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Abstract— Retroactivity is a phenomenon that changes the
desired input/output response of a system when it is connected
to “downstream” systems. Transcriptional networks are not
immune to this phenomenon. In this paper, we propose a
phosphorylation-based design for a bio-molecular system that
acts as an insulator between its upstream systems and its
downstream ones in a transcriptional network. Performing
singular perturbation analysis, we mathematically show that
such a design attenuates retroactivity. Stochastic simulations
are run to analyze the robustness of the proposed device to
biological noise and to highlight design tradeoffs.

I. I

The concept of retroactivity generalizes the notion of

impedance to non-electric systems. It basically describes the

amount by which the I/O response of a system is affected by

interconnections. As in electrical, hydraulic, and mechanical

systems, also in bio-molecular systems this phenomenon

covers an important role. This is the case both for synthetic

biological systems that are modularly designed [1], and for

natural biological networks that are modularly analyzed [9].

Modular analysis and design is possible only if “modules”

maintain their functions unchanged upon interconnection.

Therefore, it is important to quantify retroactive effects in

these biological systems and to identify mechanisms to iso-

late them. The notion of retroactivity has been introduced in

the context of bio-molecular systems by [16] and it has been

mathematically characterized for transcriptional networks by

the author and co-workers prior work [6].

In this paper, we briefly review the formal definition of

retroactivity proposed in [6] and we focus on the design

of devices that can be placed between two modules to

isolated them from retroactive effects. The understanding

of fundamental design principles of bio-molecular insulation

devices is crucial both in synthetic and in natural systems.

This understanding enables the retroactive-free interconnec-

tion of synthetic components and is central to uncover the

directionality of signal propagation in natural networks. The

idea of a bio-molecular insulation device based on the non-

inverting amplifier design has been explored to some extent

[6], [17]. In this paper, we provide a general theoretical

treatment of the design of bio-molecular insulation devices

based on time-scale separation properties. We show how

the attenuation of the retroactivity can be realized in a bio-
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molecular device by speeding up its dynamics with respect

to its input.

Based on our theoretical development, which employs

singular perturbation techniques, we show how an insulation

device based on a phosphorylation cycle has an intrinsic

insulation property. This is due to its fast time-scale when

compared to protein production and decay processes. Phos-

phorylation/dephosphorylation systems have been shown to

play different roles in cells such as fast amplification of

signals in the visual system [18], regulating metabolic and

signaling pathways [12] and triggering mechanical response

[4]. The new insulation property of phosphorylation cycles

highlights another potential reason why they are ubiquitous

in natural signal transduction systems: they can isolate the

system that sends the signal from the one that receives the

signal. This allows faithful signal propagation. In this system,

having a fast time-scale is qualitatively equivalent to having

large input amplification and large negative feedback gains.

Since there is extensive work witnessing the sensitivity of

the noise properties of a bio-molecular system to increase in

feedback gain (see [3], [10], for example), we analyze the

noise properties of the phosphorylation cycle when the gains

are changed. This is performed numerically by employing

Gillespie’s Stochastic Simulation Algorithm (SSA) [7]. An

increase of these gains attenuates more the retroactive effects

but also increases the coefficient of variation of the species.

This highlights a potential design trade-off between the

insulation capability and sensitivity to biological noise.

In Section II, we revise the notion of retroactivity from a

control systems point of view. In Section III, we propose a

theoretical framework for the design of insulation devices. In

Section IV, we show the realization of an insulation device

based on a phosphorylation cycle . In Section V, we analyze

the sensitivity to biological noise when the internal gains of

the device are changed.

