow the purities to drop below

the minimum specified purities of 98.0% at the startup and

tracks them within 40 cycles. At cycle 70 the specifications

are changed to 99.0% and the controller increases both

purities within 15 cycles.

V. CONCLUSIONS AND FUTURE WORKS

In this study, an extension of the control concept developed

earlier [3], [5] has been presented. This extension allows the

controller to make use of multi-rate sampled-measurements,

i.e. primary HPLC measurements and secondary UV ab-

sorbance measurements to control and optimize the unit.

A multi-rate periodic linear time-varying (MR-PLTV) model

for the SMB process was developed in order to handle

in a clean and systematic way the multi-rate sampled-

measurements. The MR-PLTV was incorporated into the

repetitive MPC framework to better exploit the cyclic nature

of the process. Two different formulations of the MR-

PLTV model were presented. The first formulation was for

estimation purposes, which maps the states from time step to

time step, thus providing the necessary information to design

a PLTV Kalman filter. Nevertheless, this first formulation

was not appropriate for predictive control due to the large

number of time steps within a cycle, which on top of the

slow SMB dynamics that require long prediction horizons,

results in a prohibitively large control problem. The model

was then reformulated into a MR-PLTV model that maps the

states from cycle to cycle. This allowed the dynamics of the

system to be efficiently incorporated into the optimization

problem. The numerical example shows that the controller

can assure the product quality and maximize the productivity,

since the purities are at their lower bounds.

The future work aims at assessing and comparing this

approach with the previous control formulations. Finally, this

controller approach will be implemented and validated on our

SMB pilot plant. This framework could be useful for other

continuous cyclic chemical processes.
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