II. R  T N

A. The Retroactivity Concept

The concept of retroactivity broadly encompasses loading

effects arising at interconnections in electrical, hydraulic,

mechanical, and biological systems. Upon interconnection

between an upstream system and a downstream system, the

dynamics of the internal state and of the output of the

upstream system changes. This phenomenon can be modeled

by a signal that travels from downstream to upstream, which

we call retroactivity. The amount of such a retroactivity

will change depending on the features of the interconnection

and of the downstream system. We thus represent a system
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Fig. 1. A system model with retroactivity.

according to the diagram shown in Figure 1 as proposed in

[6]. An input is added, called s, to the system to model any

change in its dynamics that may occur upon interconnection

with a downstream system. Similarly, a signal r is added as

another output, to model the fact that when such a system

is connected downstream of another system, it will send

upstream a signal that will alter the dynamics of the upstream

system. A system S is thus defined to have internal state x,

two types of inputs (I), and two types of outputs (O): an

input “u” (I), an output “y” (O), a retroactivity to the input

“r” (O), and a retroactivity to the output “s” (I) (Figure 1).

We represent such a system S by the equations

dx

dt
= f (x, u, s), y = Y(x, u, s), r = R(x, u, s), (1)

in which f , Y,R are arbitrary functions and the signals

x, u, s, r, y may be scalars or vectors. In this formalism, we

define the input/output model of the isolated system as the

one in equations (1) without r in which we have also set

s = 0. This model generalizes the standard input/output

formalism of control theory, while it can be still viewed as

a special case of the behavioral models [15].

From a design point of view, having a system whose

dynamics is affected by s and that outputs a non zero r

is undesirable. In fact, especially in circuit design and in

control systems, an input/output device is usually designed

in isolation to have a desired input/output response. Such

a desired response should be maintained despite whether

the device is interconnected, in order to design and analyze

complex systems in a modular fashion. Since this same

modular approach to design and analysis of networks is taken

in synthetic and systems biology, we investigate the amounts

of these retroactivity effects in transcriptional networks.

B. Transcriptional Networks are Affected by Retroactivity

The retroactivity concept in the context of bio-molecular

systems has been considered also by other authors [16].

Their approach is to re-partition inputs and outputs of a

chemical network to minimize the amounts of retroactivity.

Our approach instead considers fixed inputs and outputs and

focuses on the design of devices that can be placed between

an upstream system and a downstream one to isolate them.

A transcriptional network is composed by a number of genes

that express proteins that then act as transcription factors for

other genes. Such a network can be generally represented as

nodes connected by directed edges. Each node represents a

gene and each arrow from node z to node x indicates that the

transcription factor encoded in z, denoted Z, regulates gene x

[1]. In this paper, we model each node x of the network as an

input/output module taking as input the transcription factors

that regulate gene x and as output the protein expressed by

gene x, denoted X. A directed edge between nodes z and x

indicates that protein Z binds to the operator sites of gene x

to alter (repress or activate) the expression of the latter. We

denote by X the protein, by X (italics) the average protein

concentration, and by x (lower case) the gene expressing

protein X. A transcriptional component that takes as input

protein Z and gives as output protein X is shown in Figure 3

in the dashed box. The activity of the promoter controlling

p

Transcriptional component

Z

x

X

Fig. 3. The transcriptional component takes as input u protein
concentration Z and gives as output y protein concentration X. The
transcription factor Z binds to operator sites on the promoter. The
red part belongs to a downstream transcriptional block that takes
protein concentration X as its input.

gene x depends on the amount of Z bound to the promoter.

If Z = Z(t), such an activity changes with time. We denote

it by k(t). By neglecting the mRNA dynamics, we can write

the dynamics of X as

dX

dt
= k(t) − δX, (2)

in which δ is the decay rate of the protein. We refer to

equation (2) as the isolated system dynamics. The reversible

binding reaction of X with p is given by X+p ⇋
kon

koff
C, in

which C is the complex protein-promoter and kon and koff

are the binding and dissociation rates of the protein X to the

promoter site p. Since the promoter is not subject to decay,

its total concentration pTOT is conserved so that we can write

p+C = pTOT . Therefore, the new dynamics of X is governed

by the equations

dX

dt
= k(t) − δX + koffC − kon(pTOT −C)X ,

dC

dt
= −koffC + kon(pTOT −C)X. (3)

The terms in the box represent the signal s, that is, the

retroactivity to the output, while the second of equations (3)

describes the dynamics of the input stage of the downstream

system driven by X. Then, we can interpret s as a mass flow

between the upstream and the downstream system. When

s = 0, the first of equations (3) reduces to the dynamics of

the isolated system given in equation (2). Figure 2 shows

the dramatic effect of the retroactivity to the output s on

the dynamics of the transcriptional module. A mathematical

framework for quantifying the retroactivity effect on the

dynamics has been proposed in [6].

Since the load p cannot necessarily be designed to generate

a small retroactivity, we instead design a device that can be

placed between the transcriptional component and its load to

isolate X from retroactive effects.
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Fig. 2. The dramatic effect of interconnection. Simulation results for the system in equations (3). Here, k(t) = 0.01(1+ sin(ωt)) in the left
plot and k(t) = 0.01 in the right side plot. Also, ω = 0.005, kon = 10, koff = 10, δ = 0.01, pT OT = 100, X(0) = 5. The protein decay rate (in
min−1) corresponds to a half life of about one hour. The frequency of oscillations has a period of about 12 times the protein half life in
accordance to what is experimentally observed in [2]. The green plot (solid line) represents X(t) originating by equations (2), while the
blue plot (dashed line) represents X(t) obtained by equation (3). Both transient and permanent behaviors are different.

III. A T- S A   D 

B- I D

We define an insulation device as a system with the

structure shown in Figure 1 for which (i) r ≪ 1; (ii) s is

almost completely attenuated; (iii) the input/output response

is linear in the signal range of interest. We next show that a

bio-molecular system whose internal dynamics evolves on a

fast time scale compared to the input can also attenuate the

retroactivity to the output. Singular perturbation techniques

are employed to show this property.

We consider a system S as shown in Figure 1, in which

we make the following structural assumptions:

(i) The variables r, s are scalars, u, y ∈ R+, x = (x1, ..., xn) ∈
D ⊆ Rn

+
and y = xn;

(ii) r and s enter the dynamics as additive rates and they

affect only the dynamics of the u and y variables,

respectively, that is,

du

dt
= f0(t, u) + r(x, u) (4)

and
dxn

dt
= G fn(x) + s(v, y), in which G > 0 and

v = (v1, ..., vp) ∈ Rp
+
is the internal state variable of

the downstream system whose dynamics is given by

dv

dt
=



































g1(v, y)

g2(v)
...

gp(v)



































; (5)

(iii) The internal dynamics of system S once it is connected

to its downstream system is given by

dx

dt
=













































G f1(x, u)

G f2(x)
...

G fn−1(x)

G fn(x) + s(v, y)













































; (6)

(iv) The following conservation laws for the retroactivity

rates hold: r(x, u) = −G f1(x, u), and s(v, y) = −g1(v, y).

Property (iv) models the retroactivity as a flow through

the interconnection from the downstream system to the

upstream one. From a biological point of view, this property

is satisfied in interconnection mechanisms that occur through

protein/protein or protein/promoter binding/unbinding. More

general models could be considered in which r and s are

vectors and they enter the dynamics of multiple variables

in their corresponding upstream systems. The constant G in

equations (6) is a gain. In the special case in which x ∈ R
and f1(x, u) = αu − βx, G plays exactly the role of an

input gain and of a negative feedback gain. The parameter G

also quantifies the speed of the dynamics of system S . We

seek to show that as G increases, under suitable stability

assumptions, the effect of the retroactivity to the output

s on the dynamics of S becomes negligible after a short

initial transient. Also, the retroactivity to the input r can be

measured as a static function of the input u to S and of the

internal parameters of S .

Assumption 1: Define the function F : R+ ×D → Rn by

F(a, x) := ( f1(x, a − x1), f2(x), ..., fn(x)), a ∈ R+, and x ∈ D.
We assume that all the eigenvalues of ∂F

∂x
(a, x) have negative

real parts for all x ∈ D and all a ∈ D′ := {a ∈ R+ | a − x1 ≥
0, x ∈ D}.

Claim 1: Let x(t) be generated by system (4-5-6) and let

xre f (t) be generated by the same system where we have set

s(v, y) = 0. Then, there exist constants G∗, t0, T > 0 such that

‖xre f (t) − x(t)‖ = O(1/G) for all t ∈ [t0, T ) and all G > G∗.

Proof: Employ the change of variables ũ := u + x1,

x̃n = xn + v1, and set ǫ := 1/G. The dynamics of system

(4-5-6) in these new variables become

dũ

dt
= f0(t, ũ − x1)

ǫ
dx1

dt
= f1(x1, ..., xn−1, x̃n − v1, ũ − x1)
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ǫ
dxi

dt
= fi(x1, ..., xn−1, x̃n − v1), for 1 < i < n

ǫ
dx̃n

dt
= fn(x1, ..., xn−1, x̃n − v1)

dv1

dt
= g1(v, x̃n − v1). (7)

For ǫ ≪ 1, the above system is in standard singular perturba-
tion form. Setting ǫ = 0, one can compute the slow manifold,

which, in the (x, ũ) variables is given by {(x, ũ) | x =

γ(ũ), with γ(ũ) locally unique solution of F(ũ, γ(ũ)) = 0}.
Denote γ(ũ) = (γ1(ũ), ..., γn(ũ)). Since all the eigenvalues of
∂F
∂x
(ũ, x) have negative real parts, the trajectories are attracted

to the slow manifold. Thus, we can apply the singular pertur-

bation theorem on the finite time interval [14] to conclude

that there are ǫ∗
1
, t′
0
, T ′ > 0 such that x(t) = γ(ũ(t)) + O(ǫ)

for all ǫ < ǫ∗
1
and t ∈ [t′

0
, T ′), in which ũ is given by

dũ/dt = f0(t, ũ − γ1(ũ)). This expression of x(t) does not

depend on the values of v. Consider now xre f (t) as generated

by (4-5-6) in which s(v, y) = 0. Employing the change of

variables ũ := u+ x1 and setting ǫ := 1/G, the dynamic of S

becomes

dũ

dt
= f0(t, ũ − x

re f

1
)

ǫ
dx

re f

1

dt
= f1(x

re f , ũ − x
re f

1
), ǫ

dx
re f

i

dt
= fi(x

re f ), for 1 < i ≤ n.

By setting ǫ = 0 and computing the slow manifold, one

obtains the same solution xre f = γ(ũ) as obtained earlier.

Therefore, there are ǫ∗
2
, t′′
0
, T ′′ > 0 such that xre f (t) =

γ(ũ(t)) + O(ǫ) for all ǫ < ǫ∗
2
and t ∈ [t′′

0
, T ′′). Setting

G∗ := 1/min(ǫ∗
1
, ǫ∗
2
), t0 := max(t

′

0
, t′′
0
), and T := min(T ′, T ′′),

the desired result follows.

This result indicates that an input/output bio-molecular sys-

tem that evolves on a faster time-scale than its input is likely

to attenuate very well the retroactivity to its output.

Claim 2: Let u(t) be generated by system (4-5-6).

Set f (a, x) := ( f1(x, a), f2(x), ..., fn(x)) and assume that

f (a, γ(a)) = 0 admits a unique solution γ : R+ → Rn with

γ(a) = (γ1(a), ..., γn(a)) and γi : R+ → R+. Let ū(t) ∈ R+ be
generated by the system

dū

dt
= f0(t, ū)















1

1 +
∂γ1
∂ū
(ū)















. (8)

Then, there exist G∗ > 0, t0 > 0, and T > 0 such that

u(t) = ū(t) + O(1/G) for all t ∈ [t0, T ) and all G ≥ G∗.

Proof: The proof proceeds similarly to the proof of

Claim 1. Employ the change of variables ũ := u + x1,

x̃n = xn + v1, and set ǫ := 1/G. The dynamics of system

(4-5-6) in these new variables is the same as in equations

(7). For ǫ ≪ 1, the above system is in standard singular
perturbation form. Setting ǫ = 0, one can compute the

slow manifold in the (x, u) variables. This is given by

{(x, u) | x = γ(u), unique solution of f (u, γ(u)) = 0}. Denote
the variables when ǫ = 0 with a bar. Then, we have that

d ¯̃u/dt = f0(t, ū). Since ˜̄u = ū+ x̄1, by applying the chain rule

we obtain

d ¯̃u

dt
= f0(t, ū) =

dū

dt
+
∂γ1

∂ū
(ū)

dū

dt
,

Z

Insulation component

X

Y

Xp

p

Fig. 4. The dashed box contains the insulation device.

which, rearranging the terms, leads to (8). Since all the

eigenvalues of ∂F
∂x
(a, x) have negative real parts, we can

apply the singular perturbation theorem on the finite time

interval [14] to conclude that there are ǫ∗, t0, T > 0 such that

u(t) = ū(t) +O(ǫ) for all ǫ < ǫ∗ and t ∈ [t0, T ). This leads us
to the desired result with G∗ = 1/ǫ∗.

This result implies that if
∂γ1
∂ū
(ū) ≪ 1 then the dynamics

of u becomes, after a short transient and for G ≥ G∗,

approximatively equal to du
dt
= f0(t, u), which is the dynamics

of u in the case in which r(x, u) = 0. Therefore, the quantity
∂γ1
∂ū
(ū) provides a measure of the retroactivity to the input r

as a function of the input value and of the internal parameters

of S . It can therefore be employed as a design parameter.

IV. A I D R B  

P C

Consider a system S in which the input u is the concen-

tration of a kinase Z that activates the phosphorylation of a

protein X (Figure 4). Such a system can be designed to be

an insulator by employing the method outlined in Section

III.

A. Model and Design Criteria

Consider a two-step reaction model [11]: X + Z ⇋
β1
β2
C1 →k1 Xp + Z and Y + Xp ⇋

α1
α2C2 →k2 X + Y, in

which C1 is the [protein X/kinase Z] complex and C2 is

the [phosphatase Y/protein Xp] complex. Additionally, we

have the conservation equations YTOT = Y + C2, XTOT =

X + Xp + C1 + C2 + C. Furthermore, we have Xp+p ⇋
kon

koff
C,

in which C is the complex protein-promoter and kon and koff

are the binding and dissociation rates of Xp with p. Also,

the total concentration pTOT is conserved so that we can

write p+C = pTOT . The differential equations modeling the

insulation system of Figure 4 become

dZ

dt
= k(t) − δZ −β1ZXTOT

(

1 − Xp

XTOT
− C1

XTOT
− C2

XTOT

− C
XTOT

)

+ (β2 + k1)C1 (9)
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dC1

dt
= −(β2 + k1)C1 + β1ZXTOT

(

1 −
Xp

XTOT

− C1

XTOT

− C2

XTOT

− C
XTOT

)

(10)

dC2

dt
= −(k2 + α2)C2 + α1YTOT Xp

(

1 − C2

YTOT

)

(11)

dXp

dt
= k1C1 + α2C2 − α1YTOT Xp

(

1 − C2

YTOT

)

+ koffC − konXp(pTOT −C) (12)

dC

dt
= −koffC + konXp(pTOT − C), (13)

in which the expression of gene z is controlled by a promoter

with activity k(t). The terms in the box in equation (9)

represent the retroactivity r to the input, while the terms

C/XTOT in the small box in equation (9) and (10) and the box

in equation (12) represent the retroactivity s to the output. We

assume that XTOT ≫ pTOT so that in equations (9) and (10)

we can neglect the term C/XTOT because C < pTOT (note

that this will in practice limit the load amount by the amount

of XTOT ). Phosphorylation, dephosphorylation, and binding

dynamics can occur at a much faster rate [1], [13] than

protein production and decay processes. That is, koff ≫ k(t),

koff ≫ δ [1], and kon = koff/kd with kd = O(1). Choosing XTOT

and YTOT sufficiently large, system (9–13) is in the form of

system (4-6-5) in which x = (x1, x2, x3) = (C1,C2, Xp). This

can be seen by letting G = koff/δ, kon = koff/kd, and by

defining the new rate constants b1 = (β1XTOT )/(δG), a1 =

(α1YTOT )/(δG), b2 = β2/(δG), a2 = α2/(δG), ci = ki/(δG),

so to obtain the new system

dZ

dt
= k(t) − δZ −δb1GZ

(

1 − Xp

XTOT
− C1

XTOT
− C2

XTOT

)

+Gδ(b2 + c1)C1

dC1

dt
= −Gδ(b2 + c1)C1 +Gδb1Z

(

1 −
Xp

XTOT

− C1

XTOT

− C2

XTOT

)

dC2

dt
= −Gδ(c2 + a2)C2 +Gδa1Xp

(

1 − C2

YTOT

)

dXp

dt
= Gδc1C1 +Gδa2C2 −Gδa1Xp

(

1 − C2

YTOT

)

+

GδC −Gδ/kd(pTOT − C)Xp

dC

dt
= −GδC +Gδ/kd(pTOT −C)Xp, (14)

in which the boxed terms in the first equation are the

retroactivity to the input r, while the boxed terms in the

almost last equation are the retroactivity to the output s.

It can be shown that system (14) satisfies Assumption 1

provided XTOT is large enough. Claim 1 can thus be applied:

forG sufficiently large, we have that ‖Xp(t)−Xr
p(t)‖ = O(1/G)

after a short initial transient, in which X
re f
p (t) is the Xp(t)

originating from (14) once we set s = 0. According to

this Claim 2, the function dγ1(Z̄)/dZ̄ can be considered as

a design parameter that should be made small in order to

guarantee the retroactivity to the input r to be small after a

short initial transient. To apply Claim 2, we next compute

the expressions (C1,C2, Xp) as functions of Z. Letting γ =

(β2+k1)/β1 and γ̄ = (α2+k2)/α1, the following relationships

can be obtained:

C1 = F1(Xp) =

XpYTOT k2

γ̄k1

1 + Xp/γ̄
, C2 = F2(Xp) =

XpYTOT

γ̄

1 + Xp/γ̄
, (15)

F1(Xp)(b2 + c1 +
b1Z

XTOT

) = b1Z(1 −
Xp

XTOT

−
F2(Xp)

XTOT

). (16)

Assuming for simplicity that Xp ≪ γ̄, we obtain that

F1(Xp) ≈ (XpYTOT k2)/(γ̄k1) and that F2(Xp) ≈ (XpYTOT )/(γ̄).

As a consequence of these simplifications, equation (16)

leads to

Xp =
b1Z

b1Z

XTOT
(1 + YTOT/γ̄ + (YTOT k2)/(γ̄k1)) +

YTOT k2
γ̄k1
(b2 + c1)

.

In order not to have distortion from Z to Xp, we require that

Z ≪
YTOT

k2
k1

γ

γ̄

1 +
YTOT

γ̄
+

YTOT

γ̄
k2
k1

, (17)

so that Xp ≈ Z
XTOT γ̄k1
YTOT γk2

:= m(Z) and therefore we have a linear

relationship between Xp and Z with gain from Z to Xp given

by
XTOT γ̄k1
YTOTγk2

. In order not to have attenuation from Z to Xp we

require that the gain is greater than or equal to one.

In order to guarantee that the retroactivity r to the input is

sufficiently small, we require that the value of ∂F1(m(Z))/∂Z

is small. Employing the chain rule, direct computation of dF1
dm

and of dm
dZ
considering the expressions F1(m) ≈ mYTOT k2

γ̄k1
and

m(Z) = Z
XTOT γ̄k1
YTOTγk2

leads to ∂F1(m(Z))/∂Z ≈ XTOT/γ. Thus, in

order to have small retroactivity to the input r, we require

that
XTOT

γ
≪ 1.

B. Simulation Results

A first validation of the proposed analysis is performed by

using numerical integration of the differential equations (9–

13) with and without the downstream binding sites p, that is,

with and without, respectively, the terms in the small box of

equation (9) and in the boxes in equations (12) and (10). This

is performed to highlight the effect of the retroactivity to the

output s on the dynamics of Xp. The simulations validate

our theoretical study that indicates that when XTOT ≫ pTOT

and the time scales of phosphorylation/dephosphorylation are

much faster than the time scale of decay and production

of the protein Z, the retroactivity to the output s is very

well attenuated (Figure 5, plot A). The accordance of the

behaviors of Z(t) with and without its downstream binding

sites on X (Figure 5, plot B), indicates that there is no

substantial retroactivity to the input r generated by the

insulation device. This is obtained because XTOT ≪ γ, in
which 1/γ can be interpreted as the affinity of the binding

of X to Z. Our simulation study confirms that slowing down

the time scale of phosphorylation and dephosphorylation, the

system looses its insulation property (Figure 6).
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Fig. 5. Fast time scales of phosphorylation reactions. Simulation
results for system in equations (9–13). In all plots, pT OT = 100,
koff = kon = 10, δ = 0.01, k(t) = 0.01(1 + sin(ωt)), and ω = 0.005.
In subplots A and B, k1 = k2 = 50, α1 = β1 = 0.01, β2 = α2 = 10,
and YT OT = XT OT = 1500. In subplot A, the signal Xp(t) without
the downstream binding sites p is in green (solid line), while the
same signal with the downstream binding sites p is in blue (dashed
line). In subplot B, the signal Z(t) without X to which Z binds is in
red (solid), while the same signal Z(t) with X present in the system
(XT OT = 1500) is in black (dashed line).
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Fig. 6. Slower time scales of phosphorylation reactions. In all plots,
pT OT = 100 and koff = kon = 10, δ = 0.01, k(t) = 0.01(1 + sin(ωt)),
and ω = 0.005. Phosphorylation and dephosphorylation rates are
slower than the ones in Figure 5, that is, k1 = k2 = 0.01, while
the other parameters are left the same, that is, α2 = β2 = 10, α1 =
β1 = 0.01, and YT OT = XT OT = 1500. In subplot A, the signal Xp(t)
without the downstream binding sites p is in green (solid line),
while the same signal with the downstream binding sites p is in
blue (dashed line). In subplot B, the signal Z(t) without X in the
system is in red (solid line), while the same signal Z(t) with X in
the system is in black (dashed line).

V. T E  B N

A. Simulation Model

For evaluating the noise properties of the phosphorylation

system, we employed the Stochastic Simulation Algorithm

(SSA) [7] using the Gillespie’s direct method. SSA is ap-

propriate in studies where the system satisfies properties of

homogeneity of the solution, constant temperature and the
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Fig. 7. Stochastic simulation realizations and sample mean for
protein Xp. All results were obtained by using parameters koff =

kon = 10, δ = 0.01, k(t) = 0.01(1 + sinωt), ω = 0.005, α1 = β1 =
0.01, β2 = α2 = 10, and YT OT = XT OT = 1500. The values of
k1 and k2 are 0.05 in subplot A and 50 in subplot B. Both plots
shown are for the system without load (p = 0). When k1 and k2 are
higher (subplot B), Xp comes close to zero, raising the maximum
coefficient of variation.

proportion of non-reactive collisions is large. Under these

assumptions, each realization of the method is equivalent to

a sample of the random process described by the chemical

master equation [8]. Our SSA implementation was modified

to account for the time variant external input. This was

accomplished by imposing a deterministic time-varying con-

centration for a Z protein messenger emulating the signal

k(t) = 0.01(1 + sinωt). Here, we analyze the sensitivity of

noise to changes in load and in a key parameter of this

system. The measure used in this work to represent noise

is the Coefficient of Variation (CV), obtained by taking the

ratio between the standard deviation value of a species and

its mean. This quantity, standard in biochemical assessment

of noise [3], [10], is equal to the inverse square root of the

signal-to-noise ratio. The importance of this measure comes

from the fact that a high standard deviation value might have

much higher impact on the overall dynamics when a species

is scarce (present in low amounts) than when it is abundant

in the system. The phosphorylation system shown in Figure 4

is, for the purpose of stochastic simulation, broken down into

the set of corresponding chemical equations.The stochastic

reaction rates used were chosen to be equivalent to those in

the simulations from Section IV. The same initial conditions

used in numerical integration were applied in the stochastic

model, with concentrations converted into number of proteins

by considering a system of volume Ω = 20M−1. Parameters

K = k1 = k2 and p were changed to assess noise sensitivity to

gain and feedback, and to load. For each set of parameters,

a total of N = 150 realizations, denoted xi(t) with length

10000s were generated. Sample realizations and means for

the output Xp are shown in Figure 7.
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Fig. 8. Maximum coefficient of variation for input Z and output
Xp in function of reaction rates k1 and k2, for the system with and
without load. This plot shows that increase in k1 and k2 lead to an
increase in noise while load does not produce significant change.

B. Stochastic Results and Analysis

Let the sample mean be x̄(t) = 1

N

∑N
i=0 xi(t) and the

biased variance estimator be σ̂2(t) = 1
N

∑N
i=0 x2

i
(t). Then the

coefficient of variation is defined as CV(t) =

√
σ̂2(t)−x̄2(t)

x̄(t)
. In

this work, we are interested in the maximum coefficient of

variation for the proteins Z and Xp over time. These were

obtained by using the expression CV = maxt>t̄ CV(t), in

which t̄ > 0 is chosen as t̄ = 2000 in order to exclude the

transient from the computation of CV . Figure 8 shows the

maximum coefficient of variation on input (Z) and output

(Xp) for K = 0.05, 0.5, 5, 50 and pTOT = 0, 100. The

maximum coefficient of variation on both input and output

states was not significantly affected when downstream load

is connected. When K is increased, the noise on both states

increases dramatically, the output state suffering the most.

This fact along with the results from Section IV points at a

trade-off between the performance of the insulator and the

noise produced by it. The value of K should not be too low

so that the system can efficiently reduce the retroactivity

to the output, nor too high to avoid a large coefficient of

variation. It has been shown that the increase of feedback

leads to increase in high frequency noise sensitivity and

might lead to instability of systems with additive noise [5].

This fundamental principle is not directly applicable to our

system because the perturbations are not additive and are

correlated to the states. The effects of feedback increase on

noise have been investigated by some authors for systems

at the equilibrium [3], [10]. While the first of these works

shows how negative feedback may decrease the CV in a

simple autoregulated gene, the second one shows that the

addition of negative feedback not necessarily decreases the

CV. Our findings are more in line with the results of [10]

even if not directly comparable as our system is not at the

equilibrium due to a time varying input. A study of the effect

of feedback on noise has been investigated for systems out

of equilibrium in [19], supporting the possibility that noise

may not be decreased by feedback when the state is far from

equilibrium. This result is closer to our finding, even if our

system operates in the permanent (non-steady) behavior as

opposed to operate in the transient behavior.

VI. C  FW

We described a methodology based on singular perturba-

tion analysis for the design of insulation devices in tran-

scriptional networks. We then proposed a specific design

of an insulation device based on a phosphorylation cycle.

On the one side, as the gain G increase the insulation

property improves. On the other side an increase in this gain

causes an increase in biological noise. This result points at a

design tradeoff. We are investigating analytically the reasons

for an increase in noise due to an increase in gain. The

proposed insulation device will be fabricated in E. coli to

experimentally validate our theoretical analysis.
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